1
|
Hao J, Ye Y, Zhang G, Shen H, Li J, Chen G. Mechanisms of nitric oxide in spinal cord injury. Med Gas Res 2024; 14:192-200. [PMID: 39073327 DOI: 10.4103/mgr.medgasres-d-23-00006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 12/04/2023] [Indexed: 07/30/2024] Open
Abstract
Spinal cord injury (SCI) is a primary lesion of the spinal cord that results from external forces or diseases, accompanied by a cascade of secondary events. Nitric oxide, an endogenous gas that functions as a signaling molecule in the human body, plays a crucial role in vasodilation of smooth muscles, regulation of blood flow and pressure, and inflammatory response. This article provides a comprehensive overview of the involvement of nitric oxide in SCI and highlights recent advances in basic research on pharmacological agents that inhibit nitric oxide elevation after SCI, offering valuable insights for future therapeutic interventions targeting SCI.
Collapse
Affiliation(s)
- Jiahui Hao
- Brain and Nerve Research Laboratory, Department of Neurosurgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| | | | | | | | | | | |
Collapse
|
2
|
Wen X, Ye Y, Yu Z, Shen H, Cui G, Chen G. The role of nitric oxide and hydrogen sulfide in spinal cord injury: an updated review. Med Gas Res 2024; 14:96-101. [PMID: 39073336 DOI: 10.4103/2045-9912.385946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 04/04/2023] [Indexed: 07/30/2024] Open
Abstract
Medical gases play an important role in the pathophysiology of human diseases and have received extensive attention for their role in neuroprotection. Common pathological mechanisms of spinal cord injury include excitotoxicity, inflammation, cell death, glial scarring, blood-spinal cord barrier disruption, and ischemia/reperfusion injury. Nitric oxide and hydrogen sulfide are important gaseous signaling molecules in living organisms; their pathological role in spinal cord injury models has received more attention in recent years. This study reviews the possible mechanisms of spinal cord injury and the role of nitric oxide and hydrogen sulfide in spinal cord injury.
Collapse
Affiliation(s)
- Xiaoliang Wen
- Brain and Nerve Research Laboratory, Department of Neurosurgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| | | | | | | | | | | |
Collapse
|
3
|
Gainutdinov KL, Kulchitsky VA, Yafarova GG, Andrianov VV, Bazan LV, Bogodvid TK, Silantyeva DI, Nagibov AV. Analysis of the Intensity of Nitric Oxide Production in Different Parts of the Spinal Cord after Modeling Combined Cerebral and Spinal Injury. Bull Exp Biol Med 2024; 177:293-296. [PMID: 39126540 DOI: 10.1007/s10517-024-06176-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Indexed: 08/12/2024]
Abstract
Using the method of electron paramagnetic resonance spectroscopy, we showed that NO production decreases by 60% (p<0.05) in the region located rostral to the spinal cord injury 7 days after combined injury to the brain and spinal cord. At the same time, NO production did not change in the site of spinal cord injury and caudal to the injury. The intensity of NO production in similar parts of the spinal cord in intact animals remained unchanged.
Collapse
Affiliation(s)
- Kh L Gainutdinov
- Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, Kazan, Republic of Tatarstan, Russia.
- Zavoisky Physical-Technical Institute, Federal Research Center Kazan Scientific Center, Russian Academy of Sciences, Kazan, Republic of Tatarstan, Russia.
| | - V A Kulchitsky
- Brain Center, Institute of Physiology, National Academy of Sciences of Belarus, Minsk, Republic of Belarus
| | - G G Yafarova
- Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, Kazan, Republic of Tatarstan, Russia
| | - V V Andrianov
- Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, Kazan, Republic of Tatarstan, Russia
- Zavoisky Physical-Technical Institute, Federal Research Center Kazan Scientific Center, Russian Academy of Sciences, Kazan, Republic of Tatarstan, Russia
| | - L V Bazan
- Zavoisky Physical-Technical Institute, Federal Research Center Kazan Scientific Center, Russian Academy of Sciences, Kazan, Republic of Tatarstan, Russia
| | - T K Bogodvid
- Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, Kazan, Republic of Tatarstan, Russia
- Volga Region State University of Physical Culture, Sports, and Tourism, Kazan, Republic of Tatarstan, Russia
| | - D I Silantyeva
- Institute of Fundamental Medicine and Biology, Kazan (Volga Region) Federal University, Kazan, Republic of Tatarstan, Russia
| | - A V Nagibov
- Volga Region State University of Physical Culture, Sports, and Tourism, Kazan, Republic of Tatarstan, Russia
| |
Collapse
|
4
|
Gao X, Jin B, Zhou X, Bai J, Zhong H, Zhao K, Huang Z, Wang C, Zhu J, Qin Q. Recent advances in the application of gasotransmitters in spinal cord injury. J Nanobiotechnology 2024; 22:277. [PMID: 38783332 PMCID: PMC11112916 DOI: 10.1186/s12951-024-02523-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 05/01/2024] [Indexed: 05/25/2024] Open
Abstract
Spinal Cord Injury (SCI) is a condition characterized by complete or incomplete motor and sensory impairment, as well as dysfunction of the autonomic nervous system, caused by factors such as trauma, tumors, or inflammation. Current treatment methods primarily include traditional approaches like spinal canal decompression and internal fixation surgery, steroid pulse therapy, as well as newer techniques such as stem cell transplantation and brain-spinal cord interfaces. However, the above methods have limited efficacy in promoting axonal and neuronal regeneration. The challenge in medical research today lies in promoting spinal cord neuron regeneration and regulating the disrupted microenvironment of the spinal cord. Studies have shown that gas molecular therapy is increasingly used in medical research, with gasotransmitters such as hydrogen sulfide, nitric oxide, carbon monoxide, oxygen, and hydrogen exhibiting neuroprotective effects in central nervous system diseases. The gas molecular protect against neuronal death and reshape the microenvironment of spinal cord injuries by regulating oxidative, inflammatory and apoptotic processes. At present, gas therapy mainly relies on inhalation for systemic administration, which cannot effectively enrich and release gas in the spinal cord injury area, making it difficult to achieve the expected effects. With the rapid development of nanotechnology, the use of nanocarriers to achieve targeted enrichment and precise control release of gas at Sites of injury has become one of the emerging research directions in SCI. It has shown promising therapeutic effects in preclinical studies and is expected to bring new hope and opportunities for the treatment of SCI. In this review, we will briefly outline the therapeutic effects and research progress of gasotransmitters and nanogas in the treatment of SCI.
Collapse
Affiliation(s)
- Xiang Gao
- Department of Orthopedics, The Second Affiliated Hospital of Soochow University, Suzhou, 215000, Jiangsu, China
| | - Bingrong Jin
- Department of Anesthesiology, The Second Affiliated Hospital of Soochow University, Suzhou, 215000, Jiangsu, China
| | - Xiaozhong Zhou
- Department of Orthopedics, The Second Affiliated Hospital of Soochow University, Suzhou, 215000, Jiangsu, China
| | - Jinyu Bai
- Department of Orthopedics, The Second Affiliated Hospital of Soochow University, Suzhou, 215000, Jiangsu, China
| | - Hao Zhong
- Department of Anesthesiology, The Second Affiliated Hospital of Soochow University, Suzhou, 215000, Jiangsu, China
| | - Kai Zhao
- Department of Anesthesiology, The Second Affiliated Hospital of Soochow University, Suzhou, 215000, Jiangsu, China
| | - Zongrui Huang
- Department of Anesthesiology, The Second Affiliated Hospital of Soochow University, Suzhou, 215000, Jiangsu, China
| | - Chao Wang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, 215123, Jiangsu, China
| | - Jiang Zhu
- Department of Anesthesiology, The Second Affiliated Hospital of Soochow University, Suzhou, 215000, Jiangsu, China.
| | - Qin Qin
- Department of Anesthesiology, The Second Affiliated Hospital of Soochow University, Suzhou, 215000, Jiangsu, China.
| |
Collapse
|
5
|
Zheng B, Kuang Y, Yuan D, Huang H, Liu S. The research landscape of immunology research in spinal cord injury from 2012 to 2022. JOR Spine 2023; 6:e1261. [PMID: 37780822 PMCID: PMC10540832 DOI: 10.1002/jsp2.1261] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 03/21/2023] [Accepted: 04/30/2023] [Indexed: 10/03/2023] Open
Abstract
Background Spinal cord injury (SCI) is defined as traumatic damage to the spinal cord, affecting over three million patients worldwide, and there is still no treatment for the injured spinal cord itself. In recent years, immunology research on SCI has been published in various journals. Methods To systematically analyze the research hotspots and dynamic scientific developments of immunology research in SCI, we conducted a bibliometric and knowledge map analysis to help researchers gain a global perspective in this research field. Results The bibliometric study we completed included 1788 English-language papers published in 553 journals by 8861 authors from 1901 institutions in 66 countries/regions. Based on the references and keyword analysis, researchers in the past 10 years have mainly focused on the research directions of "monocyte chemoattractor protein 1," "nitric oxide," "pain," and "nitric oxide synthase" related to immunological research in SCI. However, with the development of other new directions such as "extracellular vesicles" (2019-2022), "Regenerative medicine" (2019-2022), "stromal cells" (2018-2022), "motor recovery" (2019-2022), and "glial activation" (2019-2022). Researchers prefer to study the application of regenerative strategies in SCI, the mechanism of extracellular vesicles in the development of SCI, the activation of spinal glial cells in SCI, and the pathways of motor recovery. This bibliometric analysis of immunology research in SCI summarizes the current status of this research field. The relationship between extracellular vesicles, regenerative medicine, stromal cells, motor recovery, and glial activation is currently a major research frontier. Further research and cooperation worldwide need to be enhanced. Conclusion We believe that our research can help researchers quickly grasp the current hotspot of immunology research in SCI and determine a new direction for future research.
Collapse
Affiliation(s)
- Bowen Zheng
- Department of Musculoskeletal Tumor, People's HospitalPeking UniversityBeijingChina
- Beijing Key Laboratory of Musculoskeletal TumorBeijingPeople's Republic of China
| | - Yirui Kuang
- Department of NeurosurgeryXiangya Hospital, Central South UniversityChangshaChina
- National Clinical Research Center for Geriatric DisordersXiangya Hospital, Central South UniversityChangshaChina
| | - Dun Yuan
- Department of NeurosurgeryXiangya Hospital, Central South UniversityChangshaChina
- National Clinical Research Center for Geriatric DisordersXiangya Hospital, Central South UniversityChangshaChina
| | - Haoxuan Huang
- Department of NeurosurgeryXiangya Hospital, Central South UniversityChangshaChina
- National Clinical Research Center for Geriatric DisordersXiangya Hospital, Central South UniversityChangshaChina
| | - Songlin Liu
- Department of NeurosurgeryXiangya Hospital, Central South UniversityChangshaChina
- National Clinical Research Center for Geriatric DisordersXiangya Hospital, Central South UniversityChangshaChina
| |
Collapse
|
6
|
Xu Y, Hu X, Li F, Zhang H, Lou J, Wang X, Wang H, Yin L, Ni W, Kong J, Wang X, Li Y, Zhou K, Xu H. GDF-11 Protects the Traumatically Injured Spinal Cord by Suppressing Pyroptosis and Necroptosis via TFE3-Mediated Autophagy Augmentation. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:8186877. [PMID: 34712387 PMCID: PMC8548157 DOI: 10.1155/2021/8186877] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 08/27/2021] [Indexed: 12/11/2022]
Abstract
Spinal cord injury (SCI) refers to a major worldwide cause of accidental death and disability. However, the complexity of the pathophysiological mechanism can result in less-effective clinical treatment. Growth differentiation factor 11 (GDF-11), an antiageing factor, was reported to affect the development of neurogenesis and exert a neuroprotective effect after cerebral ischaemic injury. The present work is aimed at investigating the influence of GDF-11 on functional recovery following SCI, in addition to the potential mechanisms involved. We employed a mouse model of spinal cord contusion injury and assessed functional outcomes via the Basso Mouse Scale and footprint analysis following SCI. Using western blot assays and immunofluorescence, we analysed the levels of pyroptosis, autophagy, necroptosis, and molecules related to the AMPK-TRPML1-calcineurin signalling pathway. The results showed that GDF-11 noticeably optimized function-related recovery, increased autophagy, inhibited pyroptosis, and alleviated necroptosis following SCI. Furthermore, the conducive influences exerted by GDF-11 were reversed with the application of 3-methyladenine (3MA), an autophagy suppressor, indicating that autophagy critically impacted the therapeutically related benefits of GDF-11 on recovery after SCI. In the mechanistic study described herein, GDF-11 stimulated autophagy improvement and subsequently inhibited pyroptosis and necroptosis, which were suggested to be mediated by TFE3; this effect resulted from the activity of TFE3 through the AMPK-TRPML1-calcineurin signalling cascade. Together, GDF-11 protects the injured spinal cord by suppressing pyroptosis and necroptosis via TFE3-mediated autophagy augmentation and is a potential agent for SCI therapy.
Collapse
Affiliation(s)
- Yu Xu
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China
- Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou 325027, China
- The Second Clinical Medical College of Wenzhou Medical University, Wenzhou 325027, China
| | - Xinli Hu
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China
- Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou 325027, China
- The Second Clinical Medical College of Wenzhou Medical University, Wenzhou 325027, China
| | - Feida Li
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China
- Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou 325027, China
- The Second Clinical Medical College of Wenzhou Medical University, Wenzhou 325027, China
| | - Haojie Zhang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China
- Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou 325027, China
- The Second Clinical Medical College of Wenzhou Medical University, Wenzhou 325027, China
| | - Junsheng Lou
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China
- Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou 325027, China
- The Second Clinical Medical College of Wenzhou Medical University, Wenzhou 325027, China
| | - Xingyu Wang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China
- Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou 325027, China
- The Second Clinical Medical College of Wenzhou Medical University, Wenzhou 325027, China
| | - Hui Wang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China
- Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou 325027, China
- The Second Clinical Medical College of Wenzhou Medical University, Wenzhou 325027, China
| | - Lingyan Yin
- The Second Clinical Medical College of Wenzhou Medical University, Wenzhou 325027, China
| | - Wenfei Ni
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China
- Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou 325027, China
- The Second Clinical Medical College of Wenzhou Medical University, Wenzhou 325027, China
| | - Jianzhong Kong
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China
- Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou 325027, China
- The Second Clinical Medical College of Wenzhou Medical University, Wenzhou 325027, China
| | - Xiangyang Wang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China
- Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou 325027, China
- The Second Clinical Medical College of Wenzhou Medical University, Wenzhou 325027, China
| | - Yao Li
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China
- Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou 325027, China
- The Second Clinical Medical College of Wenzhou Medical University, Wenzhou 325027, China
| | - Kailiang Zhou
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China
- Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou 325027, China
- The Second Clinical Medical College of Wenzhou Medical University, Wenzhou 325027, China
| | - Hui Xu
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China
- Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou 325027, China
- The Second Clinical Medical College of Wenzhou Medical University, Wenzhou 325027, China
| |
Collapse
|
7
|
Zhou Y, Yu F. Emerging roles of long non-coding RNAs in spinal cord injury. J Orthop Surg (Hong Kong) 2021; 29:23094990211030698. [PMID: 34323142 DOI: 10.1177/23094990211030698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Spinal cord injury (SCI) is the most serious complication of spinal injury and often leads to severe dysfunction of the limb below the injured segment. SCI causes not only serious physical and psychological harm to the patients, but imposes an enormous economic burden on the whole society. Great efforts have been made to improve the functional outcomes of patients with SCI; however, therapeutic advances have far been limited. Long non-coding RNA (lncRNA) is an important regulator of gene expression and has recently been characterized as a key regulator of central nervous system stabilization. Emerging evidence suggested that lncRNAs are significantly dysregulated and play a key role in the development of SCI. Our review summarizes current researches regarding the roles of deregulated lncRNAs in modulating apoptosis, inflammatory response, neuronal behavior in SCI. These studies suggest that specific regulation of lncRNA or its downstream targets may provide a new therapeutic approach for this desperate disease.
Collapse
Affiliation(s)
- Yiguang Zhou
- Queen Mary College of Nanchang University, Nanchang, People's Republic of China
| | - Feng Yu
- Department of Oncology, The First Affiliated Hospital of Nanchang University, Nanchang, People's Republic of China
| |
Collapse
|
8
|
Subedi L, Gaire BP, Kim SY, Parveen A. Nitric Oxide as a Target for Phytochemicals in Anti-Neuroinflammatory Prevention Therapy. Int J Mol Sci 2021; 22:ijms22094771. [PMID: 33946349 PMCID: PMC8124914 DOI: 10.3390/ijms22094771] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 04/27/2021] [Accepted: 04/27/2021] [Indexed: 12/23/2022] Open
Abstract
Nitric oxide (NO) is a neurotransmitter that mediates the activation and inhibition of inflammatory cascades. Even though physiological NO is required for defense against various pathogens, excessive NO can trigger inflammatory signaling and cell death through reactive nitrogen species-induced oxidative stress. Excessive NO production by activated microglial cells is specifically associated with neuroinflammatory and neurodegenerative conditions, such as Alzheimer’s and Parkinson’s disease, amyotrophic lateral sclerosis, ischemia, hypoxia, multiple sclerosis, and other afflictions of the central nervous system (CNS). Therefore, controlling excessive NO production is a desirable therapeutic strategy for managing various neuroinflammatory disorders. Recently, phytochemicals have attracted considerable attention because of their potential to counteract excessive NO production in CNS disorders. Moreover, phytochemicals and nutraceuticals are typically safe and effective. In this review, we discuss the mechanisms of NO production and its involvement in various neurological disorders, and we revisit a number of recently identified phytochemicals which may act as NO inhibitors. This review may help identify novel potent anti-inflammatory agents that can downregulate NO, specifically during neuroinflammation and neurodegeneration.
Collapse
|
9
|
Shi Z, Yuan S, Shi L, Li J, Ning G, Kong X, Feng S. Programmed cell death in spinal cord injury pathogenesis and therapy. Cell Prolif 2021; 54:e12992. [PMID: 33506613 PMCID: PMC7941236 DOI: 10.1111/cpr.12992] [Citation(s) in RCA: 96] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 12/19/2020] [Accepted: 01/02/2021] [Indexed: 12/17/2022] Open
Abstract
Spinal cord injury (SCI) always leads to functional deterioration due to a series of processes including cell death. In recent years, programmed cell death (PCD) is considered to be a critical process after SCI, and various forms of PCD were discovered in recent years, including apoptosis, necroptosis, autophagy, ferroptosis, pyroptosis and paraptosis. Unlike necrosis, PCD is known as an active cell death mediated by a cascade of gene expression events, and it is crucial for elimination unnecessary and damaged cells, as well as a defence mechanism. Therefore, it would be meaningful to characterize the roles of PCD to not only enhance our understanding of the pathophysiological processes, but also improve functional recovery after SCI. This review will summarize and explore the most recent advances on how apoptosis, necroptosis, autophagy, ferroptosis, pyroptosis and paraptosis are involved in SCI. This review can help us to understand the various functions of PCD in the pathological processes of SCI, and contribute to our novel understanding of SCI of unknown aetiology in the near future.
Collapse
Affiliation(s)
- Zhongju Shi
- Department of Orthopaedics, Tianjin Medical University General Hospital, Tianjin, China
| | - Shiyang Yuan
- Department of Orthopaedics, Tianjin Medical University General Hospital, Tianjin, China
| | - Linlin Shi
- Department of Orthopaedics, Tianjin Medical University General Hospital, Tianjin, China
| | - Jiahe Li
- Department of Orthopaedics, Tianjin Medical University General Hospital, Tianjin, China
| | - Guangzhi Ning
- Department of Orthopaedics, Tianjin Medical University General Hospital, Tianjin, China
| | - Xiaohong Kong
- School of Medicine, Nankai University, Tianjin, China
| | - Shiqing Feng
- Department of Orthopaedics, Tianjin Medical University General Hospital, Tianjin, China.,Tianjin Key Laboratory of Spine and Spinal Cord, International Science and Technology Cooperation Base of Spinal Cord Injury, Tianjin, China
| |
Collapse
|
10
|
Ikeno Y, Ghincea CV, Roda GF, Cheng L, Aftab M, Meng X, Weyant MJ, Cleveland JC, Fullerton DA, Reece TB. Optimizing Nicorandil for Spinal Cord Protection in a Murine Model of Complex Aortic Intervention. Semin Thorac Cardiovasc Surg 2021; 34:28-38. [PMID: 33444762 DOI: 10.1053/j.semtcvs.2021.01.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Accepted: 01/05/2021] [Indexed: 01/07/2023]
Abstract
There are currently no clinically utilized pharmacological agents for the induction of metabolic tolerance to spinal cord ischemia-reperfusion injury in the setting of complex aortic intervention. Nicorandil, a nitric oxide donor and ATP-sensitive potassium (KATP) channel opener, has shown promise in neuroprotection. However, the optimized clinical application of the drug and its mechanism of neuroprotection remains unclear. We hypothesized that 3-days pretreatment would confer the most effective neuroprotection, mediated by mitochondrial KATP channel activation. Spinal cord injury was induced by 7 minutes of thoracic aortic cross-clamping in adult male C57BL/6 mice. Time course: mice received 0.1 mg/kg nicorandil for 10 min, 4 hours, and 3 consecutive days prior to ischemia compared with control. Dose challenge: mice received 3-days nicorandil pretreatment comparing 0.1 mg/kg, 1.0 mg/kg, 5.0 mg/kg, and saline administration. Mitochondrial KATP channel blocker 5-hydroxy-decanoate (5HD) was co-administered to elucidate mechanism. Limb motor function was evaluated, and viable anterior horn neurons quantified. Nicorandil pretreatment at 4 hours and 3 days before ischemia demonstrated significant motor function preservation; administration 10 minutes before ischemia showed no neuroprotection. All nicorandil doses showed significant motor function preservation. Three days administration of Nicorandil 1.0 mg/kg was most potent. Neuroprotection was completely abolished by 5HD co-administration. Histological analysis showed significant neuron preservation with nicorandil pretreatment, which was attenuated by 5HD co-administration. Three days administration of Nicorandil 1.0 mg/kg showed near-total motor function preservation in a murine spinal cord ischemia-reperfusion model, mediated by the mitochondrial KATP channel.
Collapse
Affiliation(s)
- Yuki Ikeno
- Division of Cardiothoracic Surgery, Department of Surgery, University of Colorado, Aurora, Colorado
| | - Christian V Ghincea
- Division of Cardiothoracic Surgery, Department of Surgery, University of Colorado, Aurora, Colorado
| | - Gavriel F Roda
- Division of Cardiothoracic Surgery, Department of Surgery, University of Colorado, Aurora, Colorado
| | - Linling Cheng
- Division of Cardiothoracic Surgery, Department of Surgery, University of Colorado, Aurora, Colorado
| | - Muhammad Aftab
- Division of Cardiothoracic Surgery, Department of Surgery, University of Colorado, Aurora, Colorado
| | - Xianzhong Meng
- Division of Cardiothoracic Surgery, Department of Surgery, University of Colorado, Aurora, Colorado
| | - Michael J Weyant
- Division of Cardiothoracic Surgery, Department of Surgery, University of Colorado, Aurora, Colorado
| | - Joseph C Cleveland
- Division of Cardiothoracic Surgery, Department of Surgery, University of Colorado, Aurora, Colorado
| | - David A Fullerton
- Division of Cardiothoracic Surgery, Department of Surgery, University of Colorado, Aurora, Colorado
| | - Thomas Brett Reece
- Division of Cardiothoracic Surgery, Department of Surgery, University of Colorado, Aurora, Colorado.
| |
Collapse
|
11
|
Corrêa MG, Bittencourt LO, Nascimento PC, Ferreira RO, Aragão WAB, Silva MCF, Gomes-Leal W, Fernandes MS, Dionizio A, Buzalaf MR, Crespo-Lopez ME, Lima RR. Spinal cord neurodegeneration after inorganic mercury long-term exposure in adult rats: Ultrastructural, proteomic and biochemical damages associated with reduced neuronal density. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 191:110159. [PMID: 31962214 DOI: 10.1016/j.ecoenv.2019.110159] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 12/28/2019] [Accepted: 12/31/2019] [Indexed: 06/10/2023]
Abstract
Mercury chloride (HgCl2) is a chemical pollutant widely found in the environment. This form of mercury is able to promote several damages to the Central Nervous System (CNS), however the effects of HgCl2 on the spinal cord, an important pathway for the communication between the CNS and the periphery, are still poorly understood. The aim of this work was to investigate the effects of HgCl2 exposure on spinal cord of adult rats. For this, animals were exposed to a dose of 0.375 mg/kg/day, for 45 days. Then, they were euthanized, the spinal cord collected and we investigated the mercury concentrations in medullary parenchyma and the effects on oxidative biochemistry, proteomic profile and tissue structures. Our results showed that exposure to this metal promoted increased levels of Hg in the spinal cord, impaired oxidative biochemistry by triggering oxidative stress, mudulated antioxidant system proteins, energy metabolism and myelin structure; as well as caused disruption in the myelin sheath and reduction in neuronal density. Despite the low dose, we conclude that prolonged exposure to HgCl2 triggers biochemical changes and modulates the expression of several proteins, resulting in damage to the myelin sheath and reduced neuronal density in the spinal cord.
Collapse
Affiliation(s)
- Márcio Gonçalves Corrêa
- Laboratory of Functional and Structural Biology, Institute of Biological Sciences, Federal University of Para, Belém, PA, Brazil
| | - Leonardo Oliveira Bittencourt
- Laboratory of Functional and Structural Biology, Institute of Biological Sciences, Federal University of Para, Belém, PA, Brazil
| | - Priscila Cunha Nascimento
- Laboratory of Functional and Structural Biology, Institute of Biological Sciences, Federal University of Para, Belém, PA, Brazil
| | - Railson Oliveira Ferreira
- Laboratory of Functional and Structural Biology, Institute of Biological Sciences, Federal University of Para, Belém, PA, Brazil
| | - Walessa Alana Bragança Aragão
- Laboratory of Functional and Structural Biology, Institute of Biological Sciences, Federal University of Para, Belém, PA, Brazil
| | - Marcia Cristina Freitas Silva
- Laboratory of Functional and Structural Biology, Institute of Biological Sciences, Federal University of Para, Belém, PA, Brazil
| | - Walace Gomes-Leal
- Laboratory of Experimental Neuroprotection and Neuroregeneration, Institute of Biological Sciences, Federal University of Pará, Belém, PA, Brazil
| | - Mileni Silva Fernandes
- Department of Biological Sciences, Bauru Dental School, University of São Paulo, Bauru, SP, Brazil
| | - Aline Dionizio
- Department of Biological Sciences, Bauru Dental School, University of São Paulo, Bauru, SP, Brazil
| | - Marília Rabelo Buzalaf
- Department of Biological Sciences, Bauru Dental School, University of São Paulo, Bauru, SP, Brazil
| | - Maria Elena Crespo-Lopez
- Laboratory of Molecular Pharmacology, Institute of Biological Sciences, Federal University of Para, Belém, PA, Brazil
| | - Rafael Rodrigues Lima
- Laboratory of Functional and Structural Biology, Institute of Biological Sciences, Federal University of Para, Belém, PA, Brazil.
| |
Collapse
|
12
|
Yu YG, Yang J, Cheng XH, Shang W, Zhao BH, Zhao F, Chen ZG, Huang ZH. The protection of acute spinal cord injury by subarachnoid space injection of Danshen in animal models. J Spinal Cord Med 2019; 42:355-359. [PMID: 29920172 PMCID: PMC6522962 DOI: 10.1080/10790268.2018.1468583] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/28/2022] Open
Abstract
CONTEXT/OBJECTIVE Following acute spinal cord injury (ASCI) in rabbits, subarachnoid space injection of Danshen was performed to protect the neurological damage. In this study, we established rabbit models of spinal cord injury using a modified Allen's method. DESIGN After the operation introducing the injuries, the rabbits were randomized into two different groups, control group (normal saline, NS) and Danshen, a component extracted from Chinese herb, treatment group. Each rabbit was supplied with either the drug or placebo at 0.3 ml/kg each day through subarachnoid cavity. SETTING Rabbit model of acute spinal cord injury were used for the response to Danshen treatment. PARTICIPANTS Total 48 Chinese rabbits aged four∼ five months old provided by Experimental Animal Center of Hubei Province were used for this study. INTERVENTIONS Danshen drug or placebo was administered via a silicon tube embedded under the spinal dura mater to administer the drugs into subarachnoid cavity. OUTCOME MEASURES After the treatment, damage indicators including cell apoptosis, morphological changes and oxidative damages were assessed. RESULTS We found out that cell apoptosis was decreased after Danshen injection as determined by downregulation of apoptosis index (AI) by TUNEL analysis as well as propidium iodide (PI) percentage by FACS analysis. In the meanwhile, we observed cells after the treatment have increased numbers of BCL-2 positive cells, this indicated the antiapoptotic gene expression is increased after Danshen treatment. When we check the oxidative damage indicators, we found superoxide dismutase (SOD) was increased and malondiadehyde (MDA) levels were decreased after the treatment. CONCLUSION Danshen can protect ASCI through inhibition of oxidative damage in the injured cells and thus reduce the subsequent cell apoptosis in the spinal.
Collapse
Affiliation(s)
- Yong-Gui Yu
- Department of Microscopic Orthopaedic, Renmin Hospital, Hubei University of Medicine, Shiyan, Hubei, China
| | - Jian Yang
- Department of Microscopic Orthopaedic, Renmin Hospital, Hubei University of Medicine, Shiyan, Hubei, China
| | - Xin-Hua Cheng
- Department of Microscopic Orthopaedic, Renmin Hospital, Hubei University of Medicine, Shiyan, Hubei, China,Correspondence to: Xin-Hua Cheng, Department of Microscopic Orthopaedic, Renmin Hospital, Hubei University of Medicine, No. 39 Middle Chaoyang Road, Shiyan, Hubei, 442000, China; Ph: +86-719-8637636.
| | - Wei Shang
- Department of Microscopic Orthopaedic, Renmin Hospital, Hubei University of Medicine, Shiyan, Hubei, China
| | - Bing-Hao Zhao
- Department of Microscopic Orthopaedic, Renmin Hospital, Hubei University of Medicine, Shiyan, Hubei, China
| | - Fei Zhao
- Department of Microscopic Orthopaedic, Renmin Hospital, Hubei University of Medicine, Shiyan, Hubei, China
| | - Zhi-Guo Chen
- Department of Microscopic Orthopaedic, Renmin Hospital, Hubei University of Medicine, Shiyan, Hubei, China
| | - Zhen-Hua Huang
- Department of Microscopic Orthopaedic, Renmin Hospital, Hubei University of Medicine, Shiyan, Hubei, China
| |
Collapse
|
13
|
Khan M, Dhammu TS, Singh I, Singh AK. Amelioration of spinal cord injury in rats by blocking peroxynitrite/calpain activity. BMC Neurosci 2018; 19:50. [PMID: 30103682 PMCID: PMC6090709 DOI: 10.1186/s12868-018-0450-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Accepted: 08/07/2018] [Indexed: 01/09/2023] Open
Abstract
Background Spinal cord injury (SCI) is one of the leading causes of disability and chronic pain. In SCI-induced pathology, homeostasis of the nitric oxide (NO) metabolome is lost. Major NO metabolites such as S-nitrosoglutathione (GSNO) and peroxynitrite are reported to play pivotal roles in regulating the activities of key cysteine proteases, calpains. While peroxynitrite (a metabolite of NO and superoxide) up regulates the activities of calpains leading to neurodegeneration, GSNO (a metabolite of NO and glutathione) down regulates the activities of calpains leading to neuroprotection. In this study, effect of GSNO on locomotor function and pain threshold and their relationship with the levels of peroxynitrite and the activity of calpain in the injured spinal cord were investigated using a 2-week rat model of contusion SCI.
Results SCI animals were initially treated with GSNO at 2 h after the injury followed by a once daily dose of GSNO for 14 days. Locomotor function was evaluated by “Basso Beattie and Bresnahan (BBB) locomotor rating scale” and pain by mechanical allodynia. Peroxynitrite level, as expression of 3-nitrotyrosine (3-NT), calpain activity, as the degradation products of calpain substrate alpha II spectrin, and nNOS activity, as the expression phospho nNOS, were measured by western blot analysis. Treatment with GSNO improved locomotor function and mitigated pain. The treatment also reduced the levels of peroxynitrite (3-NT) and decreased activity of calpains. Reduced levels of peroxynitrite resulted from the GSNO-mediated inhibition of aberrant activity of neuronal nitric oxide synthase (nNOS). Conclusions The data indicates that higher levels of 3-NT and aberrant activities of nNOS and calpains correlated with SCI pathology and functional deficits. Treatment with GSNO improved locomotor function and mitigated mechanical allodynia acutely post-injury. Because GSNO shows potential to ameliorate experimental SCI, we discuss implications for GSNO therapy in clinical SCI research.
Collapse
Affiliation(s)
- Mushfiquddin Khan
- Department of Pediatrics, 508 Children's Research Institute, Medical University of South Carolina, 173 Ashley Ave, Charleston, SC, 29425, USA.
| | - Tajinder S Dhammu
- Department of Pediatrics, 508 Children's Research Institute, Medical University of South Carolina, 173 Ashley Ave, Charleston, SC, 29425, USA
| | - Inderjit Singh
- Department of Pediatrics, 508 Children's Research Institute, Medical University of South Carolina, 173 Ashley Ave, Charleston, SC, 29425, USA.,Ralph H Johnson VA Medical Center, Charleston, SC, USA
| | - Avtar K Singh
- Ralph H Johnson VA Medical Center, Charleston, SC, USA.,Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC, USA
| |
Collapse
|
14
|
Zhou H, Shi Z, Kang Y, Wang Y, Lu L, Pan B, Liu J, Li X, Liu L, Wei Z, Kong X, Feng S. Investigation of candidate long noncoding RNAs and messenger RNAs in the immediate phase of spinal cord injury based on gene expression profiles. Gene 2018; 661:119-125. [PMID: 29580899 DOI: 10.1016/j.gene.2018.03.074] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2017] [Revised: 03/08/2018] [Accepted: 03/22/2018] [Indexed: 12/23/2022]
Abstract
Spinal cord injury (SCI) is a serious devastating condition and it has a high mortality rate and morbidity rate. The early pathological changes in the immediate phase of SCI may play a major part in the development of secondary injury. Alterations in the expression of many long noncoding RNAs (lncRNAs) have been shown to play fundamental roles in the diseases of the central nervous system. However, the roles of lncRNAs and messenger RNAs (mRNAs) in the immediate phase of SCI are not clear. We examined the expression of mRNAs and lncRNAs in a rat model at 2 h after SCI and identified the differentially expressed lncRNAs (DE lncRNAs) and differentially expressed mRNAs (DE mRNAs) using microarray analysis. 772 DE lncRNAs and 992 DE mRNAs were identified in spinal cord samples in the immediate phase following SCI compared with control samples. Moreover, Gene Ontology (GO) term annotation results showed that CXCR chemokine receptor binding, neutrophil apoptotic process, neutrophil migration, neutrophil extravasation, macrophage differentiation, monocyte chemotaxis and cellular response to interleukin-1 (IL-1) were the main significantly enriched GO terms. The results of Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis showed that the DEGs were enriched in toll-like receptor signaling pathway, p53 signaling pathway, MAPK signaling pathway and Jak-STAT signaling pathway. IL6, MBOAT4, FOS, TNF, JUN, STAT3, CSF2, MYC, CCL2 and FGF2 were the top 10 high-degree hub nodes and may be important targets in the immediate phase of SCI. The current study on provides novel insights into how lncRNAs and mRNAs regulate the pathogenesis of the immediate phase after SCI.
Collapse
Affiliation(s)
- Hengxing Zhou
- Department of Orthopaedics, Tianjin Medical University General Hospital, Tianjin, PR China
| | - Zhongju Shi
- Department of Orthopaedics, Tianjin Medical University General Hospital, Tianjin, PR China
| | - Yi Kang
- Department of Orthopaedics, Tianjin Medical University General Hospital, Tianjin, PR China
| | - Yao Wang
- Department of Orthopaedics, Tianjin Medical University General Hospital, Tianjin, PR China
| | - Lu Lu
- Department of Orthopaedics, Tianjin Medical University General Hospital, Tianjin, PR China
| | - Bin Pan
- Department of Orthopaedics, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, PR China
| | - Jun Liu
- Department of Orthopaedics, Tianjin Medical University General Hospital, Tianjin, PR China
| | - Xueying Li
- Key Laboratory of Immuno Microenvironment and Disease of the Educational Ministry of China, Department of Immunology, Tianjin Medical University, Tianjin, PR China
| | - Lu Liu
- Department of Orthopaedics, Tianjin Medical University General Hospital, Tianjin, PR China
| | - Zhijian Wei
- Department of Orthopaedics, Tianjin Medical University General Hospital, Tianjin, PR China
| | - Xiaohong Kong
- 221 Laboratory, School of Medicine, Nankai University, Tianjin, PR China.
| | - Shiqing Feng
- Department of Orthopaedics, Tianjin Medical University General Hospital, Tianjin, PR China.
| |
Collapse
|
15
|
Boyko A, Ksenofontov A, Ryabov S, Baratova L, Graf A, Bunik V. Delayed Influence of Spinal Cord Injury on the Amino Acids of NO • Metabolism in Rat Cerebral Cortex Is Attenuated by Thiamine. Front Med (Lausanne) 2018; 4:249. [PMID: 29379782 PMCID: PMC5775235 DOI: 10.3389/fmed.2017.00249] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2017] [Accepted: 12/19/2017] [Indexed: 01/02/2023] Open
Abstract
Severe spinal cord injuries (SCIs) result in chronic neuroinflammation in the brain, associated with the development of cognitive and behavioral impairments. Nitric oxide (NO•) is a gaseous messenger involved in neuronal signaling and inflammation, contributing to nitrosative stress under dysregulated production of reactive nitrogen species. In this work, biochemical changes induced in the cerebral cortex of rats 8 weeks after SCI are assessed by quantification of the levels of amino acids participating in the NO• and glutathione metabolism. The contribution of the injury-induced neurodegeneration is revealed by comparison of the SCI- and laminectomy (LE)-subjected animals. Effects of the operative interventions are assessed by comparison of the operated (LE/SCI) and non-operated animals. Lower ratios of citrulline (Cit) to arginine (Arg) or Cit to ornithine and a more profound decrease in the ratio of lysine to glycine distinguish SCI animals from those after LE. The data suggest decreased NO• production from both Arg and homoarginine in the cortex 8 weeks after SCI. Both LE and SCI groups show a strong decrease in the level of cortex glutathione. The neurotropic, anti-inflammatory, and antioxidant actions of thiamine (vitamin B1) prompted us to study the thiamine effects on the SCI-induced changes in the NO• and glutathione metabolism. A thiamine injection (400 mg/kg intraperitoneally) within 24 h after SCI abrogates the changes in the cerebral cortex amino acids related to NO•. Thiamine-induced normalization of the brain glutathione levels after LE and SCI may involve increased supply of glutamate for glutathione biosynthesis. Thus, thiamine protects from sequelae of SCI on NO•-related amino acids and glutathione in cerebral cortex.
Collapse
Affiliation(s)
- Alexandra Boyko
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, Russia
| | - Alexander Ksenofontov
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Sergey Ryabov
- Russian Cardiology Research-and-Production Complex, Ministry of Health of the Russian Federation, Moscow, Russia
| | - Lyudmila Baratova
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Anastasia Graf
- Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia
- Faculty of Nano-, Bio-, Informational and Cognitive Technologies, Moscow Institute of Physics and Technology, Moscow, Russia
| | - Victoria Bunik
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, Russia
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia
| |
Collapse
|
16
|
Palm vitamin E reduces locomotor dysfunction and morphological changes induced by spinal cord injury and protects against oxidative damage. Sci Rep 2017; 7:14365. [PMID: 29085045 PMCID: PMC5662565 DOI: 10.1038/s41598-017-14765-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Accepted: 10/16/2017] [Indexed: 12/22/2022] Open
Abstract
Spinal cord injury (SCI) occurs following different types of crushes. External and internal outcomes of SCI are including paralysis, cavity, and cyst formation. Effects of dietary derived antioxidants, such as palm vitamin E on central nervous system (CNS) encourage researchers to focus on the potential therapeutic benefits of antioxidant supplements. In the present study, experiments were carried out to evaluate the neuro-protective effect of the palm vitamin E on locomotor function and morphological damages induced SCI. Seventy-two male rats (Sprague-Dawley) were randomly divided into four groups: sham (laminectomy); control (supplemented with the palm vitamin E at a dose of 100 mg/kg/day); untreated-SCI (partial crush, 30–33% for 20 sec); treated-SCI (partial crush, 30–33% for 20 sec supplemented with the palm vitamin E at a dose of 100 mg/kg/day). The treatment with the palm vitamin E significantly improved the hind limb locomotor function, reduced the histopathological changes and the morphological damage in the spinal cord. Also, the palm vitamin E indicated a statistically significant decrease in the oxidative damage indicators, malondialdehyde (MDA) level and glutathione peroxidase (GPx) activity in the treated-SCI compared to the untreated-SCI.
Collapse
|
17
|
Shi Z, Zhou H, Lu L, Li X, Fu Z, Liu J, Kang Y, Wei Z, Pan B, Liu L, Kong X, Feng S. The roles of microRNAs in spinal cord injury. Int J Neurosci 2017; 127:1104-1115. [PMID: 28436759 DOI: 10.1080/00207454.2017.1323208] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Zhongju Shi
- Department of Orthopaedics, Tianjin Medical University General Hospital, Tianjin, P. R. China
| | - Hengxing Zhou
- Department of Orthopaedics, Tianjin Medical University General Hospital, Tianjin, P. R. China
| | - Lu Lu
- Department of Orthopaedics, Tianjin Medical University General Hospital, Tianjin, P. R. China
| | - Xueying Li
- Key Laboratory of Immuno Microenvironment and Disease of the Educational Ministry of China, Department of Immunology, Tianjin Medical University, Tianjin, P. R. China
| | - Zheng Fu
- Department of Immunology, Tianjin Medical University, Tianjin, P. R. China
| | - Jun Liu
- Department of Orthopaedics, Tianjin Medical University General Hospital, Tianjin, P. R. China
| | - Yi Kang
- Department of Orthopaedics, Tianjin Medical University General Hospital, Tianjin, P. R. China
| | - Zhijian Wei
- Department of Orthopaedics, Tianjin Medical University General Hospital, Tianjin, P. R. China
| | - Bin Pan
- Department of Orthopaedics, Tianjin Medical University General Hospital, Tianjin, P. R. China
| | - Lu Liu
- Department of Orthopaedics, Tianjin Medical University General Hospital, Tianjin, P. R. China
| | - Xiaohong Kong
- 221 Laboratory, School of Medicine, Nankai University, Tianjin, P. R. China
| | - Shiqing Feng
- Department of Orthopaedics, Tianjin Medical University General Hospital, Tianjin, P. R. China
| |
Collapse
|
18
|
Anwar MA, Al Shehabi TS, Eid AH. Inflammogenesis of Secondary Spinal Cord Injury. Front Cell Neurosci 2016; 10:98. [PMID: 27147970 PMCID: PMC4829593 DOI: 10.3389/fncel.2016.00098] [Citation(s) in RCA: 307] [Impact Index Per Article: 38.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Accepted: 03/30/2016] [Indexed: 12/30/2022] Open
Abstract
Spinal cord injury (SCI) and spinal infarction lead to neurological complications and eventually to paraplegia or quadriplegia. These extremely debilitating conditions are major contributors to morbidity. Our understanding of SCI has certainly increased during the last decade, but remains far from clear. SCI consists of two defined phases: the initial impact causes primary injury, which is followed by a prolonged secondary injury consisting of evolving sub-phases that may last for years. The underlying pathophysiological mechanisms driving this condition are complex. Derangement of the vasculature is a notable feature of the pathology of SCI. In particular, an important component of SCI is the ischemia-reperfusion injury (IRI) that leads to endothelial dysfunction and changes in vascular permeability. Indeed, together with endothelial cell damage and failure in homeostasis, ischemia reperfusion injury triggers full-blown inflammatory cascades arising from activation of residential innate immune cells (microglia and astrocytes) and infiltrating leukocytes (neutrophils and macrophages). These inflammatory cells release neurotoxins (proinflammatory cytokines and chemokines, free radicals, excitotoxic amino acids, nitric oxide (NO)), all of which partake in axonal and neuronal deficit. Therefore, our review considers the recent advances in SCI mechanisms, whereby it becomes clear that SCI is a heterogeneous condition. Hence, this leads towards evidence of a restorative approach based on monotherapy with multiple targets or combinatorial treatment. Moreover, from evaluation of the existing literature, it appears that there is an urgent requirement for multi-centered, randomized trials for a large patient population. These clinical studies would offer an opportunity in stratifying SCI patients at high risk and selecting appropriate, optimal therapeutic regimens for personalized medicine.
Collapse
Affiliation(s)
- M Akhtar Anwar
- Department of Biological and Environmental Sciences, Qatar University Doha, Qatar
| | | | - Ali H Eid
- Department of Biological and Environmental Sciences, Qatar UniversityDoha, Qatar; Department of Pharmacology and Toxicology, Faculty of Medicine, American University of BeirutBeirut, Lebanon
| |
Collapse
|