1
|
Prener M, Opheim G, Shams Z, Søndergaard CB, Lindberg U, Larsson HBW, Ziebell M, Larsen VA, Vestergaard MB, Paulson OB. Single-Voxel MR Spectroscopy of Gliomas with s-LASER at 7T. Diagnostics (Basel) 2023; 13:diagnostics13101805. [PMID: 37238288 DOI: 10.3390/diagnostics13101805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 05/01/2023] [Accepted: 05/16/2023] [Indexed: 05/28/2023] Open
Abstract
BACKGROUND AND PURPOSE Magnetic resonance spectroscopy (MRS)-a method of analysing metabolites in vivo-has been utilized in several studies of brain glioma biomarkers at lower field strengths. At ultra-high field strengths, MRS provides an improved signal-to-noise-ratio and spectral resolution, but 7T studies on patients with gliomas are sparse. The purpose of this exploratory study was to evaluate the potential clinical implication of the use of single-voxel MRS at 7T to assess metabolic information on lesions in a pilot cohort of patients with grade II and III gliomas. METHODS We scanned seven patients and seven healthy controls using the semi-localization by adiabatic-selective refocusing sequence on a Philips Achieva 7T system with a standard dual-transmit head coil. The metabolic ratios were calculated relative to water and total creatine. Additionally, 2-hydroxyglutarate (2-HG) MRS was carried out in four of the patients, and the 2-HG concentration was calculated relative to water. RESULTS When comparing the tumour data to control regions in both patients and healthy controls, we found that the choline/creatine and myo-inositol/creatine ratios were significantly increased and that the N-acetylaspartate/creatine and the neurotransmitter glutamate/creatine ratios were significantly decreased. The N-acetylaspartate/water and glutamate/water ratios were also significantly decreased. The lactate/water and lactate/creatine ratios showed increases, although not significant. The GABA/water ratio was significantly decreased, but the GABA/creatine ratio was not. MRS spectra showed the presence of 2-HG in three of the four patients studied. Three of the patients, including the MRS 2-HG-negative patient, were operated on, and all of them had the IDH mutation. CONCLUSION Our findings were consistent with the existing literature on 3T and 7T MRS.
Collapse
Affiliation(s)
- Martin Prener
- Neurobiology Research Unit, Department of Neurology, Rigshospitalet Blegdamsvej, 2100 Copenhagen, Denmark
| | - Giske Opheim
- Neurobiology Research Unit, Department of Neurology, Rigshospitalet Blegdamsvej, 2100 Copenhagen, Denmark
- Department of Radiology, Rigshospitalet Blegdamsvej, 2100 Copenhagen, Denmark
| | - Zahra Shams
- Center for Image Sciences, University Medical Centre Utrecht, Heidelberglaan 100, 3508 GA Utrecht, The Netherlands
| | | | - Ulrich Lindberg
- Functional Imaging Unit, Department of Clinical Physiology, Nuclear Medicine and PET, Rigshospitalet Glostrup, 2600 Copenhagen, Denmark
| | - Henrik B W Larsson
- Functional Imaging Unit, Department of Clinical Physiology, Nuclear Medicine and PET, Rigshospitalet Glostrup, 2600 Copenhagen, Denmark
- Department of Clinical Medicine, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Morten Ziebell
- Department of Neurosurgery, Rigshospitalet Blegdamsvej, 2100 Copenhagen, Denmark
| | | | - Mark Bitsch Vestergaard
- Functional Imaging Unit, Department of Clinical Physiology, Nuclear Medicine and PET, Rigshospitalet Glostrup, 2600 Copenhagen, Denmark
| | - Olaf B Paulson
- Neurobiology Research Unit, Department of Neurology, Rigshospitalet Blegdamsvej, 2100 Copenhagen, Denmark
- Department of Clinical Medicine, University of Copenhagen, 2200 Copenhagen, Denmark
| |
Collapse
|
2
|
Cruz N, Herculano-Carvalho M, Roque D, Faria CC, Cascão R, Ferreira HA, Reis CP, Matela N. Highlighted Advances in Therapies for Difficult-To-Treat Brain Tumours Such as Glioblastoma. Pharmaceutics 2023; 15:pharmaceutics15030928. [PMID: 36986790 PMCID: PMC10054750 DOI: 10.3390/pharmaceutics15030928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 02/25/2023] [Accepted: 03/10/2023] [Indexed: 03/15/2023] Open
Abstract
Glioblastoma multiforme (GBM) remains a challenging disease, as it is the most common and deadly brain tumour in adults and has no curative solution and an overall short survival time. This incurability and short survival time means that, despite its rarity (average incidence of 3.2 per 100,000 persons), there has been an increased effort to try to treat this disease. Standard of care in newly diagnosed glioblastoma is maximal tumour resection followed by initial concomitant radiotherapy and temozolomide (TMZ) and then further chemotherapy with TMZ. Imaging techniques are key not only to diagnose the extent of the affected tissue but also for surgery planning and even for intraoperative use. Eligible patients may combine TMZ with tumour treating fields (TTF) therapy, which delivers low-intensity and intermediate-frequency electric fields to arrest tumour growth. Nonetheless, the blood–brain barrier (BBB) and systemic side effects are obstacles to successful chemotherapy in GBM; thus, more targeted, custom therapies such as immunotherapy and nanotechnological drug delivery systems have been undergoing research with varying degrees of success. This review proposes an overview of the pathophysiology, possible treatments, and the most (not all) representative examples of the latest advancements.
Collapse
Affiliation(s)
- Nuno Cruz
- Instituto de Biofísica e Engenharia Biomédica, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal
- iMED.ULisboa, Research Institute for Medicines, Faculdade de Farmácia, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal
| | - Manuel Herculano-Carvalho
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisboa, Portugal
- Department of Neurosurgery, Hospital de Santa Maria, Centro Hospitalar Universitário Lisboa Norte (CHULN), 1649-028 Lisboa, Portugal
| | - Diogo Roque
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisboa, Portugal
- Department of Neurosurgery, Hospital de Santa Maria, Centro Hospitalar Universitário Lisboa Norte (CHULN), 1649-028 Lisboa, Portugal
| | - Cláudia C. Faria
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisboa, Portugal
- Department of Neurosurgery, Hospital de Santa Maria, Centro Hospitalar Universitário Lisboa Norte (CHULN), 1649-028 Lisboa, Portugal
| | - Rita Cascão
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, 1649-028 Lisboa, Portugal
| | - Hugo Alexandre Ferreira
- Instituto de Biofísica e Engenharia Biomédica, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal
| | - Catarina Pinto Reis
- Instituto de Biofísica e Engenharia Biomédica, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal
- iMED.ULisboa, Research Institute for Medicines, Faculdade de Farmácia, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal
- Correspondence: (C.P.R.); (N.M.); Tel.: +351-217-946-400 (ext. 14244) (C.P.R.); Fax: +351-217-946-470 (C.P.R.)
| | - Nuno Matela
- Instituto de Biofísica e Engenharia Biomédica, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal
- Correspondence: (C.P.R.); (N.M.); Tel.: +351-217-946-400 (ext. 14244) (C.P.R.); Fax: +351-217-946-470 (C.P.R.)
| |
Collapse
|
3
|
Abstract
Abstract
Purpose
Gliomas, the most common primary brain tumours, have recently been re-classified incorporating molecular aspects with important clinical, prognostic, and predictive implications. Concurrently, the reprogramming of metabolism, altering intracellular and extracellular metabolites affecting gene expression, differentiation, and the tumour microenvironment, is increasingly being studied, and alterations in metabolic pathways are becoming hallmarks of cancer. Magnetic resonance spectroscopy (MRS) is a complementary, non-invasive technique capable of quantifying multiple metabolites. The aim of this review focuses on the methodology and analysis techniques in proton MRS (1H MRS), including a brief look at X-nuclei MRS, and on its perspectives for diagnostic and prognostic biomarkers in gliomas in both clinical practice and preclinical research.
Methods
PubMed literature research was performed cross-linking the following key words: glioma, MRS, brain, in-vivo, human, animal model, clinical, pre-clinical, techniques, sequences, 1H, X-nuclei, Artificial Intelligence (AI), hyperpolarization.
Results
We selected clinical works (n = 51), preclinical studies (n = 35) and AI MRS application papers (n = 15) published within the last two decades. The methodological papers (n = 62) were taken into account since the technique first description.
Conclusions
Given the development of treatments targeting specific cancer metabolic pathways, MRS could play a key role in allowing non-invasive assessment for patient diagnosis and stratification, predicting and monitoring treatment responses and prognosis. The characterization of gliomas through MRS will benefit of a wide synergy among scientists and clinicians of different specialties within the context of new translational competences. Head coils, MRI hardware and post-processing analysis progress, advances in research, experts’ consensus recommendations and specific professionalizing programs will make the technique increasingly trustworthy, responsive, accessible.
Collapse
|
4
|
Wang L, Chen G, Dai K. Hydrogen Proton Magnetic Resonance Spectroscopy (MRS) in Differential Diagnosis of Intracranial Tumors: A Systematic Review. CONTRAST MEDIA & MOLECULAR IMAGING 2022; 2022:7242192. [PMID: 35655732 PMCID: PMC9132669 DOI: 10.1155/2022/7242192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 04/19/2022] [Indexed: 11/17/2022]
Abstract
Meningioma, glioma, and metastases are the most common intracranial tumors in clinical practice. In order to improve the prognosis of patients, timely diagnosis and early treatment are crucial. Hydrogen proton magnetic resonance spectroscopy (1H-MRS) imaging can noninvasively display the biochemical information of tissues in vivo and has been applied to identify and diagnose intracranial tumors. We want to comprehensively evaluate 1H-MRS identify and diagnose intracranial tumors by meta-analysis. Some databases such as PubMed and Cochrane Library were used to systematically search articles that were about identifying and diagnosing intracranial tumors with 1H-MRS. Then, weighted mean difference (WMD) was used as an effect size to conduct meta-analysis. There are altogether nine articles, including 533 patients. Results of meta-analysis: The Cho/Cr and Cho/NAA ratios in the LGG group were significantly lower than those in the HGG group (WMD = -0.69, 95% CI (-0.92, -0.45), P < 0.001, WMD = -0.76, 95% CI (-1.03, -0.48), P < 0.001). The Cho/Cr ratio of tumor and peritumor in the HGG group was significantly different from that in the metastasis group (0.68, 95% CI (-1.27, 2.62), P < 0.001, WMD = 0.94, 95% CI (0.41, 1.47), P < 0.001). There was no significant difference in the tumor and peritumor NAA/Cr ratio between the HGG group and metastasis group (WMD = -0.64, 95% CI (-1.63, 0.34), P=0.31, WMD = -0.22, 95% CI (-0.59, 0.15), P=0.24). 1H-MRS can provide metabolic information of different intracranial tumors and can effectively diagnose and differentiate glioma and metastasis. 1H-MRS can also provide a reliable basis for the classification of glioma, and has certain clinical application value.
Collapse
Affiliation(s)
- Lin Wang
- Department of Radiology, Quanzhou First Hospital Affiliated to Fujian Medical University, Quanzhou 362000, China
| | - Guanfeng Chen
- Department of Radiology, Quanzhou First Hospital Affiliated to Fujian Medical University, Quanzhou 362000, China
| | - Kaifeng Dai
- Department of Radiology, Quanzhou First Hospital Affiliated to Fujian Medical University, Quanzhou 362000, China
| |
Collapse
|
5
|
Yoo J, Cha YJ, Park HH, Park M, Joo B, Suh SH, Ahn SJ. The Extent of Necrosis in Brain Metastases May Predict Subtypes of Primary Cancer and Overall Survival in Patients Receiving Craniotomy. Cancers (Basel) 2022; 14:cancers14071694. [PMID: 35406466 PMCID: PMC8997083 DOI: 10.3390/cancers14071694] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 03/23/2022] [Accepted: 03/24/2022] [Indexed: 02/04/2023] Open
Abstract
Although necrosis is common in brain metastasis (BM), its biological and clinical significances remain unknown. We evaluated necrosis extent differences by primary cancer subtype and correlated BM necrosis to overall survival post-craniotomy. We analyzed 145 BMs of patients receiving craniotomy. Necrosis to tumor ratio (NTR) was measured. Patients were divided into two groups by NTR: BMs with sparse necrosis and with abundant necrosis. Clinical features were compared. To investigate factor relevance for BM necrosis, multivariate logistic regression, random forests, and gradient boosting machine analyses were performed. Kaplan−Meier analysis and log-rank tests were performed to evaluate the effect of BM necrosis on overall survival. Lung cancer was a more common origin for BMs with abundant necrosis (42/72, 58.33%) versus sparse necrosis (23/73, 31.51%, p < 0.01). Primary cancer subtype and tumor volume were the most relevant factors for BM necrosis (p < 0.01). BMs harboring moderately abundant necrosis showed longer survival, versus sparse or highly abundant necrosis (p = 0.04). Lung cancer BM may carry larger necrosis than BMs from other cancers. Further, moderately abundant necrosis in BM may predict a good prognosis post-craniotomy.
Collapse
Affiliation(s)
- Jihwan Yoo
- Department of Neurosurgery, Brain Tumor Center, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul 06230, Korea; (J.Y.); (H.H.P.)
| | - Yoon Jin Cha
- Department of Pathology, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul 06230, Korea;
| | - Hun Ho Park
- Department of Neurosurgery, Brain Tumor Center, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul 06230, Korea; (J.Y.); (H.H.P.)
| | - Mina Park
- Department of Radiology, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul 06230, Korea; (M.P.); (B.J.); (S.H.S.)
| | - Bio Joo
- Department of Radiology, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul 06230, Korea; (M.P.); (B.J.); (S.H.S.)
| | - Sang Hyun Suh
- Department of Radiology, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul 06230, Korea; (M.P.); (B.J.); (S.H.S.)
| | - Sung Jun Ahn
- Department of Radiology, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul 06230, Korea; (M.P.); (B.J.); (S.H.S.)
- Correspondence: ; Tel.: +82-2-2019-3510; Fax: +82-2-3462-5472
| |
Collapse
|
6
|
Martín-Noguerol T, Mohan S, Santos-Armentia E, Cabrera-Zubizarreta A, Luna A. Advanced MRI assessment of non-enhancing peritumoral signal abnormality in brain lesions. Eur J Radiol 2021; 143:109900. [PMID: 34412007 DOI: 10.1016/j.ejrad.2021.109900] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 07/24/2021] [Accepted: 08/03/2021] [Indexed: 12/30/2022]
Abstract
Evaluation of Central Nervous System (CNS) focal lesions has been classically made focusing on the assessment solid or enhancing component. However, the assessment of solitary peripherally enhancing lesions where the differential diagnosis includes High-Grade Gliomas (HGG) and metastasis, is usually challenging. Several studies have tried to address the characteristics of peritumoral non-enhancing areas, for better characterization of these lesions. Peritumoral hyperintense T2/FLAIR signal abnormality predominantly contains infiltrating tumor cells in HGG whereas CNS metastasis induce pure vasogenic edema. In addition, the accurate determination of the real extension of HGG is critical for treatment selection and outcome. Conventional MRI sequences are limited in distinguishing infiltrating neoplasm from vasogenic edema. Advanced MRI sequences like Diffusion Weighted Imaging (DWI), Diffusion Tensor Imaging (DTI), Perfusion Weighted Imaging (PWI) and MR spectroscopy (MRS) have all been utilized for this aim with acceptable results. Other advanced MRI approaches, less explored for this task such as Arterial Spin Labelling (ASL), Diffusion Kurtosis Imaging (DKI), T2 relaxometry or Amide Proton Transfer (APT) are also showning promising results in this scenario. In this article, we will discuss the physiopathological basis of peritumoral T2/FLAIR signal abnormality and review potential applications of advanced MRI sequences for its evaluation.
Collapse
Affiliation(s)
| | - Suyash Mohan
- Division of Neuroradiology, Hospital of the University of Pennsylvania, Philadelphia, PA, USA.
| | | | | | - Antonio Luna
- MRI Unit, Radiology Department, HT Medica, Jaén, Spain.
| |
Collapse
|
7
|
Abstract
The central role of MRI in neuro-oncology is undisputed. The technique is used, both in clinical practice and in clinical trials, to diagnose and monitor disease activity, support treatment decision-making, guide the use of focused treatments and determine response to treatment. Despite recent substantial advances in imaging technology and image analysis techniques, clinical MRI is still primarily used for the qualitative subjective interpretation of macrostructural features, as opposed to quantitative analyses that take into consideration multiple pathophysiological features. However, the field of quantitative imaging and imaging biomarker development is maturing. The European Imaging Biomarkers Alliance (EIBALL) and Quantitative Imaging Biomarkers Alliance (QIBA) are setting standards for biomarker development, validation and implementation, as well as promoting the use of quantitative imaging and imaging biomarkers by demonstrating their clinical value. In parallel, advanced imaging techniques are reaching the clinical arena, providing quantitative, commonly physiological imaging parameters that are driving the discovery, validation and implementation of quantitative imaging and imaging biomarkers in the clinical routine. Additionally, computational analysis techniques are increasingly being used in the research setting to convert medical images into objective high-dimensional data and define radiomic signatures of disease states. Here, I review the definition and current state of MRI biomarkers in neuro-oncology, and discuss the clinical potential of quantitative image analysis techniques.
Collapse
|
8
|
Hainfeld JF, Ridwan SM, Stanishevskiy FY, Smilowitz HM. Iodine nanoparticle radiotherapy of human breast cancer growing in the brains of athymic mice. Sci Rep 2020; 10:15627. [PMID: 32973267 PMCID: PMC7515899 DOI: 10.1038/s41598-020-72268-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 08/18/2020] [Indexed: 12/16/2022] Open
Abstract
About 30% of breast cancers metastasize to the brain; those widely disseminated are fatal typically in 3-4 months, even with the best available treatments, including surgery, drugs, and radiotherapy. To address this dire situation, we have developed iodine nanoparticles (INPs) that target brain tumors after intravenous (IV) injection. The iodine then absorbs X-rays during radiotherapy (RT), creating free radicals and local tumor damage, effectively boosting the local RT dose at the tumor. Efficacy was tested using the very aggressive human triple negative breast cancer (TNBC, MDA-MB-231 cells) growing in the brains of athymic nude mice. With a well-tolerated non-toxic IV dose of the INPs (7 g iodine/kg body weight), tumors showed a heavily iodinated rim surrounding the tumor having an average uptake of 2.9% iodine by weight, with uptake peaks at 4.5%. This is calculated to provide a dose enhancement factor of approximately 5.5 (peaks at 8.0), the highest ever reported for any radiation-enhancing agents. With RT alone (15 Gy, single dose), all animals died by 72 days; INP pretreatment resulted in longer-term remissions with 40% of mice surviving 150 days and 30% surviving > 280 days.
Collapse
Affiliation(s)
- James F Hainfeld
- Nanoprobes, Inc., 95 Horseblock Rd., Unit 1, Yaphank, NY, 11980, USA.
| | - Sharif M Ridwan
- Department of Cell Biology, University of Connecticut Health Center, 263 Farmington Ave., Farmington, CT, 06030, USA
| | | | - Henry M Smilowitz
- Department of Cell Biology, University of Connecticut Health Center, 263 Farmington Ave., Farmington, CT, 06030, USA
| |
Collapse
|
9
|
Oglesby RT, Lam WW, Stanisz GJ. In vitro characterization of the serotonin biosynthesis pathway by CEST MRI. Magn Reson Med 2020; 84:2389-2399. [DOI: 10.1002/mrm.28281] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 03/09/2020] [Accepted: 03/23/2020] [Indexed: 12/20/2022]
Affiliation(s)
- Ryan T. Oglesby
- Physical Sciences Sunnybrook Research Institute Toronto ON Canada
- Medical Biophysics University of Toronto Toronto ON Canada
| | - Wilfred W. Lam
- Physical Sciences Sunnybrook Research Institute Toronto ON Canada
| | - Greg J. Stanisz
- Physical Sciences Sunnybrook Research Institute Toronto ON Canada
- Medical Biophysics University of Toronto Toronto ON Canada
- Neurosurgery and Pediatric Neurosurgery Medical University of Lublin Lublin Poland
| |
Collapse
|
10
|
Tong E, McCullagh KL, Iv M. Advanced Imaging of Brain Metastases: From Augmenting Visualization and Improving Diagnosis to Evaluating Treatment Response. Front Neurol 2020; 11:270. [PMID: 32351445 PMCID: PMC7174761 DOI: 10.3389/fneur.2020.00270] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 03/24/2020] [Indexed: 12/11/2022] Open
Abstract
Early detection of brain metastases and differentiation from other neuropathologies is crucial. Although biopsy is often required for definitive diagnosis, imaging can provide useful information. After treatment commences, imaging is also performed to assess the efficacy of treatment. Contrast-enhanced magnetic resonance imaging (MRI) is the traditional imaging method for the evaluation of brain metastases, as it provides information about lesion size, morphology, and macroscopic properties. Newer MRI sequences have been developed to increase the conspicuity of detecting enhancing metastases. Other advanced MRI techniques, that have the capability to probe beyond the anatomic structure, are available to characterize micro-structures, cellularity, physiology, perfusion, and metabolism. Artificial intelligence provides powerful computational tools for detection, segmentation, classification, prediction, and prognosis. We highlight and review a few advanced MRI techniques for the assessment of brain metastases-specifically for (1) diagnosis, including differentiating between malignancy types and (2) evaluation of treatment response, including the differentiation between radiation necrosis and disease progression.
Collapse
Affiliation(s)
- Elizabeth Tong
- Stanford University Medical Center, Stanford, CA, United States
| | | | - Michael Iv
- Stanford University Medical Center, Stanford, CA, United States
| |
Collapse
|
11
|
Zeinali-Rafsanjani B, Mosleh-Shirazi MA, Faghihi R, Saeedi-Moghadam M, Lotfi M, Jalli R. A method for cranial target delineation in radiotherapy treatment planning aided by single-voxel magnetic resonance spectroscopy: evaluation using a custom-designed gel-based phantom and simulations. Br J Radiol 2019; 92:20190216. [PMID: 31556332 DOI: 10.1259/bjr.20190216] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
OBJECTIVE Magnetic resonance spectroscopy (MRS) has been useful in radiotherapy treatment planning (RTP) especially in tumor delineation. Routinely, 2D/3D MRSI data are used for this application. However, not all centers have access to 2D/3D MRSI. The objective of this study was to introduce a method of using single-voxel spectroscopy (SVS) data in target delineation and assess its reliability. METHODS A gel-based phantom containing Creatine (Cr), N-acetyl-l-aspartic-acid (NAA), and Choline (Cho) was designed and built. The metabolite ratios simulate the normal and tumoral part of the brain. The jMRUI software (v. 6.0) was used to simulate a 1.5 T GE MRI scanner. The metabolite spectra provided by different time of echos (TE)s of the Point-RESolved Spectroscopy pulse-sequence (PRESS), different data-points, and post-processings were quantized by jMRUI. PseudoMRSI maps of Cho/Cr, NAA/Cr, and Cho + Cr/NAA were created. A conformity index (CI) was used to determine which metabolite-ratio isolines are more appropriate for tumor delineation. RESULTS The simulation accuracy was verified. There were no differences > 4% between the measured and simulated spectra in peak regions. The pseudoMRSI map of Cho + Cr/NAA smoothly followed the complicated geometry of the tumor inside the gel-based phantom. The results showed that the single-voxel spectra produced by the PRESS pulse sequence with the TE of 144 ms, 512 data-points, and minimum post-processings of water suppression, eddy current correction, and baseline correction can be used for target delineation. CONCLUSION This study suggests that SVS data can be used to aid target delineation by using a mathematical approach. This can enable a wider use of MR-derived information in radiotherapy. ADVANCES IN KNOWLEDGE To the best of our knowledge, until now, 2D or 3D MRSI data provided from 3T MRI scanners have been used for MRS-based radiotherapy treatment planning. However, there are a lot of centers that are equipped to 1.5 T MRI scanners and some of them just equipped to SVS. This study introduces a mathematical approach to help these centers to take the benefits of MRS-based treatment planning.
Collapse
Affiliation(s)
- Banafsheh Zeinali-Rafsanjani
- Medical imaging research center, Shiraz University of medical sciences, Shiraz, Iran.,Department of Nuclear Engineering, School of Mechanical Engineering, Shiraz University, Shiraz, Iran
| | - Mohammad Amin Mosleh-Shirazi
- Ionizing and Nonionizing Radiation Protection Research Center, School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran.,Radiotherapy and Oncology Department, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Reza Faghihi
- Department of Nuclear Engineering, School of Mechanical Engineering, Shiraz University, Shiraz, Iran.,Radiation research center, School of Mechanical Engineering, Shiraz University, Shiraz, Iran
| | - Mahdi Saeedi-Moghadam
- Medical imaging research center, Shiraz University of medical sciences, Shiraz, Iran
| | - Mehrzad Lotfi
- Medical imaging research center, Shiraz University of medical sciences, Shiraz, Iran
| | - Reza Jalli
- Medical imaging research center, Shiraz University of medical sciences, Shiraz, Iran
| |
Collapse
|
12
|
Mehrabian H, Detsky J, Soliman H, Sahgal A, Stanisz GJ. Advanced Magnetic Resonance Imaging Techniques in Management of Brain Metastases. Front Oncol 2019; 9:440. [PMID: 31214496 PMCID: PMC6558019 DOI: 10.3389/fonc.2019.00440] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 05/08/2019] [Indexed: 01/18/2023] Open
Abstract
Brain metastases are the most common intracranial tumors and occur in 20–40% of all cancer patients. Lung cancer, breast cancer, and melanoma are the most frequent primary cancers to develop brain metastases. Treatment options include surgical resection, whole brain radiotherapy, stereotactic radiosurgery, and systemic treatment such as targeted or immune therapy. Anatomical magnetic resonance imaging (MRI) of the tumor (in particular post-Gadolinium T1-weighted and T2-weighted FLAIR) provide information about lesion morphology and structure, and are routinely used in clinical practice for both detection and treatment response evaluation for brain metastases. Advanced MRI biomarkers that characterize the cellular, biophysical, micro-structural and metabolic features of tumors have the potential to improve the management of brain metastases from early detection and diagnosis, to evaluating treatment response. Magnetic resonance spectroscopy (MRS), chemical exchange saturation transfer (CEST), quantitative magnetization transfer (qMT), diffusion-based tissue microstructure imaging, trans-membrane water exchange mapping, and magnetic susceptibility weighted imaging (SWI) are advanced MRI techniques that will be reviewed in this article as they pertain to brain metastases.
Collapse
Affiliation(s)
- Hatef Mehrabian
- Physical Sciences, Sunnybrook Research Institute, Toronto, ON, Canada.,Radiology and Biomedical Imaging, University of California, San Francisco (UCSF), San Francisco, CA, United States
| | - Jay Detsky
- Radiation Oncology, Sunnybrook Health Sciences Centre, Toronto, ON, Canada.,Radiation Oncology, University of Toronto, Toronto, ON, Canada
| | - Hany Soliman
- Radiation Oncology, Sunnybrook Health Sciences Centre, Toronto, ON, Canada.,Radiation Oncology, University of Toronto, Toronto, ON, Canada
| | - Arjun Sahgal
- Physical Sciences, Sunnybrook Research Institute, Toronto, ON, Canada.,Radiation Oncology, Sunnybrook Health Sciences Centre, Toronto, ON, Canada.,Radiation Oncology, University of Toronto, Toronto, ON, Canada
| | - Greg J Stanisz
- Physical Sciences, Sunnybrook Research Institute, Toronto, ON, Canada.,Department of Neurosurgery and Pediatric Neurosurgery, Medical University, Lublin, Poland
| |
Collapse
|
13
|
Durmo F, Rydelius A, Cuellar Baena S, Askaner K, Lätt J, Bengzon J, Englund E, Chenevert TL, Björkman-Burtscher IM, Sundgren PC. Multivoxel 1H-MR Spectroscopy Biometrics for Preoprerative Differentiation Between Brain Tumors. ACTA ACUST UNITED AC 2018; 4:172-181. [PMID: 30588503 PMCID: PMC6299741 DOI: 10.18383/j.tom.2018.00051] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
We investigated multivoxel proton magnetic resonance spectroscopy (1H-MRS) biometrics for preoperative differentiation and prognosis of patients with brain metastases (MET), low-grade glioma (LGG) and high-grade glioma (HGG). In total, 33 patients (HGG, 14; LGG, 9; and 10 MET) were included. 1H-MRS imaging (MRSI) data were assessed and neurochemical profiles for metabolites N-acetyl aspartate (NAA) + NAAG(NAA), Cr + PCr(total creatine, tCr), Glu + Gln(Glx), lactate (Lac), myo-inositol(Ins), GPC + PCho(total choline, tCho), and total lipids, and macromolecule (tMM) signals were estimated. Metabolites were reported as absolute concentrations or ratios to tCho or tCr levels. Voxels of interest in an MRSI matrix were labeled according to tissue. Logistic regression, receiver operating characteristic, and Kaplan-Meier survival analysis was performed. Across HGG, LGG, and MET, average Ins/tCho was shown to be prognostic for overall survival (OS): low values (≤1.29) in affected hemisphere predicting worse OS than high values (>1.29), (log rank < 0.007). Lip/tCho and Ins/tCho combined showed 100% sensitivity and specificity for both HGG/LGG (P < .001) and LGG/MET (P < .001) measured in nonenhancing/contrast-enhancing lesional tissue. Combining tCr/tCho in perilesional edema with tCho/tCr and NAA/tCho from ipsilateral normal- appearing tissue yielded 100% sensitivity and 81.8% specificity (P < .002) for HGG/MET. Best single biomarker: Ins/tCho for HGG/LGG and total lipid/tCho for LGG/MET showed 100% sensitivity and 75% and 100% specificity, respectively. HGG/MET; NAA/tCho showed 75% sensitivity and 84.6% specificity. Multivoxel 1H-MRSI provides prognostic information for OS for HGG/LGG/MET and a multibiometric approach for differentiation may equal or outperform single biometrics.
Collapse
Affiliation(s)
- Faris Durmo
- Departments of Clinical Sciences/Division of Radiology
| | - Anna Rydelius
- Clinical Sciences/Division of Neurology, Lund University, Lund, Sweden
| | | | | | - Jimmy Lätt
- Center for Medical Imaging and Physiology, Skåne University Hospital, Lund and Malmö, Sweden
| | - Johan Bengzon
- Departments of Clinical Sciences/Division of Neurosurgery
| | - Elisabet Englund
- Clinical Sciences/Division of Oncology and Pathology, Lund University, Lund, Sweden
| | | | - Isabella M Björkman-Burtscher
- Departments of Clinical Sciences/Division of Radiology.,Center for Medical Imaging and Physiology, Skåne University Hospital, Lund and Malmö, Sweden
| | - Pia C Sundgren
- Departments of Clinical Sciences/Division of Radiology.,Center for Medical Imaging and Physiology, Skåne University Hospital, Lund and Malmö, Sweden.,Department of Radiology, University of Michigan, Ann Arbor, MI; and.,LBIC, Lund University Bioimaging Center, Lund University, Lund, Sweden
| |
Collapse
|
14
|
Glycerophosphatidylcholine PC(36:1) absence and 3'-phosphoadenylate (pAp) accumulation are hallmarks of the human glioma metabolome. Sci Rep 2018; 8:14783. [PMID: 30283018 PMCID: PMC6170378 DOI: 10.1038/s41598-018-32847-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 09/17/2018] [Indexed: 12/16/2022] Open
Abstract
Glioma is the most prevalent malignant brain tumor. A comprehensive analysis of the glioma metabolome is still lacking. This study aims to explore new special metabolites in glioma tissues. A non-targeted human glioma metabolomics was performed by UPLC-Q-TOF/MS. The gene expressions of 18 enzymes associated with 3’-phosphoadenylate (pAp) metabolism was examined by qRT-PCR. Those enzymes cover the primary metabolic pathway of pAp. We identified 15 new metabolites (13 lipids and 2 nucleotides) that were significantly different between the glioma and control tissues. Glycerophosphatidylcholine [PC(36:1)] content was high and pAp content was significantly low in the control brain (p < 0.01). In glioma tissues, PC(36:1) was not detected and pAp content was significantly increased. The gene expressions of 3′-nucleotidases (Inositol monophosphatase (IMPAD-1) and 3′(2′),5′-bisphosphate nucleotidase 1(BPNT-1)) were dramatically down-regulated. Meanwhile, the gene expression of 8 sulfotransferases (SULT), 2 phosphoadenosine phosphosulfate synthases (PAPSS-1 and PAPSS-2) and L-aminoadipate-semialdehyde dehydrogenase-phosphopante-theinyl transferase (AASDHPPT) were up-regulated. PC(36:1) absence and pAp accumulation are the most noticeable metabolic aberration in glioma. The dramatic down-regulation of IMPAD-1 and BPNT-1 are the primary cause for pAp dramatic accumulation. Our findings suggest that differential metabolites discovered in glioma could be used as potentially novel therapeutic targets or diagnostic biomarkers and that abnormal metabolism of lipids and nucleotides play roles in the pathogenesis of glioma.
Collapse
|
15
|
N-acetylaspartate (NAA) induces neuronal differentiation of SH-SY5Y neuroblastoma cell line and sensitizes it to chemotherapeutic agents. Oncotarget 2018; 7:26235-46. [PMID: 27036033 PMCID: PMC5041977 DOI: 10.18632/oncotarget.8454] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Accepted: 03/10/2016] [Indexed: 01/03/2023] Open
Abstract
Neuroblastoma is the most commonly extra-cranial solid tumor of childhood frequently diagnosed. The nervous system-specific metabolite N-acetylaspartate (NAA) is synthesized from aspartate and acetyl-CoA in neurons, it is among the most abundant metabolites present in the central nervous system (CNS) and appears to be involved in many CNS disorders. The functional significance of the high NAA concentration in the brain remains uncertain, but it confers to NAA a unique clinical significance exploited in magnetic resonance spectroscopy. In the current study, we show that treatment of SH-SY5Y neuroblastoma-derived cell line with sub-cytotoxic physiological concentrations of NAA inhibits cell growth. This effect is partly due to enhanced apoptosis, shown by decrease of the anti-apoptotic factors survivin and Bcl-xL, and partly to arrest of the cell-cycle progression, linked to enhanced expression of the cyclin-inhibitors p53, p21Cip1/Waf1 and p27Kip1. Moreover, NAA-treated SH-SY5Y cells exhibited morphological changes accompanied with increase of the neurogenic markers TH and MAP2 and down-regulation of the pluripotency markers OCT4 and CXCR4/CD184. Finally, NAA-pre-treated SH-SY5Y cells resulted more sensitive to the cytotoxic effect of the chemotherapeutic drugs Cisplatin and 5-fluorouracil. To our knowledge, this is the first study demonstrating the neuronal differentiating effects of NAA in neuroblastoma cells. NAA may be a potential preconditioning or adjuvant compound in chemotherapeutic treatment.
Collapse
|
16
|
Yu H, Lou H, Zou T, Wang X, Jiang S, Huang Z, Du Y, Jiang C, Ma L, Zhu J, He W, Rui Q, Zhou J, Wen Z. Applying protein-based amide proton transfer MR imaging to distinguish solitary brain metastases from glioblastoma. Eur Radiol 2017; 27:4516-4524. [PMID: 28534162 PMCID: PMC5744886 DOI: 10.1007/s00330-017-4867-z] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Revised: 03/26/2017] [Accepted: 04/26/2017] [Indexed: 02/05/2023]
Abstract
OBJECTIVES To determine the utility of amide proton transfer-weighted (APTw) MR imaging in distinguishing solitary brain metastases (SBMs) from glioblastomas (GBMs). METHODS Forty-five patients with SBMs and 43 patients with GBMs underwent conventional and APT-weighted sequences before clinical intervention. The APTw parameters and relative APTw (rAPTw) parameters in the tumour core and the peritumoral brain zone (PBZ) were obtained and compared between SBMs and GBMs. The receiver-operating characteristic (ROC) curve was used to assess the best parameter for distinguishing between the two groups. RESULTS The APTwmax, APTwmin, APTwmean, rAPTwmax, rAPTwmin or rAPTwmean values in the tumour core were not significantly different between the SBM and GBM groups (P = 0.141, 0.361, 0.221, 0.305, 0.578 and 0.448, respectively). However, the APTwmax, APTwmin, APTwmean, rAPTwmax, rAPTwmin or rAPTwmean values in the PBZ were significantly lower in the SBM group than in the GBM group (P < 0.001). The APTwmin values had the highest area under the ROC curve 0.905 and accuracy 85.2% in discriminating between the two neoplasms. CONCLUSION As a noninvasive imaging method, APT-weighted MR imaging can be used to distinguish SBMs from GBMs. KEY POINTS • APTw values in the tumour core were not different between SBMs and GBMs. • APTw values in peritumoral brain zone were lower in SBMs than in GBMs. • The APTw min was the best parameter to distinguish SBMs from GBMs.
Collapse
Affiliation(s)
- Hao Yu
- Department of Radiology, Zhujiang Hospital, Southern Medical University, Gongye Road M No.253, Haizhu District, Guangzhou, Guangdong, 510282, China
| | - Huiling Lou
- Department of Geriatrics, The First People' Hospital of Guangzhou, Guangzhou, Guangdong, 510180, China
| | - Tianyu Zou
- Department of Radiology, Zhujiang Hospital, Southern Medical University, Gongye Road M No.253, Haizhu District, Guangzhou, Guangdong, 510282, China
| | - Xianlong Wang
- Department of Radiology, Zhujiang Hospital, Southern Medical University, Gongye Road M No.253, Haizhu District, Guangzhou, Guangdong, 510282, China
| | - Shanshan Jiang
- Department of Radiology, Zhujiang Hospital, Southern Medical University, Gongye Road M No.253, Haizhu District, Guangzhou, Guangdong, 510282, China
- Division of MR Research, Department of Radiology, Johns Hopkins University School of Medicine, 600N. Wolfe Street, Park 336, Baltimore, MD, 21287, USA
| | - Zhongqing Huang
- Department of Medical Image Center, Yuebei People's Hospital, Shantou University Medical College, Shantou, Guangdong, 515041, China
| | - Yongxing Du
- Department of Radiology, Zhujiang Hospital, Southern Medical University, Gongye Road M No.253, Haizhu District, Guangzhou, Guangdong, 510282, China
| | - Chunxiu Jiang
- Department of Radiology, Zhujiang Hospital, Southern Medical University, Gongye Road M No.253, Haizhu District, Guangzhou, Guangdong, 510282, China
| | - Ling Ma
- Department of Radiology, Zhujiang Hospital, Southern Medical University, Gongye Road M No.253, Haizhu District, Guangzhou, Guangdong, 510282, China
| | - Jianbin Zhu
- Department of Radiology, Zhujiang Hospital, Southern Medical University, Gongye Road M No.253, Haizhu District, Guangzhou, Guangdong, 510282, China
| | - Wen He
- Department of Radiology, Zhujiang Hospital, Southern Medical University, Gongye Road M No.253, Haizhu District, Guangzhou, Guangdong, 510282, China
| | - Qihong Rui
- Department of Radiology, Zhujiang Hospital, Southern Medical University, Gongye Road M No.253, Haizhu District, Guangzhou, Guangdong, 510282, China
| | - Jianyuan Zhou
- Division of MR Research, Department of Radiology, Johns Hopkins University School of Medicine, 600N. Wolfe Street, Park 336, Baltimore, MD, 21287, USA
| | - Zhibo Wen
- Department of Radiology, Zhujiang Hospital, Southern Medical University, Gongye Road M No.253, Haizhu District, Guangzhou, Guangdong, 510282, China.
| |
Collapse
|
17
|
Salzillo TC, Hu J, Nguyen L, Whiting N, Lee J, Weygand J, Dutta P, Pudakalakatti S, Millward NZ, Gammon ST, Lang FF, Heimberger AB, Bhattacharya PK. Interrogating Metabolism in Brain Cancer. Magn Reson Imaging Clin N Am 2017; 24:687-703. [PMID: 27742110 DOI: 10.1016/j.mric.2016.07.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
This article reviews existing and emerging techniques of interrogating metabolism in brain cancer from well-established proton magnetic resonance spectroscopy to the promising hyperpolarized metabolic imaging and chemical exchange saturation transfer and emerging techniques of imaging inflammation. Some of these techniques are at an early stage of development and clinical trials are in progress in patients to establish the clinical efficacy. It is likely that in vivo metabolomics and metabolic imaging is the next frontier in brain cancer diagnosis and assessing therapeutic efficacy; with the combined knowledge of genomics and proteomics a complete understanding of tumorigenesis in brain might be achieved.
Collapse
Affiliation(s)
- Travis C Salzillo
- Department of Cancer Systems Imaging, MD Anderson Cancer Center, The University of Texas, Houston, TX, USA; The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Jingzhe Hu
- Department of Cancer Systems Imaging, MD Anderson Cancer Center, The University of Texas, Houston, TX, USA; Department of Bioengineering, Rice University, Houston, TX, USA
| | - Linda Nguyen
- The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Nicholas Whiting
- Department of Cancer Systems Imaging, MD Anderson Cancer Center, The University of Texas, Houston, TX, USA
| | - Jaehyuk Lee
- Department of Cancer Systems Imaging, MD Anderson Cancer Center, The University of Texas, Houston, TX, USA
| | - Joseph Weygand
- Department of Cancer Systems Imaging, MD Anderson Cancer Center, The University of Texas, Houston, TX, USA; The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Prasanta Dutta
- Department of Cancer Systems Imaging, MD Anderson Cancer Center, The University of Texas, Houston, TX, USA
| | - Shivanand Pudakalakatti
- Department of Cancer Systems Imaging, MD Anderson Cancer Center, The University of Texas, Houston, TX, USA
| | - Niki Zacharias Millward
- Department of Cancer Systems Imaging, MD Anderson Cancer Center, The University of Texas, Houston, TX, USA
| | - Seth T Gammon
- Department of Cancer Systems Imaging, MD Anderson Cancer Center, The University of Texas, Houston, TX, USA
| | - Frederick F Lang
- Department of Neurosurgery, MD Anderson Cancer Center, The University of Texas, Houston, TX, USA
| | - Amy B Heimberger
- Department of Neurosurgery, MD Anderson Cancer Center, The University of Texas, Houston, TX, USA
| | - Pratip K Bhattacharya
- Department of Cancer Systems Imaging, MD Anderson Cancer Center, The University of Texas, Houston, TX, USA; The University of Texas Health Science Center at Houston, Houston, TX, USA.
| |
Collapse
|
18
|
He T, Qiu T, Wang X, Gui H, Wang X, Hu Q, Xia H, Qi G, Wu J, Ma H. Multivoxel magnetic resonance spectroscopy identifies enriched foci of cancer stem-like cells in high-grade gliomas. Onco Targets Ther 2017; 10:195-203. [PMID: 28115854 PMCID: PMC5221654 DOI: 10.2147/ott.s118834] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
OBJECTIVE This study investigated the correlation between choline/creatine (Cho/Cr) ratios determined by multivoxel proton magnetic resonance spectroscopy (1H-MRS) and the distribution of cancer stem-like cells (CSLCs) in high-grade gliomas. PATIENTS AND METHODS Sixteen patients with high-grade gliomas were recruited and underwent 1H-MRS examination before surgery to identify distinct tumor regions with variable Cho/Cr ratios. Using intraoperative neuronavigation, tumor tissues were accurately sampled from regions with high and low Cho/Cr ratios within each tumor. The distribution of CSLCs in samples from glioma tissue regions with different Cho/Cr ratios was quantified by neurosphere culture, immunohistochemistry, and Western blot. RESULTS The mean neurosphere formation rate in tissues with high Cho/Cr ratios was significantly increased compared with that in low Cho/Cr ratio tissues (13.94±5.94 per 100 cells vs 8.04±3.99 per 100 cells, P<0.001). Immunohistochemistry indicated that tissues with high Cho/Cr ratios had elevated expression of CD133, nestin, and CD15, relative to low Cho/Cr ratio tissue samples (23.6%±3.8% vs 18.3%±3.3%, 25.2%±4.5% vs 19.8%±2.8%, 24.5%±3.8% vs 17.8%±2.2%, respectively; all P<0.001). Western blot demonstrated that relative CD133 and nestin protein expression in high Cho/Cr ratio regions was significantly higher than that in low Cho/Cr ratio tissue samples (0.50±0.17 vs 0.30±0.08, 0.45±0.13 vs 0.27±0.07, respectively; both P<0.001). The protein expression levels of CD133 and nestin were highly correlated with Cho/Cr ratios (r=0.897 and r=0.861, respectively). CONCLUSION Cho/Cr ratios correlate with the distribution of CSLCs in high-grade gliomas, and this may assist in identifying foci enriched with CSLCs and thus improve the management of high-grade gliomas.
Collapse
Affiliation(s)
- Tao He
- Clinical Medicine College, Ningxia Medical University; Department of Neurosurgery, General Hospital of Ningxia Medical University; Ningxia Key Laboratory of Cerebrocranial Diseases, The National Key Laboratory Incubation Base, Yinchuan
| | - Tianming Qiu
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai
| | - Xiaodong Wang
- Department of Radiology, General Hospital of Ningxia Medical University, Yinchuan, People's Republic of China
| | - Hongxing Gui
- Department of Neuroscience and Cell Biology, Robert Wood Johnson Medical School of Rutgers University, Piscataway, NJ, USA
| | - Xilong Wang
- Department of Neurosurgery, General Hospital of Ningxia Medical University
| | - Qikuan Hu
- Ningxia Key Laboratory of Cerebrocranial Diseases, The National Key Laboratory Incubation Base, Yinchuan; Department of Physiology, Ningxia Medical University, Yinchuan, People's Republic of China
| | - Hechun Xia
- Department of Neurosurgery, General Hospital of Ningxia Medical University
| | - Gaoyang Qi
- Clinical Medicine College, Ningxia Medical University; Department of Neurosurgery, General Hospital of Ningxia Medical University
| | - Jinsong Wu
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, Shanghai
| | - Hui Ma
- Department of Neurosurgery, General Hospital of Ningxia Medical University
| |
Collapse
|
19
|
Elevated brain lactate in schizophrenia: a 7 T magnetic resonance spectroscopy study. Transl Psychiatry 2016; 6:e967. [PMID: 27898072 PMCID: PMC5290358 DOI: 10.1038/tp.2016.239] [Citation(s) in RCA: 98] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Accepted: 10/04/2016] [Indexed: 12/30/2022] Open
Abstract
Various lines of evidence suggest that brain bioenergetics and mitochondrial function may be altered in schizophrenia. On the basis of prior phosphorus-31 (31P)-magnetic resonance spectroscopy (MRS), post-mortem and preclinical studies, this study was designed to test the hypothesis that abnormal glycolysis leads to elevated lactate concentrations in subjects with schizophrenia. The high sensitivity of 7 Tesla proton (1H)-MRS was used to measure brain lactate levels in vivo. Twenty-nine controls and 27 participants with schizophrenia completed the study. MRS scanning was conducted on a Philips 'Achieva' 7T scanner, and spectra were acquired from a voxel in the anterior cingulate cortex. Patients were assessed for psychiatric symptom severity, and all participants completed the MATRICS Consensus Cognitive Battery (MCCB) and University of California, San Diego Performance-Based Skills Assessment (UPSA). The relationship between lactate, psychiatric symptom severity, MCCB and UPSA was examined. Lactate was significantly higher in patients compared with controls (P=0.013). Higher lactate was associated with lower MCCB (r=-0.36, P=0.01) and UPSA total scores (r=-0.43, P=0.001). We believe this is the first study to report elevated in vivo cerebral lactate levels in schizophrenia. Elevated lactate levels in schizophrenia may reflect increased anaerobic glycolysis possibly because of mitochondrial dysfunction. This study also suggests that altered cerebral bioenergetics contribute to cognitive and functional impairments in schizophrenia.
Collapse
|
20
|
Abstract
Metabolic imaging enhances understanding of disease metabolisms and holds great potential as a measurement tool for evaluating disease prognosis and treatment effectiveness. Advancement of techniques, such as magnetic resonance spectroscopy, positron emission tomography, and mass spectrometry, allows for improved accuracy for quantification of metabolites and present unique possibilities for use in clinic. This article reviews and discusses literature reports of metabolic imaging in humans published since 2010 according to disease type, including cancer, degenerative disorders, psychiatric disorders, and others, as well as the current application of the various related techniques.
Collapse
Affiliation(s)
- Taylor L. Fuss
- Departments of Radiology and Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, 02114 USA
| | - Leo L. Cheng
- Departments of Radiology and Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, 02114 USA
- Corresponding Author: Leo L. Cheng, PhD, 149 13 Street, CNY-6, Charlestown, MA 02129, Ph.617-724-6593, Fax.617-726-5684,
| |
Collapse
|
21
|
Rapalino O, Ratai EM. Multiparametric Imaging Analysis: Magnetic Resonance Spectroscopy. Magn Reson Imaging Clin N Am 2016; 24:671-686. [PMID: 27742109 DOI: 10.1016/j.mric.2016.06.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Magnetic resonance spectroscopy (MRS) is a magnetic resonance-based imaging modality that allows noninvasive sampling of metabolic changes in normal and abnormal brain parenchyma. MRS is particularly useful in the differentiation of developmental or non-neoplastic disorders from neoplastic processes. MRS is also useful during routine imaging follow-up after radiation treatment or during antiangiogenic treatment and for predicting outcomes and treatment response. The objective of this article is to provide a concise but thorough review of the basic physical principles, important applications of MRS in brain tumor imaging, and future directions.
Collapse
Affiliation(s)
- O Rapalino
- Neuroradiology Division, Department of Radiology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - E M Ratai
- Neuroradiology Division, Department of Radiology, Massachusetts General Hospital, Boston, MA 02114, USA; MGH/HST Athinoula A. Martinos Center for Biomedical Imaging, Building 149, 13th Street, Room 2301, Charlestown, MA 02129, USA.
| |
Collapse
|
22
|
Chaumeil MM, Lupo JM, Ronen SM. Magnetic Resonance (MR) Metabolic Imaging in Glioma. Brain Pathol 2015; 25:769-80. [PMID: 26526945 PMCID: PMC8029127 DOI: 10.1111/bpa.12310] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Accepted: 08/25/2015] [Indexed: 12/25/2022] Open
Abstract
This review is focused on describing the use of magnetic resonance (MR) spectroscopy for metabolic imaging of brain tumors. We will first review the MR metabolic imaging findings generated from preclinical models, focusing primarily on in vivo studies, and will then describe the use of metabolic imaging in the clinical setting. We will address relatively well-established (1) H MRS approaches, as well as (31) P MRS, (13) C MRS and emerging hyperpolarized (13) C MRS methodologies, and will describe the use of metabolic imaging for understanding the basic biology of glioma as well as for improving the characterization and monitoring of brain tumors in the clinic.
Collapse
Affiliation(s)
| | - Janine M. Lupo
- Department of Radiology and Biomedical ImagingMission Bay Campus
| | - Sabrina M. Ronen
- Department of Radiology and Biomedical ImagingMission Bay Campus
- Brain Tumor Research CenterUniversity of CaliforniaSan FranciscoCA
| |
Collapse
|
23
|
Lotumolo A, Caivano R, Rabasco P, Iannelli G, Villonio A, D' Antuono F, Gioioso M, Zandolino A, Macarini L, Guglielmi G, Cammarota A. Comparison between magnetic resonance spectroscopy and diffusion weighted imaging in the evaluation of gliomas response after treatment. Eur J Radiol 2015; 84:2597-604. [PMID: 26391231 DOI: 10.1016/j.ejrad.2015.09.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2015] [Revised: 08/31/2015] [Accepted: 09/08/2015] [Indexed: 10/23/2022]
Abstract
PURPOSE To compare magnetic resonance spectroscopy (MRS) and diffusion weighted imaging (DWI) in the assessment of progression and regression of brain tumors in order to assess whether there is correlation between MRS and DWI in the monitoring of patients with primary tumors after therapy. METHODS Magnetic resonance imaging (MRI) has been performed in 80 patients, 48 affected by high grade gliomas (HGG) and 32 affected by low grade gliomas (LGG). The variation of apparent diffusion coefficient (ADC) value and metabolite ratios before and after treatment has been used to test DWI sequences and MRS as predictor to response to therapy. Comparison between post contrast-enhancement sequences, MRS and DWI has been done in terms of accuracy, sensitivity, specificity, positive predictive value (PPV) and negative predictive value (NPV). Moreover statistical correlation of ADC deviations with MRS metabolites variations before and after therapy have been studied. RESULTS In the case of HGG, MRS shows better sensitivity, specificity, PPV, NPV and accuracy compared to DWI, especially when considering the Choline/N-acetylaspartate (Cho/NAA) ratio. Regarding the LGG, the technique that better evaluates the response to treatment appears to be the DWI. A moderate correlation between ADC deviations and Cho, Lipide (Lip) and Lactate (Lac) has been found in LGG; while NAA revealed to be weakly correlated to ADC variation. Considering HGG, a weak correlation has been found between ADC deviations and MRS metabolites. CONCLUSION Combination of DWI and MRS can help to characterize different changes related to treatment and to evaluate brain tumor response to treatment.
Collapse
|
24
|
Carrera I, Richter H, Meier D, Kircher PR, Dennler M. Regional metabolite concentrations in the brain of healthy dogs measured by use of short echo time, single voxel proton magnetic resonance spectroscopy at 3.0 Tesla. Am J Vet Res 2015; 76:129-41. [PMID: 25629910 DOI: 10.2460/ajvr.76.2.129] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
OBJECTIVE To investigate regional differences of relative metabolite concentrations in the brain of healthy dogs with short echo time, single voxel proton magnetic resonance spectroscopy ((1)H MRS) at 3.0 T. ANIMALS 10 Beagles. PROCEDURES Short echo time, single voxel (1)H MRS was performed at the level of the right and left basal ganglia, right and left thalamus, right and left parietal lobes, occipital lobe, and cerebellum. Data were analyzed with an automated fitting method (linear combination model). Metabolite concentrations relative to water content were obtained, including N-acetyl aspartate, total choline, creatine, myoinositol, the sum of glutamine and glutamate (glutamine-glutamate complex), and glutathione. Metabolite ratios with creatine as the reference metabolite were calculated. Concentration differences between right and left hemispheres and sexes were evaluated with a Wilcoxon signed rank test and among various regions of the brain with an independent t test and 1-way ANOVA. RESULTS No significant differences were detected between sexes and right and left hemispheres. All metabolites, except the glutamine-glutamate complex and glutathione, had regional concentrations that differed significantly. The creatine concentration was highest in the basal ganglia and cerebellum and lowest in the parietal lobes. The N-acetyl aspartate concentration was highest in the parietal lobes and lowest in the cerebellum. Total choline concentration was highest in the basal ganglia and lowest in the occipital lobe. CONCLUSIONS AND CLINICAL RELEVANCE Metabolite concentrations differed among brain parenchymal regions in healthy dogs. This study may provide reference values for clinical and research studies involving (1)H MRS performed at 3.0 T.
Collapse
Affiliation(s)
- Inés Carrera
- Clinic of Diagnostic Imaging, Vetsuisse Faculty, University of Zurich, 8057 Zurich, Switzerland., Graduate School for Cellular and Biomedical Sciences, University of Bern, 3012 Bern, Switzerland
| | | | | | | | | |
Collapse
|
25
|
Young RM, Jamshidi A, Davis G, Sherman JH. Current trends in the surgical management and treatment of adult glioblastoma. ANNALS OF TRANSLATIONAL MEDICINE 2015. [PMID: 26207249 DOI: 10.3978/j.issn.2305-5839.2015.05.10] [Citation(s) in RCA: 104] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
This manuscript discusses the current surgical management of glioblastoma. This paper highlights the common pathophysiology attributes of glioblastoma, surgical options for diagnosis/treatment, current thoughts of extent of resection (EOR) of tumor, and post-operative (neo)adjuvant treatment. Glioblastoma is not a disease that can be cured with surgery alone, however safely performed maximal surgical resection is shown to significantly increase progression free and overall survival while maximizing quality of life. Upon invariable tumor recurrence, re-resection also is shown to impact survival in a select group of patients. As adjuvant therapy continues to improve survival, the role of surgical resection in the treatment of glioblastoma looks to be further defined.
Collapse
Affiliation(s)
- Richard M Young
- Department of Neurological Surgery, George Washington University Medical Center, Washington, DC 20037, USA
| | - Aria Jamshidi
- Department of Neurological Surgery, George Washington University Medical Center, Washington, DC 20037, USA
| | - Gregory Davis
- Department of Neurological Surgery, George Washington University Medical Center, Washington, DC 20037, USA
| | - Jonathan H Sherman
- Department of Neurological Surgery, George Washington University Medical Center, Washington, DC 20037, USA
| |
Collapse
|
26
|
Park DW. Advances in magnetic resonance technique for tumor imaging. JOURNAL OF THE KOREAN MEDICAL ASSOCIATION 2015. [DOI: 10.5124/jkma.2015.58.6.516] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Affiliation(s)
- Dong Woo Park
- Department of Radiology, Hanyang University Guri Hospital, Guri, Korea
| |
Collapse
|