1
|
Maugeri G, Amato A, Sortino M, D Agata V, Musumeci G. The Influence of Exercise on Oxidative Stress after Spinal Cord Injury: A Narrative Review. Antioxidants (Basel) 2023; 12:1401. [PMID: 37507940 PMCID: PMC10376509 DOI: 10.3390/antiox12071401] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 06/30/2023] [Accepted: 07/05/2023] [Indexed: 07/30/2023] Open
Abstract
Spinal cord injury (SCI) is an irreversible disease resulting in partial or total loss of sensory and motor function. The pathophysiology of SCI is characterized by an initial primary injury phase followed by a secondary phase in which reactive oxygen species (ROSs) and associated oxidative stress play hallmark roles. Physical exercise is an indispensable means of promoting psychophysical well-being and improving quality of life. It positively influences the neuromuscular, cardiovascular, respiratory, and immune systems. Moreover, exercise may provide a mechanism to regulate the variation and equilibrium between pro-oxidants and antioxidants. After a brief overview of spinal cord anatomy and the different types of spinal cord injury, the purpose of this review is to investigate the evidence regarding the effect of exercise on oxidative stress among individuals with SCI.
Collapse
Affiliation(s)
- Grazia Maugeri
- Section of Anatomy, Histology and Movement Sciences, Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy
| | - Alessandra Amato
- Section of Anatomy, Histology and Movement Sciences, Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy
| | - Martina Sortino
- Section of Anatomy, Histology and Movement Sciences, Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy
| | - Velia D Agata
- Section of Anatomy, Histology and Movement Sciences, Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy
| | - Giuseppe Musumeci
- Section of Anatomy, Histology and Movement Sciences, Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy
- Research Center on Motor Activities (CRAM), University of Catania, 95123 Catania, Italy
| |
Collapse
|
2
|
Scheijen EEM, Hendrix S, Wilson DM. Oxidative DNA Damage in the Pathophysiology of Spinal Cord Injury: Seems Obvious, but Where Is the Evidence? Antioxidants (Basel) 2022; 11:antiox11091728. [PMID: 36139802 PMCID: PMC9495924 DOI: 10.3390/antiox11091728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 08/26/2022] [Accepted: 08/29/2022] [Indexed: 12/02/2022] Open
Abstract
Oxidative stress occurs at various phases of spinal cord injury (SCI), promoting detrimental processes such as free radical injury of proteins, nucleic acids, lipids, cytoskeleton, and organelles. Oxidative DNA damage is likely a major contributor to the pathogenesis of SCI, as a damaged genome cannot be simply turned over to avert detrimental molecular and cellular outcomes, most notably cell death. Surprisingly, the evidence to support this hypothesis is limited. There is some evidence that oxidative DNA damage is increased following SCI, mainly using comet assays and immunohistochemistry. However, there is great variability in the timing and magnitude of its appearance, likely due to differences in experimental models, measurement techniques, and the rigor of the approach. Evidence indicates that 8-oxodG is most abundant at 1 and 7 days post-injury (dpi), while DNA strand breaks peak at 7 and 28 dpi. The DNA damage response seems to be characterized by upregulation of PCNA and PARP1 but downregulation of APEX1. Significant improvements in the analysis of oxidative DNA damage and repair after SCI, including single-cell analysis at time points representative for each phase post-injury using new methodologies and better reporting, will uncover the role of DNA damage and repair in SCI.
Collapse
Affiliation(s)
- Elle E. M. Scheijen
- Neurosciences, Biomedical Research Institute, Hasselt University, Agoralaan Building C, 3590 Diepenbeek, Belgium
| | - Sven Hendrix
- Institute for Translational Medicine, Medical School Hamburg, Germany, Am Kaiserkai 1, 20457 Hamburg, Germany
- Correspondence: (S.H.); (D.M.W.III)
| | - David M. Wilson
- Neurosciences, Biomedical Research Institute, Hasselt University, Agoralaan Building C, 3590 Diepenbeek, Belgium
- Correspondence: (S.H.); (D.M.W.III)
| |
Collapse
|
3
|
Freyermuth-Trujillo X, Segura-Uribe JJ, Salgado-Ceballos H, Orozco-Barrios CE, Coyoy-Salgado A. Inflammation: A Target for Treatment in Spinal Cord Injury. Cells 2022; 11:2692. [PMID: 36078099 PMCID: PMC9454769 DOI: 10.3390/cells11172692] [Citation(s) in RCA: 74] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 08/16/2022] [Accepted: 08/25/2022] [Indexed: 12/15/2022] Open
Abstract
Spinal cord injury (SCI) is a significant cause of disability, and treatment alternatives that generate beneficial outcomes and have no side effects are urgently needed. SCI may be treatable if intervention is initiated promptly. Therefore, several treatment proposals are currently being evaluated. Inflammation is part of a complex physiological response to injury or harmful stimuli induced by mechanical, chemical, or immunological agents. Neuroinflammation is one of the principal secondary changes following SCI and plays a crucial role in modulating the pathological progression of acute and chronic SCI. This review describes the main inflammatory events occurring after SCI and discusses recently proposed potential treatments and therapeutic agents that regulate inflammation after insult in animal models.
Collapse
Affiliation(s)
- Ximena Freyermuth-Trujillo
- Unidad de Investigación Médica en Enfermedades Neurológicas, Hospital de Especialidades Dr. Bernardo Sepúlveda, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City CP 06720, Mexico
- Posgrado en Ciencias Biológicas, Universidad Nacional Autónoma de México, Mexico City CP 04510, Mexico
| | - Julia J. Segura-Uribe
- Subdirección de Gestión de la Investigación, Hospital Infantil de México Federico Gómez, Secretaría de Salud, Mexico City CP 06720, Mexico
| | - Hermelinda Salgado-Ceballos
- Unidad de Investigación Médica en Enfermedades Neurológicas, Hospital de Especialidades Dr. Bernardo Sepúlveda, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City CP 06720, Mexico
| | - Carlos E. Orozco-Barrios
- CONACyT-Unidad de Investigación Médica en Enfermedades Neurológicas, Hospital de Especialidades Dr. Bernardo Sepúlveda, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City CP 06720, Mexico
| | - Angélica Coyoy-Salgado
- CONACyT-Unidad de Investigación Médica en Enfermedades Neurológicas, Hospital de Especialidades Dr. Bernardo Sepúlveda, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City CP 06720, Mexico
| |
Collapse
|
4
|
Anderson LM, Samineni S, Wilder DM, Lara M, Eken O, Urioste R, Long JB, Arun P. The Neurobehavioral Effects of Buprenorphine and Meloxicam on a Blast-Induced Traumatic Brain Injury Model in the Rat. Front Neurol 2021; 12:746370. [PMID: 34712199 PMCID: PMC8545992 DOI: 10.3389/fneur.2021.746370] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 09/15/2021] [Indexed: 11/27/2022] Open
Abstract
Previous findings have indicated that pain relieving medications such as opioids and non-steroidal anti-inflammatory drugs (NSAIDs) may be neuroprotective after traumatic brain injury in rodents, but only limited studies have been performed in a blast-induced traumatic brain injury (bTBI) model. In addition, many pre-clinical TBI studies performed in rodents did not use analgesics due to the possibility of neuroprotection or other changes in cognitive, behavioral, and pathology outcomes. To examine this in a pre-clinical setting, we examined the neurobehavioral changes in rats given a single pre-blast dose of meloxicam, buprenorphine, or no pain relieving medication and exposed to tightly-coupled repeated blasts in an advanced blast simulator and evaluated neurobehavioral functions up to 28 days post-blast. A 16.7% mortality rate was recorded in the rats treated with buprenorphine, which might be attributed to the physiologically depressive side effects of buprenorphine in combination with isoflurane anesthesia and acute brain injury. Rats given buprenorphine, but not meloxicam, took more time to recover from the isoflurane anesthesia given just before blast. We found that treatment with meloxicam protected repeated blast-exposed rats from vestibulomotor dysfunctions up to day 14, but by day 28 the protective effects had receded. Both pain relieving medications seemed to promote short-term memory deficits in blast-exposed animals, whereas vehicle-treated blast-exposed animals showed only a non-significant trend toward worsening short-term memory by day 27. Open field exploratory behavior results showed that blast exposed rats treated with meloxicam engaged in significantly more locomotor activities and possibly a lesser degree of responses thought to reflect anxiety and depressive-like behaviors than any of the other groups. Rats treated with analgesics to alleviate possible pain from the blast ate more than their counterparts that were not treated with analgesics, which supports that both analgesics were effective in alleviating some of the discomfort that these rats potentially experienced post-blast injury. These results suggest that meloxicam and, to a lesser extent buprenorphine alter a variety of neurobehavioral functions in a rat bTBI model and, because of their impact on these neurobehavioral changes, may be less than ideal analgesic agents for pre-clinical studies evaluating these neurobehavioral responses after TBI.
Collapse
Affiliation(s)
- Laura M Anderson
- Veterinary Services Program, Center for Enabling Capabilities, Walter Reed Army Institute of Research, Silver Spring, MD, United States
| | - Sridhar Samineni
- Veterinary Services Program, Center for Enabling Capabilities, Walter Reed Army Institute of Research, Silver Spring, MD, United States
| | - Donna M Wilder
- Blast-Induced Neurotrauma Branch, Center for Military Psychiatry and Neuroscience, Walter Reed Army Institute of Research, Silver Spring, MD, United States
| | - Marisela Lara
- Blast-Induced Neurotrauma Branch, Center for Military Psychiatry and Neuroscience, Walter Reed Army Institute of Research, Silver Spring, MD, United States
| | - Ondine Eken
- Blast-Induced Neurotrauma Branch, Center for Military Psychiatry and Neuroscience, Walter Reed Army Institute of Research, Silver Spring, MD, United States
| | - Rodrigo Urioste
- Blast-Induced Neurotrauma Branch, Center for Military Psychiatry and Neuroscience, Walter Reed Army Institute of Research, Silver Spring, MD, United States
| | - Joseph B Long
- Blast-Induced Neurotrauma Branch, Center for Military Psychiatry and Neuroscience, Walter Reed Army Institute of Research, Silver Spring, MD, United States
| | - Peethambaran Arun
- Blast-Induced Neurotrauma Branch, Center for Military Psychiatry and Neuroscience, Walter Reed Army Institute of Research, Silver Spring, MD, United States
| |
Collapse
|
5
|
Lambrechts MJ, Cook JL. Nonsteroidal Anti-Inflammatory Drugs and Their Neuroprotective Role After an Acute Spinal Cord Injury: A Systematic Review of Animal Models. Global Spine J 2021; 11:365-377. [PMID: 32875860 PMCID: PMC8013945 DOI: 10.1177/2192568220901689] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
STUDY DESIGN Systematic review. OBJECTIVE Spinal cord injuries (SCIs) resulting in motor deficits can be devastating injuries resulting in millions of health care dollars spent per incident. Nonsteroidal anti-inflammatory drugs (NSAIDs) are a potential class of drugs that could improve motor function after an SCI. This systematic review utilizes PRISMA guidelines to evaluate the effectiveness of NSAIDs for SCI. METHODS PubMed/MEDLINE, CINAHL, PsycINFO, Embase, and Scopus were reviewed linking the keywords of "ibuprofen," "meloxicam," "naproxen," "ketorolac," "indomethacin," "celecoxib," "ATB-346," "NSAID," and "nonsteroidal anti-inflammatory drug" with "spinal." Results were reviewed for relevance and included if they met inclusion criteria. The SYRCLE checklist was used to assess sources of bias. RESULTS A total of 2960 studies were identified in the PubMed/MEDLINE database using the above-mentioned search criteria. A total of 461 abstracts were reviewed in Scopus, 340 in CINAHL, 179 in PsycINFO, and 7632 in Embase. A total of 15 articles met the inclusion criteria. CONCLUSIONS NSAIDs' effectiveness after SCI is largely determined by its ability to inhibit Rho-A. NSAIDs are a promising therapeutic option in acute SCI patients because they appear to decrease cord edema and inflammation, increase axonal sprouting, and improve motor function with minimal side effects. Studies are limited by heterogeneity, small sample size, and the use of animal models, which might not replicate the therapeutic effects in humans. There are no published human studies evaluating the safety and efficacy of these drugs after a traumatic cord injury. There is a need for well-designed prospective studies evaluating ibuprofen or indomethacin after adult spinal cord injuries.
Collapse
Affiliation(s)
| | - James L. Cook
- University of Missouri, Columbia, MO, USA,James L. Cook, University of Missouri, Missouri Orthopaedic Institute (4028A), 1100 Virginia Ave, Columbia, MO 65212, USA.
| |
Collapse
|
6
|
Spinal Cord Injury: Pathophysiology, Multimolecular Interactions, and Underlying Recovery Mechanisms. Int J Mol Sci 2020; 21:ijms21207533. [PMID: 33066029 PMCID: PMC7589539 DOI: 10.3390/ijms21207533] [Citation(s) in RCA: 611] [Impact Index Per Article: 122.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 09/17/2020] [Accepted: 09/24/2020] [Indexed: 12/30/2022] Open
Abstract
Spinal cord injury (SCI) is a destructive neurological and pathological state that causes major motor, sensory and autonomic dysfunctions. Its pathophysiology comprises acute and chronic phases and incorporates a cascade of destructive events such as ischemia, oxidative stress, inflammatory events, apoptotic pathways and locomotor dysfunctions. Many therapeutic strategies have been proposed to overcome neurodegenerative events and reduce secondary neuronal damage. Efforts have also been devoted in developing neuroprotective and neuro-regenerative therapies that promote neuronal recovery and outcome. Although varying degrees of success have been achieved, curative accomplishment is still elusive probably due to the complex healing and protective mechanisms involved. Thus, current understanding in this area must be assessed to formulate appropriate treatment modalities to improve SCI recovery. This review aims to promote the understanding of SCI pathophysiology, interrelated or interlinked multimolecular interactions and various methods of neuronal recovery i.e., neuroprotective, immunomodulatory and neuro-regenerative pathways and relevant approaches.
Collapse
|
7
|
Hoey RF, Hubscher CH. Investigation of Bowel Function with Anorectal Manometry in a Rat Spinal Cord Contusion Model. J Neurotrauma 2020; 37:1971-1982. [PMID: 32515264 DOI: 10.1089/neu.2020.7145] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Bowel dysfunction after chronic spinal cord injury (SCI) is a common source of morbidity and rehospitalization. Typical complications include constipation, fecal impaction, incontinence, abdominal distention, autonomic dysreflexia, and the necessity of interventions (i.e., suppositories, digital stimulation) to defecate. Numerous surveys have confirmed that the remediation of bowel complications is more highly valued for quality of life than improvements in walking. Much of what is known about bowel function after SCI for diagnosis and research in humans has been gained using anorectal manometry (ARM) procedures. However, ARM has been underutilized in pre-clinical animal work. Therefore, a novel combination of outcome measures was examined in the current study that incorporates functional output of the bowel (weekly fecal measurements), weight gain (pre-injury to terminal weight), and terminal ARM measurement with external anal sphincter electromyography under urethane anesthesia. The results indicate higher fecal output after contusion during the sub-acute period (4-7 days) post-injury, changes in the composition of the feces, and functionally obstructive responses in a specific section of the rectum (increased baseline pressure, increased frequency of contraction, and reduced ability to trigger a giant contraction to a distension stimulus). These results demonstrate significant bowel dysfunction in the rodent SCI contusion model that is consistent with data from human research. Thus, the combined measurement protocol enables the detection of changes and can be used, with minimal cost, to assess effectiveness of therapeutic interventions on bowel complications.
Collapse
Affiliation(s)
- Robert F Hoey
- Department of Anatomical Sciences and Neurobiology, University of Louisville School of Medicine, Louisville, Kentucky, USA
| | - Charles H Hubscher
- Department of Anatomical Sciences and Neurobiology, University of Louisville School of Medicine, Louisville, Kentucky, USA.,Kentucky Spinal Cord Injury Research Center, Louisville, Kentucky, USA
| |
Collapse
|
8
|
da Silva JCG, Dallegrave E, Rodrigues GZP, Bigolin C, Neumann TMSDO, Schuster AC, Kayser JM, Staudt LBM, Moraes MF, Farias DG, Schiling G, Raasch JR, Perassolo MS, da Silva LB, Gehlen G, Betti AH. Repeated dose of meloxicam induces genotoxicity and histopathological changes in cardiac tissue of mice. Drug Chem Toxicol 2020; 45:822-833. [PMID: 32552192 DOI: 10.1080/01480545.2020.1778018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Meloxicam is the non-steroidal anti-inflammatory drug most used in small animals; however, studies on genotoxicity, oxidative stress, and histopathologic alterations in cardiac tissue are limited, especially at therapeutical doses used in these animals. This study evaluated the toxic effects caused by the treatment involving repeated low at higher doses of meloxicam in mice, by genotoxicity, oxidative stress, and histopathological parameters. Mice (CF1, male) received, by gavage, meloxicam at the therapeutic dose indicated for small animals (0.1 mg/kg) and at higher doses (0.5 and 1 mg/kg) for 28 days. Later, they were euthanized for blood and organ analysis. Oxidative stress was analyzed by the plasma ferric reduction capacity (FRAP) and catalase, and genotoxicity, by the comet assay and the micronucleus test. Heart, liver, lung, and kidney tissues were analyzed by the histology, and stomach and duodenum were analyzed with a magnifying glass. The relative weight of organs did not present significant alterations. However, congestion of duodenum vessels was observed at the three tested doses and caused hyperemia of stomach mucosa at 1 mg/kg. In the heart histology there was a reduction in the number of cardiomyocytes, accompanied by an increase in cell diameter (possible cell hypertrophy) dose-dependent. The highest tested dose of meloxicam also increased the DNA damage index, without alterations in the micronucleus test. Meloxicam did not affect the catalase activity but increased the FRAP (1 mg/kg). Meloxicam at the dose prescribed for small animals could potentially cause cardiac histopathologic alterations and genotoxic effects.
Collapse
Affiliation(s)
| | - Eliane Dallegrave
- Toxicology Department, Federal University of Health Sciences of Porto Alegre, Porto Alegre, Rio Grande do Sul, Brazil
| | | | - Cassiana Bigolin
- Bioanalysis Department, Institute of Health Sciences, Feevale University, Novo Hamburgo, Rio Grande do Sul, Brazil
| | | | - Andriéli Carolina Schuster
- Bioanalysis Department, Institute of Health Sciences, Feevale University, Novo Hamburgo, Rio Grande do Sul, Brazil
| | - Juliana Machado Kayser
- Bioanalysis Department, Institute of Health Sciences, Feevale University, Novo Hamburgo, Rio Grande do Sul, Brazil
| | | | - Melina Floriano Moraes
- Bioanalysis Department, Institute of Health Sciences, Feevale University, Novo Hamburgo, Rio Grande do Sul, Brazil
| | - Débora Graziela Farias
- Bioanalysis Department, Institute of Health Sciences, Feevale University, Novo Hamburgo, Rio Grande do Sul, Brazil
| | - Gabriela Schiling
- Bioanalysis Department, Institute of Health Sciences, Feevale University, Novo Hamburgo, Rio Grande do Sul, Brazil
| | - Juliana Raquel Raasch
- Bioanalysis Department, Institute of Health Sciences, Feevale University, Novo Hamburgo, Rio Grande do Sul, Brazil
| | - Magda Susana Perassolo
- Bioanalysis Department, Institute of Health Sciences, Feevale University, Novo Hamburgo, Rio Grande do Sul, Brazil
| | - Luciano Basso da Silva
- Bioanalysis Department, Institute of Health Sciences, Feevale University, Novo Hamburgo, Rio Grande do Sul, Brazil
| | - Günther Gehlen
- Bioanalysis Department, Institute of Health Sciences, Feevale University, Novo Hamburgo, Rio Grande do Sul, Brazil
| | - Andresa Heemann Betti
- Bioanalysis Department, Institute of Health Sciences, Feevale University, Novo Hamburgo, Rio Grande do Sul, Brazil
| |
Collapse
|
9
|
Neuronal Death in the Contralateral Un-Injured Retina after Unilateral Axotomy: Role of Microglial Cells. Int J Mol Sci 2019; 20:ijms20225733. [PMID: 31731684 PMCID: PMC6888632 DOI: 10.3390/ijms20225733] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 11/12/2019] [Accepted: 11/13/2019] [Indexed: 11/24/2022] Open
Abstract
For years it has been known that unilateral optic nerve lesions induce a bilateral response that causes an inflammatory and microglial response in the contralateral un-injured retinas. Whether this contralateral response involves retinal ganglion cell (RGC) loss is still unknown. We have analyzed the population of RGCs and the expression of several genes in both retinas of pigmented mice after a unilateral axotomy performed close to the optic nerve head (0.5 mm), or the furthest away that the optic nerve can be accessed intraorbitally in mice (2 mm). In both retinas, RGC-specific genes were down-regulated, whereas caspase 3 was up-regulated. In the contralateral retinas, there was a significant loss of 15% of RGCs that did not progress further and that occurred earlier when the axotomy was performed at 2 mm, that is, closer to the contralateral retina. Finally, the systemic treatment with minocycline, a tetracycline antibiotic that selectively inhibits microglial cells, or with meloxicam, a non-steroidal anti-inflammatory drug, rescued RGCs in the contralateral but not in the injured retina. In conclusion, a unilateral optic nerve axotomy triggers a bilateral response that kills RGCs in the un-injured retina, a death that is controlled by anti-inflammatory and anti-microglial treatments. Thus, contralateral retinas should not be used as controls.
Collapse
|
10
|
Mari L, Behr S, Shea A, Dominguez E, Ricco C, Alcoverro E, Ekiri A, Sanchez-Masian D, De Risio L. Predictors of urinary or fecal incontinence in dogs with thoracolumbar acute non-compressive nucleus pulposus extrusion. J Vet Intern Med 2019; 33:2693-2700. [PMID: 31674064 PMCID: PMC6872617 DOI: 10.1111/jvim.15626] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Accepted: 09/05/2019] [Indexed: 12/16/2022] Open
Abstract
Background Urinary (UI) and fecal (FI) incontinence occur in up to 7.5% and 32% of dogs, respectively, after thoracolumbar acute noncompressive nucleus pulposus extrusion (ANNPE). Hypotheses/Objectives To investigate clinical, diagnostic, and therapeutic predictors of UI and FI in dogs with ANNPE affecting the T3‐L3 spinal cord segments. Animals Hundred and eighty‐seven dogs with T3‐L3 ANNPE diagnosed based on clinical and MRI findings. Methods Multicenter retrospective study. Data were obtained from medical records and telephone questionnaires and analyzed by logistic regression. Results UI and FI were reported in 17 (9.1%) and 44 (23.5%) dogs, respectively. Paraplegic dogs were 3 times (95% CI = 1.25, 10.87) more likely to develop UI (P = .018) and 4 times (95% CI = 1.94, 12.56) more likely to develop FI (P = .001) compared to nonparaplegic dogs. Dogs with an intramedullary hyperintensity greater than 40% of the cross‐sectional area of the spinal cord at the same level on transverse T2‐weighted MRI images were 4 times more likely to develop UI (95% CI = 1.04, 21.72; P = .045) and FI (95% CI = 1.56, 10.39; P = .004) compared to dogs with smaller lesions. FI was 3 times (95% CI = 1.41, 7.93) more likely in dogs that were not treated with nonsteroidal anti‐inflammatory drugs (NSAIDs) after diagnosis compared to dogs administered NSAIDs (P = .006) and 2 times (95% CI = 1.12, 5.98) more likely in dogs presented with clinical signs compatible with spinal shock compared to dogs without (P = .026). Conclusion and Clinical Importance The identification of clinical, diagnostic, and therapeutic predictors of UI and FI in dogs with T3‐L3 ANNPE can help to approach these autonomic dysfunctions occurring after spinal cord injury.
Collapse
Affiliation(s)
- Lorenzo Mari
- Department of Neurology/Neurosurgery, Centre for Small Animal Studies, Animal Health Trust, Newmarket, Suffolk, UK
| | - Sebastien Behr
- Neurology/Neurosurgery Service, Willows Veterinary Centre and Referral Services, Solihull, UK
| | - Anita Shea
- Department of Neurology/Neurosurgery, Centre for Small Animal Studies, Animal Health Trust, Newmarket, Suffolk, UK
| | - Elisabet Dominguez
- Diagnostic Imaging Unit, Centre for Small Animal Studies, Animal Health Trust, Newmarket, Suffolk, UK
| | - Cristoforo Ricco
- Neurology/Neurosurgery Service, Willows Veterinary Centre and Referral Services, Solihull, UK
| | - Emili Alcoverro
- Department of Small Animal Clinical Science, Institute of Veterinary Science, University of Liverpool, Neston, Cheshire, UK
| | - Abel Ekiri
- School of Veterinary Medicine, University of Surrey, Guildford, Surrey, UK
| | - Daniel Sanchez-Masian
- Department of Small Animal Clinical Science, Institute of Veterinary Science, University of Liverpool, Neston, Cheshire, UK
| | - Luisa De Risio
- Department of Neurology/Neurosurgery, Centre for Small Animal Studies, Animal Health Trust, Newmarket, Suffolk, UK
| |
Collapse
|
11
|
Mukhamedshina YO, Gracheva OA, Mukhutdinova DM, Chelyshev YA, Rizvanov AA. Mesenchymal stem cells and the neuronal microenvironment in the area of spinal cord injury. Neural Regen Res 2019; 14:227-237. [PMID: 30531002 PMCID: PMC6301181 DOI: 10.4103/1673-5374.244778] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Cell-based technologies are used as a therapeutic strategy in spinal cord injury (SCI). Mesenchymal stem cells (MSCs), which secrete various neurotrophic factors and cytokines, have immunomodulatory, anti-apoptotic and anti-inflammatory effects, modulate reactivity/phenotype of astrocytes and the microglia, thereby promoting neuroregeneration seem to be the most promising. The therapeutic effect of MSCs is due to a paracrine mechanism of their action, therefore the survival of MSCs and their secretory phenotype is of particular importance. Nevertheless, these data are not always reported in efficacy studies of MSC therapy in SCI. Here, we provide a review with summaries of preclinical trials data evaluating the efficacy of MSCs in animal models of SCI. Based on the data collected, we have tried (1) to establish the behavior of MSCs after transplantation in SCI with an evaluation of cell survival, migration potential, distribution in the area of injured and intact tissue and possible differentiation; (2) to determine the effects MSCs on neuronal microenvironment and correlate them with the efficacy of functional recovery in SCI; (3) to ascertain the conditions under which MSCs demonstrate their best survival and greatest efficacy.
Collapse
Affiliation(s)
- Yana O Mukhamedshina
- OpenLab Gene and Cell Technologies, Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University; Department of Histology, Cytology and Embryology, Kazan State Medical University, Kazan, Russia
| | - Olga A Gracheva
- Department of Therapy and Clinical Diagnostics with radiology Faculty of Veterinary Medicine, Bauman Kazan State Academy of Veterinary Medicine, Kazan, Russia
| | - Dina M Mukhutdinova
- Department of Therapy and Clinical Diagnostics with radiology Faculty of Veterinary Medicine, Bauman Kazan State Academy of Veterinary Medicine, Kazan, Russia
| | - Yurii A Chelyshev
- Department of Histology, Cytology and Embryology, Kazan State Medical University, Kazan, Russia
| | - Albert A Rizvanov
- OpenLab Gene and Cell Technologies, Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, Kazan, Russia
| |
Collapse
|
12
|
Pedram MS, Dehghan MM, Shojaee M, Fekrazad R, Sharifi D, Farzan A, Ghasemi S, AliMohammad Kalhori K. Therapeutic effects of simultaneous Photobiomodulation therapy (PBMT) and Meloxicam administration on experimental acute spinal cord injury: Rat animal model. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2018; 189:49-54. [PMID: 30312920 DOI: 10.1016/j.jphotobiol.2018.09.022] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2018] [Revised: 08/29/2018] [Accepted: 09/25/2018] [Indexed: 11/26/2022]
Abstract
STUDY DESIGN Application of Photobiomodulation therapy (PBMT) and meloxicam in acute spinal cord injury, functional recovery and histological evaluation. OBJECTIVE Evaluation of the effect of simultaneous PBMT and meloxicam on treatment of acute experimental spinal cord injury and comparing it with the effect of application of each of them separately. SETTING The study was conducted at the Department of Surgery & Radiology, Faculty of Veterinary Medicine and Institute of Biomedical Research, University of Tehran, Tehran, Iran. METHODS Twenty four rats were used in this study. A compression injury was induced to the T8-T9 segment of the spinal cord of rats using a Fogarty embolectomy catheter. Rats were randomly divided into 4 groups including: Control group, PBMT (810 nm-200 mw-8 s-2 weeks) group, Meloxicam (1 mg/kg) group, and PBMT and Meloxicam (mixed) group. After inducing injury, hind limb performance of the rats was evaluated, using BBB test and then treatment intervention was performed and continued for 2 weeks. RESULTS Four weeks after injury induction, BBB test results were significantly higher in all treatment groups in comparison to control group, however, there were no significant differences among the treatment groups. In addition, histological findings revealed no significant difference between all 4 study groups. CONCLUSION According to the results of this study we can conclude that simultaneous and separate application of PBMT and Meloxicam play an effective role in treatment of acute spinal cord injuries.
Collapse
Affiliation(s)
- Mir Sepehr Pedram
- Department of Surgery & Radiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran; Institute of Biomedical Research, University of Tehran, Tehran, Iran
| | - Mohammad Mehdi Dehghan
- Department of Surgery & Radiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran; Institute of Biomedical Research, University of Tehran, Tehran, Iran.
| | - Maryam Shojaee
- Department of Surgery & Radiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Reza Fekrazad
- Department of Periodontology, Dental Faculty - Laser research center in medical Sciences, AJA University of Medical Sciences & International Network for Photo Medicine and Photo Dynamic Therapy (INPMPDT), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Davood Sharifi
- Department of Surgery & Radiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Arash Farzan
- Department of Orthodontics, School of Density, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Setareh Ghasemi
- Department of Surgery & Radiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Katayoun AliMohammad Kalhori
- Department of Oral & Maxillofacial Pathology, Dental Faculty, Rafsanjan University of Medical Sciences, Rafsanjan, Iran
| |
Collapse
|
13
|
Wilems TS, Lu X, Kurosu YE, Khan Z, Lim HJ, Smith Callahan LA. Effects of free radical initiators on polyethylene glycol dimethacrylate hydrogel properties and biocompatibility. J Biomed Mater Res A 2017; 105:3059-3068. [PMID: 28744952 DOI: 10.1002/jbm.a.36160] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Revised: 06/22/2017] [Accepted: 07/21/2017] [Indexed: 12/13/2022]
Abstract
Many studies have utilized Irgacure 2959 photopolymerized poly(ethylene glycol) (PEG) hydrogels for tissue engineering application development. Due to the limited penetration of ultraviolet light through tissue, Irgacure 2959 polymerized hydrogels are not suitable for use in tissues where material injection is desirable, such as the spinal cord. To address this, several free radical initiators (thermal initiator VA044, ammonium persulfate (APS)/TEMED reduction-oxidation reaction, and Fenton chemistry) are evaluated for their effects on the material and mechanical properties of PEG hydrogels compared with Irgacure 2959. To emulate the effects of endogenous thiols on in vivo polymerization, the effects of chain transfer agent (CTA) dithiothreitol on gelation rates, material properties, Young's and shear modulus, are examined. Mouse embryonic stem cells and human induced pluripotent stem cell derived neural stem cells were used to investigate the cytocompatibility of each polymerization. VA044 and Fenton chemistry polymerization of PEG hydrogels both had gelation rates and mechanical properties that were highly susceptible to changes in CTA concentration and showed poor cytocompatibility. APS/TEMED polymerized hydrogels maintained consistent gelation rates and mechanical properties at high CTA concentration and had a similar cytocompatibility as Irgacure 2959 when cells were encapsulated within the PEG hydrogels. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 3059-3068, 2017.
Collapse
Affiliation(s)
- Thomas S Wilems
- The Vivian L Smith Department of Neurosurgery, McGovern Medical School at University of Texas Health Science Center at Houston, Houston, Texas, 77030.,Center for Stem Cell and Regenerative Medicine, Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, Texas, 77030
| | - Xi Lu
- The Vivian L Smith Department of Neurosurgery, McGovern Medical School at University of Texas Health Science Center at Houston, Houston, Texas, 77030.,Center for Stem Cell and Regenerative Medicine, Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, Texas, 77030
| | - Yuki E Kurosu
- The Vivian L Smith Department of Neurosurgery, McGovern Medical School at University of Texas Health Science Center at Houston, Houston, Texas, 77030.,Center for Stem Cell and Regenerative Medicine, Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, Texas, 77030
| | - Zara Khan
- The Vivian L Smith Department of Neurosurgery, McGovern Medical School at University of Texas Health Science Center at Houston, Houston, Texas, 77030.,Center for Stem Cell and Regenerative Medicine, Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, Texas, 77030
| | - Hyun Ju Lim
- The Vivian L Smith Department of Neurosurgery, McGovern Medical School at University of Texas Health Science Center at Houston, Houston, Texas, 77030.,Center for Stem Cell and Regenerative Medicine, Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, Texas, 77030
| | - Laura A Smith Callahan
- The Vivian L Smith Department of Neurosurgery, McGovern Medical School at University of Texas Health Science Center at Houston, Houston, Texas, 77030.,Center for Stem Cell and Regenerative Medicine, Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, Texas, 77030.,The Department of Nanomedicine and Biomedical Engineering, McGovern Medical School at University of Texas Health Science Center at Houston, Houston, Texas, 77030.,The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, University of Texas Health Science Center at Houston, Houston, Texas, 77030
| |
Collapse
|
14
|
Effect of Sulindac Binary System on In Vitro and In Vivo Release Profiles: An Assessment of Polymer Type and Its Ratio. BIOMED RESEARCH INTERNATIONAL 2016; 2016:3182358. [PMID: 27840824 PMCID: PMC5093299 DOI: 10.1155/2016/3182358] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Revised: 07/11/2016] [Accepted: 07/19/2016] [Indexed: 11/17/2022]
Abstract
The bioavailability of sulindac (SDC), a nonsteroidal anti-inflammatory drug, is low due to poor aqueous solubility and poor dissolution rate. For this reason it is necessary to enhance the solubility and enhance dissolution of the drug by dispersing SDC in polyethylene glycols 6000 (PEG 6000) and polyvinyl pyrrolidone 40000 (PVP 40000) matrices using the coevaporation technique. Studying the influence of SDC to polymer ratio on drug content, percent yield, particle size, and in vitro release was performed. Differential scanning calorimetry, X-ray diffraction, and scanning electron microscopy were used to characterize any change in crystal habit of SDC in the prepared formulae. The anti-inflammatory effect of SDC was studied using the hind paw edema model. It was found that incorporation of SDC in PEG 6000 and PVP 40000 matrices resulted in improving the dissolution rate, which was found to depend on the polymer and its weight ratio of the drug. It is clearly obvious that the dissolution rate was remarkably improved in drug PVP 40000 molecular dispersions when compared to drug PEG 6000 systems. Solid dispersion of SDC in PEG and PVP improved the anti-inflammatory effect of SDC and it was found that formula SDV5 exhibited a more pronounced inhibition of swelling than other formulae.
Collapse
|
15
|
Wang X, Martínez MA, Wu Q, Ares I, Martínez-Larrañaga MR, Anadón A, Yuan Z. Fipronil insecticide toxicology: oxidative stress and metabolism. Crit Rev Toxicol 2016; 46:876-899. [DOI: 10.1080/10408444.2016.1223014] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
16
|
Roughan JV, Bertrand HG, Isles HM. Meloxicam prevents COX-2-mediated post-surgical inflammation but not pain following laparotomy in mice. Eur J Pain 2016; 20:231-40. [PMID: 25908253 PMCID: PMC4728739 DOI: 10.1002/ejp.712] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/13/2015] [Indexed: 12/12/2022]
Abstract
BACKGROUND Inflammation is thought to be a major contributor to post-surgical pain, so non-steroidal anti-inflammatory drugs (NSAIDs) are commonly used analgesics. However, compared to rats, considerably less is known as to how successfully these prevent pain in mice. METHODS A fluorescent COX-2 selective probe was used for the first time to evaluate the post-surgical anti-inflammatory effects of meloxicam, and automated behaviour analyses (HomeCageScan; HCS), the Mouse Grimace Scale (MGS) and body weight changes to assess its pain-preventative properties. Groups of 8-9 BALB/c mice were subcutaneously injected with saline (0.3 mL) or meloxicam at (1, 5 or 20 mg/kg) 1 h before a 1.5-cm midline laparotomy. The probe or a control dye (2 mg/kg) was injected intravenously 3 h later. Imaging was used to quantify inflammation at 7, 24 and 48 h following surgery. HCS data and MGS scores were respectively obtained from video recordings and photographs before surgery and 24 h later. RESULTS Post-surgical inflammation was dose dependently reduced by meloxicam; with 5 or 20 mg/kg being most effective compared to saline. However, all mice lost weight, MGS scores increased and behavioural activity was reduced by surgery for at least 24 h with no perceivable beneficial effect of meloxicam on any of these potentially pain-associated changes. CONCLUSIONS Although meloxicam prevented inflammation, even large doses did not prevent post-laparotomy pain possibly arising due to a range of factors, including, but not limited to inflammation. MGS scoring can be applied by very naïve assessors and so should be effective for cage-side use.
Collapse
Affiliation(s)
- John V. Roughan
- Comparative Biology Centre, The Medical School, University of Newcastle, Newcastle upon Tyne, NE2 4HH, UK
| | - Henri G.M.J. Bertrand
- Comparative Biology Centre, The Medical School, University of Newcastle, Newcastle upon Tyne, NE2 4HH, UK
| | - Hannah M. Isles
- Comparative Biology Centre, The Medical School, University of Newcastle, Newcastle upon Tyne, NE2 4HH, UK
| |
Collapse
|
17
|
Erşahin M, Özdemir Z, Özsavcı D, Akakın D, Yeğen BÇ, Reiter RJ, Sener G. Melatonin treatment protects against spinal cord injury induced functional and biochemical changes in rat urinary bladder. J Pineal Res 2012; 52:340-8. [PMID: 22220508 DOI: 10.1111/j.1600-079x.2011.00948.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Oxidative stress induced by spinal cord injury (SCI) has deleterious effects on the function of several organ systems including the urinary bladder. In this study, we investigated the possible protective actions of melatonin on SCI-induced oxidative damage and urinary bladder dysfunction. Wistar albino rats (n = 24) were divided randomly as control, vehicle- or melatonin (10 mg/kg, ip)-treated SCI groups. To induce SCI, a standard weight-drop method that induced a moderately severe injury at T10 was used. Injured animals were given either vehicle or melatonin 15 min postinjury. One week postinjury, each rat was neurologically examined and then decapitated; blood samples were taken to evaluate neuron-specific enolase (NSE) and soluble protein 100β (S-100β). Spinal cord (SC) and urinary bladder samples were taken for functional studies and histological examination or stored for the measurement of malondialdehyde (MDA), glutathione (GSH) and nerve growth factor (NGF) levels and caspase-3 activity. Isometric contractions in bladder strips were induced by carbachol. In the SCI rats, decreased contractile responses of the bladder strips were found to be restored by melatonin treatment. Serum S-100β levels and NSE activities and tissue MDA levels and caspase-3 activities, all of which were elevated in the vehicle-treated SCI animals as compared to the control values, were reversed by melatonin treatment. On the other hand, reduced GSH and NGF levels due to SCI were restored by melatonin treatment. Furthermore, melatonin treatment improved histological findings. These findings suggest that melatonin reduces SCI-induced tissue injury and improves bladder functions through its effects on oxidative stress and NGF.
Collapse
Affiliation(s)
- Mehmet Erşahin
- Department of Neurosurgery, Samsun Education and Research Hospital, Samsun, Turkey
| | | | | | | | | | | | | |
Collapse
|