1
|
Lorincz D, Poppi LA, Holt JC, Drury HR, Lim R, Brichta AM. The Long and Winding Road-Vestibular Efferent Anatomy in Mice. Front Neural Circuits 2022; 15:751850. [PMID: 35153679 PMCID: PMC8832101 DOI: 10.3389/fncir.2021.751850] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 12/23/2021] [Indexed: 11/20/2022] Open
Abstract
The precise functional role of the Efferent Vestibular System (EVS) is still unclear, but the auditory olivocochlear efferent system has served as a reasonable model on the effects of a cholinergic and peptidergic input on inner ear organs. However, it is important to appreciate the similarities and differences in the structure of the two efferent systems, especially within the same animal model. Here, we examine the anatomy of the mouse EVS, from its central origin in the Efferent Vestibular Nucleus (EVN) of the brainstem, to its peripheral terminations in the vestibular organs, and we compare these findings to known mouse olivocochlear anatomy. Using transgenic mouse lines and two different tracing strategies, we examine central and peripheral anatomical patterning, as well as the anatomical pathway of EVS axons as they leave the mouse brainstem. We separately tag the left and right efferent vestibular nuclei (EVN) using Cre-dependent, adeno-associated virus (AAV)-mediated expression of fluorescent reporters to map their central trajectory and their peripheral terminal fields. We couple this with Fluro-Gold retrograde labeling to quantify the proportion of ipsi- and contralaterally projecting cholinergic efferent neurons. As in some other mammals, the mouse EVN comprises one group of neurons located dorsal to the facial genu, close to the vestibular nuclei complex (VNC). There is an average of just 53 EVN neurons with rich dendritic arborizations towards the VNC. The majority of EVN neurons, 55%, project to the contralateral eighth nerve, crossing the midline rostral to the EVN, and 32% project to the ipsilateral eighth nerve. The vestibular organs, therefore, receive bilateral EVN innervation, but without the distinctive zonal innervation patterns suggested in gerbil. Similar to gerbil, however, our data also suggest that individual EVN neurons do not project bilaterally in mice. Taken together, these data provide a detailed map of EVN neurons from the brainstem to the periphery and strong anatomical support for a dominant contralateral efferent innervation in mammals.
Collapse
Affiliation(s)
- David Lorincz
- School of Biomedical Sciences and Pharmacy, The University of Newcastle, Callaghan, NSW, Australia
| | - Lauren A. Poppi
- School of Biomedical Sciences and Pharmacy, The University of Newcastle, Callaghan, NSW, Australia
| | - Joseph C. Holt
- Department of Otolaryngology, University of Rochester, Rochester, NY, United States
| | - Hannah R. Drury
- School of Biomedical Sciences and Pharmacy, The University of Newcastle, Callaghan, NSW, Australia
| | - Rebecca Lim
- School of Biomedical Sciences and Pharmacy, The University of Newcastle, Callaghan, NSW, Australia
| | - Alan M. Brichta
- School of Biomedical Sciences and Pharmacy, The University of Newcastle, Callaghan, NSW, Australia
| |
Collapse
|
2
|
Cullen KE, Wei RH. Differences in the Structure and Function of the Vestibular Efferent System Among Vertebrates. Front Neurosci 2021; 15:684800. [PMID: 34248486 PMCID: PMC8260987 DOI: 10.3389/fnins.2021.684800] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 05/13/2021] [Indexed: 11/13/2022] Open
Abstract
The role of the mammalian vestibular efferent system in everyday life has been a long-standing mystery. In contrast to what has been reported in lower vertebrate classes, the mammalian vestibular efferent system does not appear to relay inputs from other sensory modalities to the vestibular periphery. Furthermore, to date, the available evidence indicates that the mammalian vestibular efferent system does not relay motor-related signals to the vestibular periphery to modulate sensory coding of the voluntary self-motion generated during natural behaviors. Indeed, our recent neurophysiological studies have provided insight into how the peripheral vestibular system transmits head movement-related information to the brain in a context independent manner. The integration of vestibular and extra-vestibular information instead only occurs at next stage of the mammalian vestibular system, at the level of the vestibular nuclei. The question thus arises: what is the physiological role of the vestibular efferent system in mammals? We suggest that the mammalian vestibular efferent system does not play a significant role in short-term modulation of afferent coding, but instead plays a vital role over a longer time course, for example in calibrating and protecting the functional efficacy of vestibular circuits during development and aging in a role analogous the auditory efferent system.
Collapse
Affiliation(s)
- Kathleen E. Cullen
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, United States
- Department of Otolaryngology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- Department of Neuroscience, Johns Hopkins University, Baltimore, MD, United States
- Kavli Neuroscience Discovery Institute, Johns Hopkins University, Baltimore, MD, United States
| | - Rui-Han Wei
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, United States
| |
Collapse
|
3
|
The mammalian efferent vestibular system utilizes cholinergic mechanisms to excite primary vestibular afferents. Sci Rep 2021; 11:1231. [PMID: 33441862 PMCID: PMC7806594 DOI: 10.1038/s41598-020-80367-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 12/18/2020] [Indexed: 02/06/2023] Open
Abstract
Electrical stimulation of the mammalian efferent vestibular system (EVS) predominantly excites primary vestibular afferents along two distinct time scales. Although roles for acetylcholine (ACh) have been demonstrated in other vertebrates, synaptic mechanisms underlying mammalian EVS actions are not well-characterized. To determine if activation of ACh receptors account for efferent-mediated afferent excitation in mammals, we recorded afferent activity from the superior vestibular nerve of anesthetized C57BL/6 mice while stimulating EVS neurons in the brainstem, before and after administration of cholinergic antagonists. Using a normalized coefficient of variation (CV*), we broadly classified vestibular afferents as regularly- (CV* < 0.1) or irregularly-discharging (CV* > 0.1) and characterized their responses to midline or ipsilateral EVS stimulation. Afferent responses to efferent stimulation were predominantly excitatory, grew in amplitude with increasing CV*, and consisted of fast and slow components that could be identified by differences in rise time and post-stimulus duration. Both efferent-mediated excitatory components were larger in irregular afferents with ipsilateral EVS stimulation. Our pharmacological data show, for the first time in mammals, that muscarinic AChR antagonists block efferent-mediated slow excitation whereas the nicotinic AChR antagonist DHβE selectively blocks efferent-mediated fast excitation, while leaving the efferent-mediated slow component intact. These data confirm that mammalian EVS actions are predominantly cholinergic.
Collapse
|
4
|
Poppi LA, Holt JC, Lim R, Brichta AM. A review of efferent cholinergic synaptic transmission in the vestibular periphery and its functional implications. J Neurophysiol 2019; 123:608-629. [PMID: 31800345 DOI: 10.1152/jn.00053.2019] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
It has been over 60 years since peripheral efferent vestibular terminals were first identified in mammals, and yet the function of the efferent vestibular system remains obscure. One reason for the lack of progress may be due to our deficient understanding of the peripheral efferent synapse. Although vestibular efferent terminals were identified as cholinergic less than a decade after their anatomical characterization, the cellular mechanisms that underlie the properties of these synapses have had to be inferred. In this review we examine how recent mammalian studies have begun to reveal both nicotinic and muscarinic effects at these terminals and therefore provide a context for fast and slow responses observed in classic electrophysiological studies of the mammalian efferent vestibular system, nearly 40 years ago. Although incomplete, these new results together with those of recent behavioral studies are helping to unravel the mysterious and perplexing action of the efferent vestibular system. Armed with this information, we may finally appreciate the behavioral framework in which the efferent vestibular system operates.
Collapse
Affiliation(s)
- L A Poppi
- School of Biomedical Sciences and Pharmacy, The University of Newcastle, Newcastle, NSW, Australia.,Hunter Medical Research Institute, New Lambton Heights, NSW, Australia.,Preclinical Neurobiology Research Group, The University of Newcastle, Newcastle, NSW, Australia
| | - J C Holt
- Department of Otolaryngology, University of Rochester Medical Center, Rochester, New York
| | - R Lim
- School of Biomedical Sciences and Pharmacy, The University of Newcastle, Newcastle, NSW, Australia.,Hunter Medical Research Institute, New Lambton Heights, NSW, Australia.,Preclinical Neurobiology Research Group, The University of Newcastle, Newcastle, NSW, Australia
| | - A M Brichta
- School of Biomedical Sciences and Pharmacy, The University of Newcastle, Newcastle, NSW, Australia.,Hunter Medical Research Institute, New Lambton Heights, NSW, Australia.,Preclinical Neurobiology Research Group, The University of Newcastle, Newcastle, NSW, Australia
| |
Collapse
|
5
|
Boyle R, Popova Y, Varelas J. Influence of Magnitude and Duration of Altered Gravity and Readaptation to 1 g on the Structure and Function of the Utricle in Toadfish, Opsanus tau. Front Physiol 2018; 9:1469. [PMID: 30405430 PMCID: PMC6204554 DOI: 10.3389/fphys.2018.01469] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Accepted: 09/28/2018] [Indexed: 11/13/2022] Open
Abstract
Gravity has remained constant during animal evolution and the neural sensory systems detecting acceleration forces have remained remarkably conserved among vertebrates. The utricular organ senses the sum of inertial force due to head translation and head tilt relative to gravitational vertical. Change in gravitational force would be expected to have profound effects on how an organism maintains equilibrium. We characterize the physiology of utricular afferents to applied accelerations in the oyster toadfish, Opsanus tau, in normal 1 g to establish benchmarks, after 1–32-day exposures to 2.24 g (resultant) via centrifugation (hypergravity, HG), after 4- and 16-day exposures to 1.12 g (resultant), and following 1–8 days recovery to HG exposures to study re-adaptation to 1 g. Afferents were also examined during activation of efferent vestibular pathway. Centrifugation at 2.24 g included 228°/s constant angular velocity component, and thus horizontal canal afferent responses to yaw rotation were recorded as an internal control in each fish. Afferents studied after 228°/s rotation for 4 and 16 days without centripetal acceleration, called On-Center-Control, were indistinguishable from their control counterparts. Principal response to HG was an adjustment of afferent sensitivity as a function of magnitude and duration of exposure: an initial robust increase at 3–4 days followed by a significant decrease from 16 to 32 days. Initial increase observed after 4 days of HG took >4 days in 1 g to recover, and the decrease observed after 16 days of HG took >2 days to readapt to 1 g. Hair cells in striola and medial extrastriola macula regions were serially reconstructed in 3D from thin sections using transmission electron microscopy in control fish and fish exposed to 4 and 16 days of HG. Despite the highly significant differences in afferent physiology, synaptic body counts quantified in the same fish were equivalent in their inter-animal variability and averages. No clear role of the efferent pathway as a feedback mechanism regulating afferent behavior to HG was found. Transfer from 1 g to HG imparts profound effects on gravitational sensitivity of utricular afferents and the accompanying transfer from the HG back to the 1 g resembles in part (as an analog) the transfer from 1 g to the micrograms.
Collapse
Affiliation(s)
- Richard Boyle
- National Aeronautics and Space Administration Ames Research Center, Moffett Field, CA, United States
| | - Yekaterina Popova
- National Aeronautics and Space Administration Ames Research Center, Moffett Field, CA, United States
| | - Joseph Varelas
- National Aeronautics and Space Administration Ames Research Center, Moffett Field, CA, United States.,Universities Space Research Association (USRA) Science & Technology Innovation Labs at NASA Ames Research Center, Moffett Field, CA, United States
| |
Collapse
|
6
|
Mathews MA, Camp AJ, Murray AJ. Corrigendum: Reviewing the Role of the Efferent Vestibular System in Motor and Vestibular Circuits. Front Physiol 2018; 9:687. [PMID: 29875704 PMCID: PMC5988898 DOI: 10.3389/fphys.2018.00687] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Accepted: 05/17/2018] [Indexed: 11/13/2022] Open
Affiliation(s)
- Miranda A. Mathews
- Sensory Systems and Integration Laboratory, Bosch Institute, Discipline of Biomedical Science, University of Sydney, Sydney, NSW, Australia
| | - Aaron J. Camp
- Sensory Systems and Integration Laboratory, Bosch Institute, Discipline of Biomedical Science, University of Sydney, Sydney, NSW, Australia
- *Correspondence: Aaron J. Camp
| | - Andrew J. Murray
- Sainsbury Wellcome Centre for Neural Circuits and Behaviour, University College London, London, United Kingdom
| |
Collapse
|
7
|
Mathews MA, Camp AJ, Murray AJ. Reviewing the Role of the Efferent Vestibular System in Motor and Vestibular Circuits. Front Physiol 2017; 8:552. [PMID: 28824449 PMCID: PMC5539236 DOI: 10.3389/fphys.2017.00552] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Accepted: 07/17/2017] [Indexed: 12/31/2022] Open
Abstract
Efferent circuits within the nervous system carry nerve impulses from the central nervous system to sensory end organs. Vestibular efferents originate in the brainstem and terminate on hair cells and primary afferent fibers in the semicircular canals and otolith organs within the inner ear. The function of this efferent vestibular system (EVS) in vestibular and motor coordination though, has proven difficult to determine, and remains under debate. We consider current literature that implicate corollary discharge from the spinal cord through the efferent vestibular nucleus (EVN), and hint at a potential role in overall vestibular plasticity and compensation. Hypotheses range from differentiating between passive and active movements at the level of vestibular afferents, to EVS activation under specific behavioral and environmental contexts such as arousal, predation, and locomotion. In this review, we summarize current knowledge of EVS circuitry, its effects on vestibular hair cell and primary afferent activity, and discuss its potential functional roles.
Collapse
Affiliation(s)
- Miranda A Mathews
- Sensory Systems and Integration Laboratory, Bosch Institute, Discipline of Biomedical Science, University of SydneySydney, NSW, Australia
| | - Aaron J Camp
- Sensory Systems and Integration Laboratory, Bosch Institute, Discipline of Biomedical Science, University of SydneySydney, NSW, Australia
| | - Andrew J Murray
- Sainsbury Wellcome Centre for Neural Circuits and Behaviour, University College LondonLondon, United Kingdom
| |
Collapse
|
8
|
Hübner PP, Khan SI, Migliaccio AA. The mammalian efferent vestibular system plays a crucial role in vestibulo-ocular reflex compensation after unilateral labyrinthectomy. J Neurophysiol 2017; 117:1553-1568. [PMID: 28077670 PMCID: PMC5376604 DOI: 10.1152/jn.01049.2015] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Revised: 01/10/2017] [Accepted: 01/10/2017] [Indexed: 11/22/2022] Open
Abstract
The α9-nicotinic acetylcholine receptor (α9-nAChR) subunit is expressed in the vestibular and auditory periphery, and its loss of function could compromise peripheral input from the predominantly cholinergic efferent vestibular system (EVS). A recent study has shown that α9-nAChRs play an important role in short-term vestibulo-ocular reflex (VOR) adaptation. We hypothesize that α9-nAChRs could also be important for other forms of vestibular plasticity, such as that needed for VOR recovery after vestibular organ injury. We measured the efficacy of VOR compensation in α9 knockout mice. These mice have deletion of most of the gene (chrna9) encoding the nAChR and thereby lack α9-nAChRs. We measured the VOR gain (eye velocity/head velocity) in 20 α9 knockout mice and 16 cba129 controls. We measured the sinusoidal (0.2-10 Hz, 20-100°/s) and transient (1,500-6,000°/s2) VOR in complete darkness before (baseline) unilateral labyrinthectomy (UL) and then 1, 5, and 28 days after UL. On day 1 after UL, cba129 mice retained ~50% of their initial function for contralesional rotations, whereas α9 knockout mice only retained ~20%. After 28 days, α9 knockout mice had ~50% lower gain for both ipsilesional and contralesional rotations compared with cba129 mice. Cba129 mice regained ~75% of their baseline function for ipsilesional and ~90% for contralesional rotations. In contrast, α9 knockout mice only regained ~30% and ~50% function, respectively, leaving the VOR severely impaired for rotations in both directions. Our results show that loss of α9-nAChRs severely affects VOR compensation, suggesting that complimentary central and peripheral EVS-mediated adaptive mechanisms might be affected by this loss.NEW & NOTEWORTHY Loss of the α9-nicotinic acetylcholine receptor (α9-nAChR) subunit utilized by the efferent vestibular system (EVS) has been shown to significantly affect vestibulo-ocular reflex (VOR) adaptation. In our present study we have shown that loss of α9-nAChRs also affects VOR compensation, suggesting that the mammalian EVS plays an important role in vestibular plasticity, in general, and that VOR compensation is a more distributed process than previously thought, relying on both central and peripheral changes.
Collapse
MESH Headings
- Adaptation, Physiological/genetics
- Adaptation, Physiological/physiology
- Animals
- Efferent Pathways/physiology
- Female
- Functional Laterality/genetics
- Functional Laterality/physiology
- Linear Models
- Male
- Mice
- Mice, Inbred CBA
- Mice, Knockout
- Nystagmus, Physiologic
- Reaction Time
- Receptors, Nicotinic/deficiency
- Receptors, Nicotinic/genetics
- Reflex, Vestibulo-Ocular/physiology
- Rotation
- Time Factors
- Vestibule, Labyrinth/physiology
- Vestibule, Labyrinth/surgery
Collapse
Affiliation(s)
- Patrick P Hübner
- Balance and Vision Laboratory, Neuroscience Research Australia, Sydney, New South Wales, Australia
- University of New South Wales, Sydney, New South Wales, Australia; and
| | - Serajul I Khan
- Balance and Vision Laboratory, Neuroscience Research Australia, Sydney, New South Wales, Australia
- University of New South Wales, Sydney, New South Wales, Australia; and
| | - Americo A Migliaccio
- Balance and Vision Laboratory, Neuroscience Research Australia, Sydney, New South Wales, Australia;
- University of New South Wales, Sydney, New South Wales, Australia; and
- Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University, Baltimore, Maryland
| |
Collapse
|
9
|
Mathews MA, Murray A, Wijesinghe R, Cullen K, Tung VWK, Camp AJ. Efferent Vestibular Neurons Show Homogenous Discharge Output But Heterogeneous Synaptic Input Profile In Vitro. PLoS One 2015; 10:e0139548. [PMID: 26422206 PMCID: PMC4589407 DOI: 10.1371/journal.pone.0139548] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Accepted: 09/15/2015] [Indexed: 11/19/2022] Open
Abstract
Despite the importance of our sense of balance we still know remarkably little about the central control of the peripheral balance system. While previous work has shown that activation of the efferent vestibular system results in modulation of afferent vestibular neuron discharge, the intrinsic and synaptic properties of efferent neurons themselves are largely unknown. Here we substantiate the location of the efferent vestibular nucleus (EVN) in the mouse, before characterizing the input and output properties of EVN neurons in vitro. We made transverse serial sections through the brainstem of 4-week-old mice, and performed immunohistochemistry for calcitonin gene-related peptide (CGRP) and choline acetyltransferase (ChAT), both expressed in the EVN of other species. We also injected fluorogold into the posterior canal and retrogradely labelled neurons in the EVN of ChAT:: tdTomato mice expressing tdTomato in all cholinergic neurons. As expected the EVN lies dorsolateral to the genu of the facial nerve (CNVII). We then made whole-cell current-, and voltage-clamp recordings from visually identified EVN neurons. In current-clamp, EVN neurons display a homogeneous discharge pattern. This is characterized by a high frequency burst of action potentials at the onset of a depolarizing stimulus and the offset of a hyperpolarizing stimulus that is mediated by T-type calcium channels. In voltage-clamp, EVN neurons receive either exclusively excitatory or inhibitory inputs, or a combination of both. Despite this heterogeneous mixture of inputs, we show that synaptic inputs onto EVN neurons are predominantly excitatory. Together these findings suggest that the inputs onto EVN neurons, and more specifically the origin of these inputs may underlie EVN neuron function.
Collapse
Affiliation(s)
- Miranda A. Mathews
- Discipline of Biomedical Science, Bosch Institute, The University of Sydney, Sydney, New South Wales, Australia
| | - Andrew Murray
- Department of Biochemistry and Molecular Biophysics, Howard Hughes Medical Institute, Columbia University, New York, United States of America
| | - Rajiv Wijesinghe
- Discipline of Biomedical Science, Bosch Institute, The University of Sydney, Sydney, New South Wales, Australia
| | - Karen Cullen
- Discipline of Anatomy and Histology, Bosch Institute, The University of Sydney, Sydney, New South Wales, Australia
| | - Victoria W. K. Tung
- Discipline of Biomedical Science, Bosch Institute, The University of Sydney, Sydney, New South Wales, Australia
| | - Aaron J. Camp
- Discipline of Biomedical Science, Bosch Institute, The University of Sydney, Sydney, New South Wales, Australia
- * E-mail:
| |
Collapse
|
10
|
Hübner PP, Khan SI, Migliaccio AA. The mammalian efferent vestibular system plays a crucial role in the high-frequency response and short-term adaptation of the vestibuloocular reflex. J Neurophysiol 2015; 114:3154-65. [PMID: 26424577 DOI: 10.1152/jn.00307.2015] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Accepted: 09/28/2015] [Indexed: 11/22/2022] Open
Abstract
Although anatomically well described, the functional role of the mammalian efferent vestibular system (EVS) remains unclear. Unlike in fish and reptiles, the mammalian EVS does not seem to play a role in modulation of primary afferent activity in anticipation of active head movements. However, it could play a role in modulating long-term mechanisms requiring plasticity such as vestibular adaptation. We measured the efficacy of vestibuloocular reflex (VOR) adaptation in α9-knockout mice. These mice carry a missense mutation of the gene encoding the α9 nicotinic acetylcholine receptor (nAChR) subunit. The α9 nAChR subunit is expressed in the vestibular and auditory periphery, and its loss of function could compromise peripheral input from the predominantly cholinergic EVS. We measured the VOR gain (eye velocity/head velocity) in 26 α9-knockout mice and 27 cba129 control mice. Mice were randomly assigned to one of three groups: gain-increase adaptation (1.5×), gain-decrease adaptation (0.5×), or no adaptation (baseline, 1×). After adaptation training (horizontal rotations at 0.5 Hz with peak velocity 20°/s), we measured the sinusoidal (0.2-10 Hz, 20-100°/s) and transient (1,500-6,000°/s(2)) VOR in complete darkness. α9-Knockout mice had significantly lower baseline gains compared with control mice. This difference increased with stimulus frequency (∼ 5% <1 Hz to ∼ 25% >1 Hz). Moreover, vestibular adaptation (difference in VOR gain of gain-increase and gain-decrease adaptation groups as % of gain increase) was significantly reduced in α9-knockout mice (17%) compared with control mice (53%), a reduction of ∼ 70%. Our results show that the loss of α9 nAChRs moderately affects the VOR but severely affects VOR adaptation, suggesting that the EVS plays a crucial role in vestibular plasticity.
Collapse
Affiliation(s)
- Patrick P Hübner
- Balance and Vision Laboratory, Neuroscience Research Australia, Sydney, New South Wales, Australia; University of New South Wales, Sydney, New South Wales, Australia; and
| | - Serajul I Khan
- Balance and Vision Laboratory, Neuroscience Research Australia, Sydney, New South Wales, Australia; University of New South Wales, Sydney, New South Wales, Australia; and
| | - Americo A Migliaccio
- Balance and Vision Laboratory, Neuroscience Research Australia, Sydney, New South Wales, Australia; University of New South Wales, Sydney, New South Wales, Australia; and Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University, Baltimore, Maryland
| |
Collapse
|
11
|
|
12
|
Boyle R, Rabbitt RD, Highstein SM. Efferent control of hair cell and afferent responses in the semicircular canals. J Neurophysiol 2009; 102:1513-25. [PMID: 19571186 DOI: 10.1152/jn.91367.2008] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The sensations of sound and motion generated by the inner ear are controlled by the brain through extensive centripetal innervation originating within the brain stem. In the semicircular canals, brain stem efferent neurons make synaptic contacts with mechanosensory hair cells and with the dendrites of afferent neurons. Here, we examine the relative contributions of efferent action on hair cells and afferents. Experiments were performed in vivo in the oyster toadfish, Opsanus tau. The efferent system was activated via electrical pulses to the brain stem and sensory responses to motion stimuli were quantified by simultaneous voltage recording from afferents and intracellular current- and/or voltage-clamp recordings from hair cells. Results showed synaptic inputs to both afferents and hair cells leading to relatively long-latency intracellular signaling responses: excitatory in afferents and inhibitory in hair cells. Generally, the net effect of efferent action was an increase in afferent background discharge and a simultaneous decrease in gain to angular motion stimuli. Inhibition of hair cells was likely the result of a ligand-gated opening of a major basolateral conductance. The reversal potential of the efferent-evoked current was just below the hair cell resting potential, thus resulting in a small hyperpolarization. The onset latency averaged about 90 ms and latency to peak response was 150-400 ms. Hair cell inhibition often outlasted afferent excitation and, in some cases, latched hair cells in the "off" condition for >1 s following cessation of stimulus. These features endow the animal with a powerful means to adjust the sensitivity and dynamic range of motion sensation.
Collapse
Affiliation(s)
- Richard Boyle
- NASA Ames Research Center, BioVIS Center, M/S 239-11, Moffett Field, CA 94035, USA.
| | | | | |
Collapse
|
13
|
Sadeghi SG, Goldberg JM, Minor LB, Cullen KE. Efferent-mediated responses in vestibular nerve afferents of the alert macaque. J Neurophysiol 2008; 101:988-1001. [PMID: 19091917 DOI: 10.1152/jn.91112.2008] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The peripheral vestibular organs have long been known to receive a bilateral efferent innervation from the brain stem. However, the functional role of the efferent vestibular system has remained elusive. In this study, we investigated efferent-mediated responses in vestibular afferents of alert behaving primates (macaque monkey). We found that efferent-mediated rotational responses could be obtained from vestibular nerve fibers innervating the semicircular canals after conventional afferent responses were nulled by placing the corresponding canal plane orthogonal to the plane of motion. Responses were type III, i.e., excitatory for rotational velocity trapezoids (peak velocity, 320 degrees/s) in both directions of rotation, consistent with those previously reported in the decerebrate chinchilla. Responses consisted of both fast and slow components and were larger in irregular (approximately 10 spikes/s) than in regular afferents (approximately 2 spikes/s). Following unilateral labyrinthectomy (UL) on the side opposite the recording site, similar responses were obtained. To confirm the vestibular source of the efferent-mediated responses, the ipsilateral horizontal and posterior canals were plugged following the UL. Responses to high-velocity rotations were drastically reduced when the superior canal (SC), the only intact canal, was in its null position, compared with when the SC was pitched 50 degrees upward from the null position. Our findings show that vestibular afferents in alert primates show efferent-mediated responses that are related to the discharge regularity of the afferent, are of vestibular origin, and can be the result of both afferent excitation and inhibition.
Collapse
Affiliation(s)
- Soroush G Sadeghi
- Department of Physiology, McTGill University, 3655 Prom. Sir William Osler, Rm. 1218, Montreal, Quebec H3G 1Y6, Canada
| | | | | | | |
Collapse
|
14
|
Plotnik M, Marlinski V, Goldberg JM. Efferent-mediated fluctuations in vestibular nerve discharge: a novel, positive-feedback mechanism of efferent control. J Assoc Res Otolaryngol 2006; 6:311-23. [PMID: 16254694 PMCID: PMC2504623 DOI: 10.1007/s10162-005-0010-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2005] [Accepted: 07/06/2005] [Indexed: 10/25/2022] Open
Abstract
We compared the background discharge of vestibular nerve afferents in barbiturate-anesthetized and unanesthetized, decerebrate chinchillas. Based on their interspike-interval statistics, units were categorized as regular, intermediate, or irregular. Background discharge rates were higher in irregular units from decerebrates compared to anesthetized preparations; no such difference was observed for regular or intermediate units. Large fluctuations in discharge rate were confined to intermediate and irregular units in decerebrates, but were not seen at all in anesthetized animals. The most prominent examples of fluctuations consisted of oscillations with periods exceeding 500 s and peak-to-peak amplitudes as large as 300 spikes/s. Several observations show that the fluctuations are mediated by the efferent vestibular system (EVS): (1) they are abolished when the vestibular nerve is cut proximal to the recording electrode; (2) their amplitude is correlated with the size of efferent-mediated rotational responses in individual units; and (3) they occur even when vital signs are stable. Previous studies had provided evidence that the EVS involves positive feedback: vestibular nerve afferents and EVS neurons excite one another. To study how oscillations could be produced, we developed a nonlinear model of positive feedback in which afferent feed-forward discharge was nonlinearly related to its inputs from hair cells and the EVS, while these inputs declined (adapted) as discharge was prolonged. Provided that the gain of the efferent feedback loop was sufficiently large, the model showed oscillations similar to those observed experimentally. Although large fluctuations in afferent discharge are unlikely to occur under physiological circumstances, positive feedback may be a normal feature that can amplify the influence of the EVS.
Collapse
Affiliation(s)
- Meir Plotnik
- Department of Neurobiology, Pharmacology and Physiology, University of Chicago, 947 E. 58th Street, Chicago, IL 60637 USA
| | - Vladimir Marlinski
- Department of Neurobiology, Pharmacology and Physiology, University of Chicago, 947 E. 58th Street, Chicago, IL 60637 USA
| | - Jay M. Goldberg
- Department of Neurobiology, Pharmacology and Physiology, University of Chicago, 947 E. 58th Street, Chicago, IL 60637 USA
| |
Collapse
|
15
|
Marlinski V, Plotnik M, Goldberg JM. Efferent actions in the chinchilla vestibular labyrinth. J Assoc Res Otolaryngol 2004; 5:126-43. [PMID: 15357416 PMCID: PMC2538405 DOI: 10.1007/s10162-003-4029-7] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
Abstract
Efferent fibers were electrically stimulated in the brain stem, while afferent activity was recorded from the superior vestibular nerve in barbiturate-anesthetized chinchillas. We concentrated on canal afferents, but otolith afferents were also studied. Among canal fibers, calyx afferents were recognized by their irregular discharge and low rotational gains. In separate experiments, stimulating electrodes were placed in the efferent cell groups ipsilateral or contralateral to the recording electrode or in the midline. While single shocks were ineffective, repetitive shock trains invariably led to increases in afferent discharge rate. Such excitatory responses consisted of fast and slow components. Fast components were large only at high shock frequencies (200-333/s), built up with exponential time constants <0.1 s, and showed response declines or adaptation during shock trains >1 s in duration. Slow responses were obtained even at shock rates of 50/s, built up and decayed with time constants of 15-30 s, and could show little adaptation. The more regular the discharge, the larger was the efferent response of an afferent fiber. Response magnitude was proportional to cv*b, a normalized coefficient of interspike-interval variation (cv*) raised to the power b = 0.7. The value of the exponent b did not depend on unit type (calyx vs. bouton plus dimorphic, canal vs. otolith) or on stimulation site (ipsilateral, contralateral, or midline). Responses were slightly smaller with contralateral or midline stimulation than with ipsilateral stimulation, and they were smaller for otolith, as compared to canal, fibers. An anatomical study had suggested that responses to contralateral afferent stimulation should be small or nonexistent in irregular canal fibers. The suggestion was not confirmed in this study. Contralateral responses, including the large responses typically seen in irregular fibers, were abolished by shallow midline incisions that should have severed crossing efferent axons.
Collapse
Affiliation(s)
- Vladimir Marlinski
- Department of Neurobiology, Pharmacology and Physiology, University of Chicago, Chicago, IL 60637, USA.
| | | | | |
Collapse
|
16
|
Plotnik M, Marlinski V, Goldberg JM. Reflections of efferent activity in rotational responses of chinchilla vestibular afferents. J Neurophysiol 2002; 88:1234-44. [PMID: 12205144 DOI: 10.1152/jn.2002.88.3.1234] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
To study presumed efferent-mediated responses, we determined if afferents responded to head rotations that stimulated semicircular canals other than the organ being innervated. To minimize stimulation of an afferent's own canal, its plane was placed nearly orthogonal to the rotation plane. Otolith units were tested in a horizontal head position with the ear placed near the rotation axis to minimize linear forces. Under these circumstances, angular-velocity trapezoids (2-s ramps, 2-s plateau) evoked excitatory responses for both rotation directions. These type III responses were considerably larger in decerebrate than in anesthetized preparations. In addition to their being exclusively excitatory, the responses resembled those obtained with electrical stimulation of efferent pathways in including per-stimulus and more prolonged post-stimulus components and in being larger in irregularly discharging than in regularly discharging units. Responses, which were not seen for rotations <80 degrees/s, grew as velocity increased between 80 and 500 degrees/s but were seldom larger than 20 spikes/s. Complete section of the VIIIth nerve abolished type III responses, leaving conventional afferent responses intact. To study the separate contributions of canals on the two sides, responses were compared when the labyrinths were intact and when the ipsilateral or contralateral horizontal canal was mechanically inactivated. Both sides contributed to the efferent-mediated responses. That afferents could be influenced from the contralateral labyrinth was confirmed with the use of unilateral galvanic currents. Following inactivation, excitatory responses were produced by rotations exciting or inhibiting the intact horizontal canal with the responses resulting from excitatory rotations being much larger. Such a response asymmetry is consistent with a semicircular-canal origin for the type III responses. A similar asymmetry was seen in the post-stimulus responses to contralateral cathodal (excitatory) and anodal (inhibitory) galvanic currents. We conclude that the efferent system receives a sufficiently powerful vestibular input from both the ipsilateral and contralateral labyrinths to affect afferent discharge.
Collapse
Affiliation(s)
- Meir Plotnik
- Department of Neurobiology, Pharmacology, and Physiology, University of Chicago, Chicago, Illinois 60637, USA.
| | | | | |
Collapse
|
17
|
Azeredo WJ, Kliment ML, Morley BJ, Relkin E, Slepecky NB, Sterns A, Warr WB, Weekly JM, Woods CI. Olivocochlear neurons in the chinchilla: a retrograde fluorescent labelling study. Hear Res 1999; 134:57-70. [PMID: 10452376 DOI: 10.1016/s0378-5955(99)00069-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Although the chinchilla is widely used as a model for auditory research, little is known about the distribution and morphology of its olivocochlear neurons. Here, we report on the olivocochlear neurons projecting to one cochlea, as determined by single and double retrograde fluorescent tracer techniques. 10 adult chinchillas were anesthetized and given either unilateral or bilateral injections of a fluorescent tracer (either Fluoro-Gold or Fast Blue) into scala tympani or as a control, a unilateral injection into the middle ear cavity. The results indicate that there are similarities as well as significant differences between the chinchilla and other species of rodents in the distributions of their olivocochlear neurons. Based on three well-labelled cases, there was a mean total of 1168 olivocochlear neurons in the chinchilla. Of these, the majority (mean 787) were small, lateral olivocochlear neurons found almost exclusively within the ipsilateral lateral superior olivary nucleus. The next largest group consisted of a mean of 280 medial olivocochlear neurons virtually all of which were located in the dorsomedial peri-olivary nucleus. Chinchilla medial olivocochlear neurons were more predominantly crossed in their projections (4:1) than in any known species. The smallest group of olivocochlear neurons (mean 101) consisted of larger lateral olivocochlear neurons (shell neurons) which were located on the margins of the superior olivary nucleus and which projected mainly (2.2:1) ipsilaterally. Double retrograde labelling was observed only in medial olivocochlear neurons and occurred in only 1-2% of these cells. The results confirm previous findings which indicated a relative paucity of fibers belonging to the uncrossed as compared to the crossed olivocochlear bundle. This, together with the strong apical bias of the uncrossed projection reported previously, offers possible explanations for the apparent absence of efferent-mediated suppressive effects of contralateral acoustic stimulation in this species. Regarding the lateral olivocochlear system, the chinchilla is shown to possess both intrinsic and shell neurons, as in the rat.
Collapse
Affiliation(s)
- W J Azeredo
- Department of Otolaryngology, SUNY Health Science Center, State University of New York, Syracuse 13210, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Purcell IM, Perachio AA. Three-dimensional analysis of vestibular efferent neurons innervating semicircular canals of the gerbil. J Neurophysiol 1997; 78:3234-48. [PMID: 9405542 DOI: 10.1152/jn.1997.78.6.3234] [Citation(s) in RCA: 53] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Anterograde labeling techniques were used to examine peripheral innervation patterns of vestibular efferent neurons in the crista ampullares of the gerbil. Vestibular efferent neurons were labeled by extracellular injections of biocytin or biotinylated dextran amine into the contralateral or ipsilateral dorsal subgroup of efferent cell bodies (group e) located dorsolateral to the facial nerve genu. Anterogradely labeled efferent terminal field varicosities consist mainly of boutons en passant with fewer of the terminal type. The bouton swellings are located predominately in apposition to the basolateral borders of the afferent calyces and type II hair cells, but several boutons were identified close to the hair cell apical border on both types. Three-dimensional reconstruction and morphological analysis of the terminal fields from these cells located in the sensory neuroepithelium of the anterior, horizontal, and posterior cristae were performed. We show that efferent neurons densely innervate each end organ in widespread terminal fields. Subepithelial bifurcations of parent axons were minimal, with extensive collateralization occurring after the axons penetrated the basement membrane of the neuroepithelium. Axonal branching ranged between the 6th and 27th orders and terminal field collecting area far exceeds that of the peripheral terminals of primary afferent neurons. The terminal fields of the efferent neurons display three morphologically heterogeneous types: central, peripheral, and planum. All cell types possess terminal fields displaying a high degree of anisotropy with orientations typically parallel to or within +/-45 degrees of the longitudinal axis if the crista. Terminal fields of the central and planum zones predominately project medially toward the transverse axis from the more laterally located penetration of the basement membrane by the parent axon. Peripheral zone terminal fields extend predominately toward the planum semilunatum. The innervation areas of efferent terminal fields display a trend from smallest to largest for the central, peripheral, and planum types, respectively. Neurons that innervate the central zone of the crista do not extend into the peripheral or planum regions. Conversely, those neurons with terminal fields in the peripheral or planum regions do not innervate the central zone of the sensory neuroepithelium. The central zone of the crista is innervated preferentially by efferent neurons with cell bodies located in the ipsilateral group e. The peripheral and planum zones of the crista are innervated preferentially by efferent neurons with cell bodies located in the contralateral group e. A model incorporating our anatomic observations is presented describing an ipsilateral closed-loop feedback between ipsilateral efferent neurons and the periphery and an open-loop feed-forward innervation from contralateral efferent neurons. A possible role for the vestibular efferent neurons in the modulation of semicircular canal afferent response dynamics is proposed.
Collapse
Affiliation(s)
- I M Purcell
- Department of Otolaryngology, University of Texas Medical Branch, Galveston, Texas 77555-1063, USA
| | | |
Collapse
|
19
|
Bruce LL, Kingsley J, Nichols DH, Fritzsch B. The development of vestibulocochlear efferents and cochlear afferents in mice. Int J Dev Neurosci 1997; 15:671-92. [PMID: 9263042 DOI: 10.1016/s0736-5748(96)00120-7] [Citation(s) in RCA: 93] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
We have reinvestigated the embryonic development of the vestibulocochlear system in mice using anterograde and retrograde tracing techniques. Our studies reveal that rhombomeres 4 and 5 include five motor neuron populations. One of these, the abducens nucleus, will not be dealt with here. Rhombomere 4 gives rise to three of the remaining populations: the facial branchial motor neurons; the vestibular efferents; and the cochlear efferents. The migration of the facial branchial motor neurons away from the otic efferents is completed by 13.5 days post coitum (dpc). Subsequently the otic efferents separate into the vestibular and cochlear efferents, and complete their migration by 14.5 dpc. In addition to their common origin, all three populations have perikarya that migrate via translocation through secondary processes, form a continuous column upon completion of their migrations, and form axonal tracts that run in the internal facial genu. Some otic efferent axons travel with the facial branchial motor nerve from the internal facial genu and exit the brain with that nerve. These data suggest that facial branchial motor neurons and otic efferents are derived from a common precursor population and use similar cues for pathway recognition within the brain. In contrast, rhombomere 5 gives rise to the fourth population to be considered here, the superior salivatory nucleus, a visceral motor neuron group. Other differences between this group and those derived from rhombomere 4 include perikaryal migration as a result of translocation first through primary processes and only then through secondary processes, a final location lateral to the branchial motor/otic efferent column, and axonal tracts that are completely segregated from those of the facial branchial and otic efferents throughout their course inside the brain. Analysis of the peripheral distribution of the cochlear efferents and afferents show that efferents reach the spiral ganglion at 12.5 dpc when postmitotic ganglion cells are migrating away from the cochlear anlage. The efferents begin to form the intraganglionic spiral bundle by 14.5 dpc and the inner spiral bundle by 16.5 dpc in the basal turn. They have extensive collaterals among supporting cells of the greater epithelial ridge from 16.5 dpc onwards. Afferents and efferents in the basal turn of the cochlea extend through all three rows of outer hair cells by 18.5 dpc. Selective labeling of afferent fibers at 20.5 dpc (postnatal day 1) shows that although some afferents are still in early developmental stages, some type II spiral ganglion cells already extend for long distances along the outer hair cells, and some type I spiral ganglion cells end on a single inner hair cell. These data support previous evidence that in mice the early outgrowth of afferent and efferent fibers is essentially achieved by birth.
Collapse
Affiliation(s)
- L L Bruce
- Department of Biomedical Sciences, Creighton University, Omaha, NE 68178, USA
| | | | | | | |
Collapse
|
20
|
Ishiyama A, Lopez I, Wackym PA. Subcellular innervation patterns of the calcitonin gene-related peptidergic efferent terminals in the chinchilla vestibular periphery. Otolaryngol Head Neck Surg 1994; 111:385-95. [PMID: 7936671 DOI: 10.1177/019459989411100402] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
We examined the ultrastructural distribution of calcitonin gene-related peptide immunoreactivity in the peripheral vestibular system of the chinchilla to study the innervation patterns of this efferent neuropeptide. Immunoelectron microscopic localization of calcitonin gene-related peptide immunoreactive terminals in the maculae and cristae revealed an extensive innervation pattern on the afferent vestibular pathway. Calcitonin gene-related peptide immuno-reactive terminals made synaptic contacts with the unmyelinated portions of the primary afferent vestibular dendrites innervating both type I and type II hair cells. Abundant synaptic contact between calcitonin gene-related peptide immunoreactive terminals and the chalices surrounding type I hair cells was observed. Direct contact between calcitonin gene-related peptide immunoreactive terminals and type II hair cells was observed. In addition, vesiculated efferent terminals without calcitonin gene-related peptide immunoreactivity were seen synapsing on the chalices of type II hair cells and on the surrounding type I hair cells. The primary afferent somata in the vestibular ganglion of Scarpa did not contain calcitonin gene-related peptide immunoreactivity. Unmyelinated calcitonin gene-related peptide immunoreactive axons passed among the primary afferent fibers in Scarpa's ganglion, and these fibers continued through the subepithelial regions of the vestibular end-organs. The calcitonin gene-related peptide immunoreactive axons ramified to produce numerous calcitonin gene-related peptide immunoreactive terminals throughout the neurosensory epithelium of the maculae and cristae. These data suggest that calcitonin gene-related peptide-mediated modulation of the afferent vestibular system is functionally important.
Collapse
Affiliation(s)
- A Ishiyama
- Goodhill Ear Center, Section of Otology, 90024-1794
| | | | | |
Collapse
|
21
|
Kong WJ, Egg G, Hussl B, Spoendlin H, Schrott-Fischer A. Localization of chat-like immunoreactivity in the vestibular endorgans of the rat. Hear Res 1994; 75:191-200. [PMID: 8071146 DOI: 10.1016/0378-5955(94)90070-1] [Citation(s) in RCA: 28] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
In vertebrates acetylcholine (ACh) has been generally considered as a neurotransmitter of the vestibular efferent system. The precise localization and innervation of the cholinergic nerve endings in the vestibular sensory periphery is still unknown. We examined choline acetyltransferase (ChAT)-like immunoreactivity in all five endorgans of the rat vestibule with light and electron microscopy using a modified pre-embedding immunostaining technique. The results were: (1) ChAT-like immunoreactivity was widespread in all five endorgans of the vestibule and confined to the vesiculated efferent nerve endings. (2) Two types of ChAT-like immunostained nerve endings can be identified according to their size and innervation pattern: a large nerve ending and a small--middle size one. (3) Vestibular endorgans differ in their ChAT-like immunoreactivity: staining is dense in the macula of the utricule and the three ampullary cristae, but less so in the macula of the saccule. (4) We found also a regional difference of the ChAT-like immunostaining in ampullary crista. ChAT-like immunostained nerve endings were predominant in the periphery close to the semilunar plane, and less in density in the central area. These findings demonstrate that ACh is a major neurotransmitter in the vestibular efferent system.
Collapse
Affiliation(s)
- W J Kong
- Department of Otolaryngology, University of Innsbruck, Austria
| | | | | | | | | |
Collapse
|