1
|
Gabbert C, Schaake S, Lüth T, Much C, Klein C, Aasly JO, Farrer MJ, Trinh J. GBA1 in Parkinson's disease: variant detection and pathogenicity scoring matters. BMC Genomics 2023; 24:322. [PMID: 37312046 DOI: 10.1186/s12864-023-09417-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 05/30/2023] [Indexed: 06/15/2023] Open
Abstract
BACKGROUND GBA1 variants are the strongest genetic risk factor for Parkinson's disease (PD). However, the pathogenicity of GBA1 variants concerning PD is still not fully understood. Additionally, the frequency of GBA1 variants varies widely across populations. OBJECTIVES To evaluate Oxford Nanopore sequencing as a strategy, to determine the frequency of GBA1 variants in Norwegian PD patients and controls, and to review the current literature on newly identified variants that add to pathogenicity determination. METHODS We included 462 Norwegian PD patients and 367 healthy controls. We sequenced the full-length GBA1 gene on the Oxford Nanopore GridION as an 8.9 kb amplicon. Six analysis pipelines were compared using two aligners (NGMLR, Minimap2) and three variant callers (BCFtools, Clair3, Pepper-Margin-Deepvariant). Confirmation of GBA1 variants was performed by Sanger sequencing and the pathogenicity of variants was evaluated. RESULTS We found 95.8% (115/120) true-positive GBA1 variant calls, while 4.2% (5/120) variant calls were false-positive, with the NGMLR/Minimap2-BCFtools pipeline performing best. In total, 13 rare GBA1 variants were detected: two were predicted to be (likely) pathogenic and eleven were of uncertain significance. The odds of carrying one of the two common GBA1 variants, p.L483P or p.N409S, in PD patients were estimated to be 4.11 times the odds of carrying one of these variants in controls (OR = 4.11 [1.39, 12.12]). CONCLUSIONS In conclusion, we have demonstrated that Oxford long-read Nanopore sequencing, along with the NGMLR/Minimap2-BCFtools pipeline is an effective tool to investigate GBA1 variants. Further studies on the pathogenicity of GBA1 variants are needed to assess their effect on PD.
Collapse
Affiliation(s)
- Carolin Gabbert
- Institute of Neurogenetics, University of Lübeck, Ratzeburger Allee 160, Lübeck, 23538, Germany
| | - Susen Schaake
- Institute of Neurogenetics, University of Lübeck, Ratzeburger Allee 160, Lübeck, 23538, Germany
| | - Theresa Lüth
- Institute of Neurogenetics, University of Lübeck, Ratzeburger Allee 160, Lübeck, 23538, Germany
| | - Christoph Much
- Institute of Neurogenetics, University of Lübeck, Ratzeburger Allee 160, Lübeck, 23538, Germany
| | - Christine Klein
- Institute of Neurogenetics, University of Lübeck, Ratzeburger Allee 160, Lübeck, 23538, Germany
| | - Jan O Aasly
- Department of Neuromedicine and Movement Science, Norwegian University of Science and Technology, Trondheim, Norway
| | - Matthew J Farrer
- Department of Neurology, University of Florida, Gainesville, FL, USA
| | - Joanne Trinh
- Institute of Neurogenetics, University of Lübeck, Ratzeburger Allee 160, Lübeck, 23538, Germany.
| |
Collapse
|
2
|
Usnich T, Olmedillas M, Schell N, Paul JJ, Curado F, Skobalj S, Csoti I, Ertan S, Gruber D, Zittel S, Sammler E, Isaacson SH, Kühn AA, Pedrosa DJ, Reetz K, Kasten M, Rolfs A, Bauer P, Skrahina V, Klein C, Brüggemann N. Frequency of non-motor symptoms in Parkinson's disease patients carrying the E326K and T369M GBA risk variants. Parkinsonism Relat Disord 2023; 107:105248. [PMID: 36565535 DOI: 10.1016/j.parkreldis.2022.105248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 12/11/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022]
Affiliation(s)
- Tatiana Usnich
- Institute of Neurogenetics, University of Lübeck, Germany
| | | | - Nathalie Schell
- Institute of Neurogenetics, University of Lübeck, Germany; Department of Pediatrics, Universitätsmedizin Essen, Germany
| | | | | | | | - Ilona Csoti
- Gertrudis Clinic Biskirchen, Parkinson-Center, Leun, Germany
| | - Sibel Ertan
- Department of Neurology, Koç University School of Medicine, Istanbul, Turkey
| | - Doreen Gruber
- Movement Disorders Clinic, Beelitz-Heilstätten, Germany
| | - Simone Zittel
- University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | | | - Stuart H Isaacson
- Parkinson's Disease and Movement Disorder Center of Boca Raton, Boca Raton, USA
| | - Andrea A Kühn
- Department of Neurology, Movement Disorders and Neuromodulation Unit, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - David J Pedrosa
- Department of Neurology, University Hospital Marburg, Marburg, Germany
| | - Kathrin Reetz
- Department of Neurology, University Hospital Aachen, Aachen, Germany
| | - Meike Kasten
- Institute of Neurogenetics, University of Lübeck, Germany; Department of Psychiatry and Psychotherapy, University of Lübeck, Germany
| | - Arndt Rolfs
- CENTOGENE GmbH, Rostock, Germany; University of Rostock, Albrecht Kossel Institute, Rostock, Germany; Arcensus GmbH, Rostock, Germany
| | | | - Volha Skrahina
- CENTOGENE GmbH, Rostock, Germany; Arcensus GmbH, Rostock, Germany
| | | | - Norbert Brüggemann
- Institute of Neurogenetics, University of Lübeck, Germany; Department of Neurology, University of Luebeck, Luebeck, Germany.
| |
Collapse
|
3
|
Lysosomal functions and dysfunctions: Molecular and cellular mechanisms underlying Gaucher disease and its association with Parkinson disease. Adv Drug Deliv Rev 2022; 187:114402. [DOI: 10.1016/j.addr.2022.114402] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 04/28/2022] [Accepted: 06/17/2022] [Indexed: 01/18/2023]
|
4
|
Lu X, Song N, Wang W, Liu Y, Song H, Xu L, Wang Y, Wei C, Chen J, Yang X, Han F. Generation of integration-free human iPSC line LCPHi001-A from a Parkinson's disease patient carrying the RecNciI mutation in GBA gene. Stem Cell Res 2021; 56:102514. [PMID: 34464855 DOI: 10.1016/j.scr.2021.102514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 08/17/2021] [Accepted: 08/20/2021] [Indexed: 10/20/2022] Open
Abstract
Parkinson's disease (PD) is a neurodegenerative disease caused by environmental and genetic factors. The identified PD genes include SNCA, LRRK2, Parkin, DJ-1, PINK1, and ATP13A2. Mutations in the glucocerebrosidase (GBA) gene were reported to be associated with PD in different ethnic populations. Here we generated a novel induced pluripotent stem cell (iPSC) line LCPHi001-A from a PD patient carrying RecNciI mutation (c.1448 T > C, c.1483G > C, and c.1497G > C) in GBA by non-integrative episomal plasmids. The LCPHi001-A line expressed pluripotency markers, displayed differentiation capacity to three germ layers in vivo, and had the normal karyotype.
Collapse
Affiliation(s)
- Xianjie Lu
- The Institute for Tissue Engineering and Regenerative Medicine, Stem Cell and Regenerative Medicine Laboratory, Liaocheng University/Liaocheng People's Hospital, Liaocheng 252000, Shandong, China
| | - Na Song
- The Institute for Tissue Engineering and Regenerative Medicine, Stem Cell and Regenerative Medicine Laboratory, Liaocheng University/Liaocheng People's Hospital, Liaocheng 252000, Shandong, China
| | - Wei Wang
- The Institute for Tissue Engineering and Regenerative Medicine, Stem Cell and Regenerative Medicine Laboratory, Liaocheng University/Liaocheng People's Hospital, Liaocheng 252000, Shandong, China
| | - Yanming Liu
- The Institute for Tissue Engineering and Regenerative Medicine, Stem Cell and Regenerative Medicine Laboratory, Liaocheng University/Liaocheng People's Hospital, Liaocheng 252000, Shandong, China
| | - Hao Song
- The Institute for Tissue Engineering and Regenerative Medicine, Stem Cell and Regenerative Medicine Laboratory, Liaocheng University/Liaocheng People's Hospital, Liaocheng 252000, Shandong, China
| | - Li Xu
- The Institute for Tissue Engineering and Regenerative Medicine, Stem Cell and Regenerative Medicine Laboratory, Liaocheng University/Liaocheng People's Hospital, Liaocheng 252000, Shandong, China
| | - Yan Wang
- The Institute for Tissue Engineering and Regenerative Medicine, Stem Cell and Regenerative Medicine Laboratory, Liaocheng University/Liaocheng People's Hospital, Liaocheng 252000, Shandong, China
| | - Chuanfei Wei
- The Institute for Tissue Engineering and Regenerative Medicine, Stem Cell and Regenerative Medicine Laboratory, Liaocheng University/Liaocheng People's Hospital, Liaocheng 252000, Shandong, China
| | - Juanli Chen
- The Institute for Tissue Engineering and Regenerative Medicine, Stem Cell and Regenerative Medicine Laboratory, Liaocheng University/Liaocheng People's Hospital, Liaocheng 252000, Shandong, China
| | - Xiaofei Yang
- Department of Orthpeadic Surgery, Liaocheng People's Hospital, Liaocheng 252000, Shandong, China
| | - Fabin Han
- The Institute for Tissue Engineering and Regenerative Medicine, Stem Cell and Regenerative Medicine Laboratory, Liaocheng University/Liaocheng People's Hospital, Liaocheng 252000, Shandong, China; The Innovation Institute for Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250355, Shandong, China.
| |
Collapse
|
5
|
Association of gender and age at onset with glucocerebrosidase associated Parkinson's disease: a systematic review and meta-analysis. Neurol Sci 2021; 42:2261-2271. [PMID: 33837876 DOI: 10.1007/s10072-021-05230-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Accepted: 04/06/2021] [Indexed: 12/17/2022]
Abstract
Glucocerebrosidase (GBA) gene has been proved to be a risk factor for the development of Parkinson's disease (PD). However, the gender effect in the prevalence of GBA-associated PD (GBA-PD) is still controversial. And there is no conclusion whether the age at onset (AAO) of PD is different between carriers and non-carriers of GBA. To clarify the association between gender and AAO in GBA-PD, we conducted a systematic review and meta-analysis. PubMed, Web of Science, and Embase were retrieved to obtain potentially related studies. The odds ratios (ORs) and 95% confidence intervals (CIs) were calculated to determine the association between gender and GBA-PD. And the weighted mean difference (WMD) with 95% CIs was employed to assess the difference of AAO between carriers and non-carriers of GBA. A total of twenty-eight studies involving 16,488 PD patients were included in this meta-analysis. The results showed the prevalence of female patients was higher in GBA-PD [OR: 1.19, (95% CI, 1.07-1.32), P = 0.001]. Meanwhile, GBA carriers had younger age at PD onset than GBA non-carriers [WMD: 2.87, (95% CI, 2.48-3.27), P < 0.001]. Results of subgroup analysis showed the prevalence of women in GBA-PD was higher than men in North American and European PD patients, while the gender difference was not significant in other areas around the world, suggesting an ethnic specificity of gender effect for GBA-PD. Our results indicate the higher female prevalence with ethnic specificity and younger AAO of GBA carriers in GBA-PD.
Collapse
|
6
|
den Heijer JM, Cullen VC, Quadri M, Schmitz A, Hilt DC, Lansbury P, Berendse HW, van de Berg WD, de Bie RM, Boertien JM, Boon AJ, Contarino MF, van Hilten JJ, Hoff JI, van Mierlo T, Munts AG, van der Plas AA, Ponsen MM, Baas F, Majoor‐Krakauer D, Bonifati V, van Laar T, Groeneveld GJ. A Large-Scale Full GBA1 Gene Screening in Parkinson's Disease in the Netherlands. Mov Disord 2020; 35:1667-1674. [PMID: 32618053 PMCID: PMC7540512 DOI: 10.1002/mds.28112] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 04/17/2020] [Accepted: 05/01/2020] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND The most common genetic risk factor for Parkinson's disease known is a damaging variant in the GBA1 gene. The entire GBA1 gene has rarely been studied in a large cohort from a single population. The objective of this study was to assess the entire GBA1 gene in Parkinson's disease from a single large population. METHODS The GBA1 gene was assessed in 3402 Dutch Parkinson's disease patients using next-generation sequencing. Frequencies were compared with Dutch controls (n = 655). Family history of Parkinson's disease was compared in carriers and noncarriers. RESULTS Fifteen percent of patients had a GBA1 nonsynonymous variant (including missense, frameshift, and recombinant alleles), compared with 6.4% of controls (OR, 2.6; P < 0.001). Eighteen novel variants were detected. Variants previously associated with Gaucher's disease were identified in 5.0% of patients compared with 1.5% of controls (OR, 3.4; P < 0.001). The rarely reported complex allele p.D140H + p.E326K appears to likely be a Dutch founder variant, found in 2.4% of patients and 0.9% of controls (OR, 2.7; P = 0.012). The number of first-degree relatives (excluding children) with Parkinson's disease was higher in p.D140H + p.E326K carriers (5.6%, 21 of 376) compared with p.E326K carriers (2.9%, 29 of 1014); OR, 2.0; P = 0.022, suggestive of a dose effect for different GBA1 variants. CONCLUSIONS Dutch Parkinson's disease patients display one of the largest frequencies of GBA1 variants reported so far, consisting in large part of the mild p.E326K variant and the more severe Dutch p.D140H + p.E326K founder allele. © 2020 The Authors. Movement Disorders published by Wiley Periodicals LLC. on behalf of International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Jonas M. den Heijer
- Centre for Human Drug ResearchLeidenThe Netherlands
- Leiden University Medical CenterLeidenThe Netherlands
| | | | - Marialuisa Quadri
- Erasmus Medical CenterRotterdamThe Netherlands
- Janssen Vaccines and PreventionLeidenThe Netherlands
| | | | - Dana C. Hilt
- Lysosomal Therapeutics IncCambridgeMassachusettsUSA
| | | | | | | | - Rob M.A. de Bie
- Amsterdam University Medical CentersAmsterdamThe Netherlands
| | | | | | - M. Fiorella Contarino
- Leiden University Medical CenterLeidenThe Netherlands
- Haga Teaching HospitalThe HagueThe Netherlands
| | | | | | | | | | | | | | - Frank Baas
- Leiden University Medical CenterLeidenThe Netherlands
| | | | | | - Teus van Laar
- University Medical Center GroningenGroningenThe Netherlands
| | - Geert J. Groeneveld
- Centre for Human Drug ResearchLeidenThe Netherlands
- Leiden University Medical CenterLeidenThe Netherlands
| |
Collapse
|
7
|
Iarkov A, Barreto GE, Grizzell JA, Echeverria V. Strategies for the Treatment of Parkinson's Disease: Beyond Dopamine. Front Aging Neurosci 2020; 12:4. [PMID: 32076403 PMCID: PMC7006457 DOI: 10.3389/fnagi.2020.00004] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 01/09/2020] [Indexed: 12/11/2022] Open
Abstract
Parkinson’s disease (PD) is the second-leading cause of dementia and is characterized by a progressive loss of dopaminergic neurons in the substantia nigra alongside the presence of intraneuronal α-synuclein-positive inclusions. Therapies to date have been directed to the restoration of the dopaminergic system, and the prevention of dopaminergic neuronal cell death in the midbrain. This review discusses the physiological mechanisms involved in PD as well as new and prospective therapies for the disease. The current data suggest that prevention or early treatment of PD may be the most effective therapeutic strategy. New advances in the understanding of the underlying mechanisms of PD predict the development of more personalized and integral therapies in the years to come. Thus, the development of more reliable biomarkers at asymptomatic stages of the disease, and the use of genetic profiling of patients will surely permit a more effective treatment of PD.
Collapse
Affiliation(s)
- Alexandre Iarkov
- Laboratorio de Neurobiología, Facultad de Ciencias de la Salud, Universidad San Sebastián, Concepción, Chile
| | - George E Barreto
- Department of Biological Sciences, University of Limerick, Limerick, Ireland.,Health Research Institute, University of Limerick, Limerick, Ireland
| | - J Alex Grizzell
- Department of Psychology and Neuroscience, Center for Neuroscience, University of Colorado, Boulder, CO, United States
| | - Valentina Echeverria
- Laboratorio de Neurobiología, Facultad de Ciencias de la Salud, Universidad San Sebastián, Concepción, Chile.,Research & Development Service, Bay Pines VA Healthcare System, Bay Pines, FL, United States
| |
Collapse
|
8
|
Han F, Hu B. Stem Cell Therapy for Parkinson's Disease. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1266:21-38. [PMID: 33105493 DOI: 10.1007/978-981-15-4370-8_3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Parkinson's disease (PD) is one of the most common neurodegenerative diseases caused by specific degeneration and loss of dopamine neurons in substantia nigra of the midbrain. PD is clinically characterized by motor dysfunctions and non-motor symptoms. Even though the dopamine replacement can improve the motor symptoms of PD, it cannot stop the neural degeneration and disease progression. Electrical deep brain stimulation (DBS) to the specific brain areas can improve the symptoms, but it eventually loses the effectiveness. Stem cell transplantation provides an exciting potential for the treatment of PD. Current available cell sources include neural stem cells (NSCs) from fetal brain tissues, human embryonic stem cells (hESCs) isolated from blastocyst, and induced pluripotent stem cells (iPSCs) reprogrammed from the somatic cells such as the fibroblasts and blood cells. Here, we summarize the research advance in experimental and clinical studies to transplant these cells into animal models and clinical patients, and specifically highlight the studies to use hESCs /iPSCs-derived dopaminergic precursor cells and dopamine neurons for the treatment of PD, at last propose future challenges for developing clinical-grade dopaminergic cells for treating the PD.
Collapse
Affiliation(s)
- Fabin Han
- The Institute for Translational Medicine, Affiliated Hospital, Shandong University, Jinan, Shandong, China. .,The Institute for Tissue Engineering and Regenerative Medicine, Liaocheng University/Liaocheng People's Hospital, Liaocheng, Shandong, China. .,Shenzhen Research Institute, Shandong University, Shenzhen, Guangdong, China.
| | - Baoyang Hu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
9
|
Gheldof A, Seneca S, Stouffs K, Lissens W, Jansen A, Laeremans H, Verloo P, Schoonjans AS, Meuwissen M, Barca D, Martens G, De Meirleir L. Clinical implementation of gene panel testing for lysosomal storage diseases. Mol Genet Genomic Med 2018; 7:e00527. [PMID: 30548430 PMCID: PMC6393649 DOI: 10.1002/mgg3.527] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 10/26/2018] [Accepted: 11/07/2018] [Indexed: 02/06/2023] Open
Abstract
Background The diagnostic workup in patients with a clinical suspicion of lysosomal storage diseases (LSD) is often difficult due to the variability in the clinical phenotype. The gold standard for diagnosis of LSDs consists of enzymatic testing. However, due to the sequential nature of this methodology and inconsistent genotype–phenotype correlations of certain LSDs, finding a diagnosis can be challenging. Method We developed and clinically implemented a gene panel covering 50 genes known to cause LSDs when mutated. Over a period of 18 months, we analyzed 150 patients who were referred for LSD testing and compared these results with the data of patients who were previously enrolled in a scheme of classical biochemical testing. Results Our panel was able to determine the molecular cause of the disease in 22 cases (15%), representing an increase in diagnostic yield compared to biochemical tests developed for 21 LSDs (4.6%). We were furthermore able to redirect the diagnosis of a mucolipidosis patient who was initially suspected to be affected with galactosialidosis. Several patients were identified as being affected with neuronal ceroid lipofuscinosis, which cannot readily be detected by enzyme testing. Finally, several carriers of pathogenic mutations in LSD genes related to the disease phenotype were identified as well, thus potentially increasing the diagnostic yield of the panel as heterozygous deletions cannot be detected. Conclusion We show that the implementation of a gene panel for LSD diagnostics results in an increased yield in comparison to classical biochemical testing. As the panel is able to cover a wider range of diseases, we propose to implement this methodology as a first‐tier test in cases of an aspecific LSD presentation, while enzymatic testing remains the first choice in patients with a more distinctive clinical presentation. Positive panel results should however still be enzymatically confirmed whenever possible.
Collapse
Affiliation(s)
- Alexander Gheldof
- Center for Medical Genetics, UZ Brussel, Brussels, Belgium.,Neurogenetics Research Group, Reproduction Genetics and Regenerative Medicine Research Group, Vrije Universiteit Brussel, Brussels, Belgium
| | - Sara Seneca
- Center for Medical Genetics, UZ Brussel, Brussels, Belgium.,Neurogenetics Research Group, Reproduction Genetics and Regenerative Medicine Research Group, Vrije Universiteit Brussel, Brussels, Belgium
| | - Katrien Stouffs
- Center for Medical Genetics, UZ Brussel, Brussels, Belgium.,Neurogenetics Research Group, Reproduction Genetics and Regenerative Medicine Research Group, Vrije Universiteit Brussel, Brussels, Belgium
| | - Willy Lissens
- Center for Medical Genetics, UZ Brussel, Brussels, Belgium.,Neurogenetics Research Group, Reproduction Genetics and Regenerative Medicine Research Group, Vrije Universiteit Brussel, Brussels, Belgium
| | - Anna Jansen
- Paediatric Neurology Unit, Department of Paediatrics, UZ Brussel, Brussels, Belgium
| | | | - Patrick Verloo
- Department of Pediatrics, Ghent University and Ghent University Hospital, Ghent, Belgium
| | - An-Sofie Schoonjans
- Department of Pediatric Neurology, University Hospital Antwerp (UZA), Antwerp, Belgium
| | - Marije Meuwissen
- Department of Medical Genetics, University Hospital Antwerp (UZA), Antwerp, Belgium
| | - Diana Barca
- Clinic of Pediatric Neurology, "Prof. Dr. Alexandru Obregia" Clinical Psychiatric Hospital, Bucharest, Romania.,"Carol Davila" University of Medicine and Pharmacy, Bucharest, Romania
| | - Geert Martens
- VUB Metabolomics Platform, Vrije Universiteit Brussel and Laboratory for Molecular Diagnostics, AZ Delta Roeselare, Roeselare, Belgium
| | - Linda De Meirleir
- Paediatric Neurology Unit, Department of Paediatrics, UZ Brussel, Brussels, Belgium
| |
Collapse
|
10
|
Pchelina S, Baydakova G, Nikolaev M, Senkevich K, Emelyanov A, Kopytova A, Miliukhina I, Yakimovskii A, Timofeeva A, Berkovich O, Fedotova E, Illarioshkin S, Zakharova E. Blood lysosphingolipids accumulation in patients with parkinson's disease with glucocerebrosidase 1 mutations. Mov Disord 2018; 33:1325-1330. [DOI: 10.1002/mds.27393] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Revised: 02/06/2018] [Accepted: 02/09/2018] [Indexed: 01/17/2023] Open
Affiliation(s)
- Sofya Pchelina
- Petersburg Nuclear Physics Institute named by B.P. Konstantinov of National Research Centre (Kurchatov Institute); St. Petersburg Russian Federation
- First Pavlov State Medical University of St. Petersburg; St. Petersburg Russian Federation
- Institute of Experimental Medicine; St. Petersburg Russian Federation
| | - Galina Baydakova
- Federal State Budgetary Institution (Research Centre for Medical Genetics); Moscow Russian Federation
| | - Mikhael Nikolaev
- Petersburg Nuclear Physics Institute named by B.P. Konstantinov of National Research Centre (Kurchatov Institute); St. Petersburg Russian Federation
- First Pavlov State Medical University of St. Petersburg; St. Petersburg Russian Federation
| | - Konstantin Senkevich
- Petersburg Nuclear Physics Institute named by B.P. Konstantinov of National Research Centre (Kurchatov Institute); St. Petersburg Russian Federation
- First Pavlov State Medical University of St. Petersburg; St. Petersburg Russian Federation
- Institute of Experimental Medicine; St. Petersburg Russian Federation
| | - Anton Emelyanov
- Petersburg Nuclear Physics Institute named by B.P. Konstantinov of National Research Centre (Kurchatov Institute); St. Petersburg Russian Federation
- First Pavlov State Medical University of St. Petersburg; St. Petersburg Russian Federation
| | - Alena Kopytova
- Petersburg Nuclear Physics Institute named by B.P. Konstantinov of National Research Centre (Kurchatov Institute); St. Petersburg Russian Federation
| | - Irina Miliukhina
- First Pavlov State Medical University of St. Petersburg; St. Petersburg Russian Federation
- Institute of Experimental Medicine; St. Petersburg Russian Federation
| | - Andrey Yakimovskii
- First Pavlov State Medical University of St. Petersburg; St. Petersburg Russian Federation
| | - Alla Timofeeva
- First Pavlov State Medical University of St. Petersburg; St. Petersburg Russian Federation
| | - Olga Berkovich
- First Pavlov State Medical University of St. Petersburg; St. Petersburg Russian Federation
| | | | | | - Ekaterina Zakharova
- Federal State Budgetary Institution (Research Centre for Medical Genetics); Moscow Russian Federation
| |
Collapse
|
11
|
Emelyanov AK, Usenko TS, Tesson C, Senkevich KA, Nikolaev MA, Miliukhina IV, Kopytova AE, Timofeeva AA, Yakimovsky AF, Lesage S, Brice A, Pchelina SN. Mutation analysis of Parkinson's disease genes in a Russian data set. Neurobiol Aging 2018; 71:267.e7-267.e10. [PMID: 30146349 DOI: 10.1016/j.neurobiolaging.2018.06.027] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Revised: 05/24/2018] [Accepted: 06/19/2018] [Indexed: 10/28/2022]
Abstract
Common variants and risk factors related to familial and sporadic cases of Parkinson's disease (PD) in diverse populations have been identified at numerous genomic loci. In this study, genetic analysis was performed through a screening of LRRK2 G2019S, GBA mutations (L444P, N370S), and common variants (E326K, T369M) in 762 PD patients and in 400 controls. Next-generation sequencing analysis of 22 PD-related genes in 28 early-onset PD cases from North-Western region of Russia was performed. The frequency of LRRK2 G2019S mutation was 5.8% in familial and 0.5% in sporadic PD cases. The frequency of GBA mutations (L444P, N370S) in PD patients was higher compared to controls (odds ratio [OR] = 6.9, 95% confidence interval [CI], 0.9-53.13, p = 0.031), particularly in patients with early-onset compared to late-onset PD (OR = 3.90 [95% CI, 1.2-13.2], p = 0.009). The frequency of E326K and T369M was twice higher among PD patients than in controls (OR = 2.24, 95% CI 1.05-4.79, p = 0.033). However, the screening of 22 PD-related genes using our novel panel of gene resequencing in our series of 28 early-onset PD failed to identify any mutations. LRRK2 and GBA mutations were found to be common risk factors for PD in North-Western region of Russia.
Collapse
Affiliation(s)
- Anton K Emelyanov
- Petersburg Nuclear Physics Institute named by B.P. Konstantinov of National Research Centre «Kurchatov Institute», Saint-Petersburg, Russia; First Pavlov State Medical University of St. Petersburg, St. Petersburg, Russia
| | - Tatiana S Usenko
- Petersburg Nuclear Physics Institute named by B.P. Konstantinov of National Research Centre «Kurchatov Institute», Saint-Petersburg, Russia; First Pavlov State Medical University of St. Petersburg, St. Petersburg, Russia; CT, SL, AB Sorbonne Universités, UPMC Université, Institut du Cerveau et de la Moelle épinière, ICM, Paris, France
| | - Christelle Tesson
- CT, SL, AB Sorbonne Universités, UPMC Université, Institut du Cerveau et de la Moelle épinière, ICM, Paris, France
| | - Konstantin A Senkevich
- Petersburg Nuclear Physics Institute named by B.P. Konstantinov of National Research Centre «Kurchatov Institute», Saint-Petersburg, Russia; First Pavlov State Medical University of St. Petersburg, St. Petersburg, Russia; Institute of Experimental Medicine, St. Petersburg, Russia
| | - Mikhail A Nikolaev
- Petersburg Nuclear Physics Institute named by B.P. Konstantinov of National Research Centre «Kurchatov Institute», Saint-Petersburg, Russia; First Pavlov State Medical University of St. Petersburg, St. Petersburg, Russia
| | - Irina V Miliukhina
- First Pavlov State Medical University of St. Petersburg, St. Petersburg, Russia; Institute of Experimental Medicine, St. Petersburg, Russia
| | - Alena E Kopytova
- Petersburg Nuclear Physics Institute named by B.P. Konstantinov of National Research Centre «Kurchatov Institute», Saint-Petersburg, Russia
| | - Alla A Timofeeva
- First Pavlov State Medical University of St. Petersburg, St. Petersburg, Russia
| | - Andrey F Yakimovsky
- First Pavlov State Medical University of St. Petersburg, St. Petersburg, Russia
| | - Suzanne Lesage
- CT, SL, AB Sorbonne Universités, UPMC Université, Institut du Cerveau et de la Moelle épinière, ICM, Paris, France
| | - Alexis Brice
- CT, SL, AB Sorbonne Universités, UPMC Université, Institut du Cerveau et de la Moelle épinière, ICM, Paris, France
| | - Sofya N Pchelina
- Petersburg Nuclear Physics Institute named by B.P. Konstantinov of National Research Centre «Kurchatov Institute», Saint-Petersburg, Russia; First Pavlov State Medical University of St. Petersburg, St. Petersburg, Russia; Institute of Experimental Medicine, St. Petersburg, Russia.
| |
Collapse
|
12
|
Malek N, Weil RS, Bresner C, Lawton MA, Grosset KA, Tan M, Bajaj N, Barker RA, Burn DJ, Foltynie T, Hardy J, Wood NW, Ben-Shlomo Y, Williams NW, Grosset DG, Morris HR. Features of GBA-associated Parkinson's disease at presentation in the UK Tracking Parkinson's study. J Neurol Neurosurg Psychiatry 2018; 89:702-709. [PMID: 29378790 PMCID: PMC6031283 DOI: 10.1136/jnnp-2017-317348] [Citation(s) in RCA: 97] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 11/30/2017] [Accepted: 01/03/2018] [Indexed: 01/14/2023]
Abstract
OBJECTIVES To examine the influence of the glucocerebrosidase (GBA) mutation carrier state on age at onset of Parkinson's disease (PD), the motor phenotype and cognitive function at baseline assessment in a large cohort of UK patients. We also analysed the prevalence of mood and behavioural problems that may confound the assessment of cognitive function. METHODS We prospectively recruited patients with PD in the Tracking Parkinson's study. We fully sequenced the GBA gene in all recently diagnosed patients (≤3.5 years). We examined cognitive (Montreal Cognitive Assessment) and motor (Movement Disorder Society Unified Parkinson's Disease Rating Scale part 3) function at a baseline assessment, at an average of 1.3 years after diagnosis. We used logistic regression to determine predictors of PD with mild cognitive impairment and PD with dementia. RESULTS We studied 1893 patients with PD: 48 (2.5%) were heterozygous carriers for known Gaucher's disease (GD) causing pathogenic mutations; 117 (6.2%) had non-synonymous variants, previously associated with PD, and 28 (1.5%) patients carried variants of unknown significance in the GBA gene. L444P was the most common pathogenic GBA mutation. Patients with pathogenic GBA mutations were on average 5 years younger at disease onset compared with non-carriers (P=0.02). PD patients with GD-causing mutations did not have an increased family risk of PD. Patients with GBA mutations were more likely to present with the postural instability gait difficulty phenotype compared with non-carriers (P=0.02). Patients carrying pathogenic mutations in GBA had more advanced Hoehn and Yahr stage after adjustment for age and disease duration compared with non-carriers (P=0.005). There were no differences in cognitive function between GBA mutation carriers and non-carriers at this early disease stage. CONCLUSIONS Our study confirms the influence of GBA mutations on the age of onset, disease severity and motor phenotype in patients with PD. Cognition did not differ between GBA mutation carriers and non-carriers at baseline, implying that cognitive impairment/dementia, reported in other studies at a later disease stage, is not present in recently diagnosed cases. This offers an important window of opportunity for potential disease-modifying therapy that may protect against the development of dementia in GBA-PD. CLINICAL TRIAL REGISTRATION NCT02881099; Results.
Collapse
Affiliation(s)
- Naveed Malek
- Department of Neurology, Ipswich Hospital NHS Trust, Ipswich, UK
| | - Rimona S Weil
- Department of Molecular Neuroscience, UCL Institute of Neurology, London, UK
| | - Catherine Bresner
- Institute of Psychological Medicine and Clinical Neurosciences, MRC Centre for Neuropsychiatric Genetics and Genomics, Cardiff University, Cardiff, UK
| | - Michael A Lawton
- School of Social and Community Medicine, University of Bristol, Bristol, UK
| | - Katherine A Grosset
- Department of Neurology, Institute of Neurological Sciences, Queen Elizabeth University Hospital, Glasgow, Scotland
| | - Manuela Tan
- Department of Clinical Neuroscience, UCL Institute of Neurology, London, UK
| | - Nin Bajaj
- Department of Neurology, Queen's Medical Centre, Nottingham, UK
| | - Roger A Barker
- Department of Clinical Neurosciences, John van Geest Centre for Brain Repair, Cambridge, UK
| | - David J Burn
- Faculty of Medical Sciences, University of Newcastle, Newcastle upon Tyne, UK
| | - Thomas Foltynie
- Sobell Department of Motor Neuroscience, UCL Institute of Neurology, London, UK
| | - John Hardy
- Department of Molecular Neuroscience, Reta Lila Weston Laboratories, UCL Institute of Neurology, London, UK
| | - Nicholas W Wood
- Department of Molecular Neuroscience, UCL Institute of Neurology, London, UK
| | - Yoav Ben-Shlomo
- School of Social and Community Medicine, University of Bristol, Bristol, UK
| | - Nigel W Williams
- Institute of Psychological Medicine and Clinical Neurosciences, MRC Centre for Neuropsychiatric Genetics and Genomics, Cardiff University, Cardiff, UK
| | - Donald G Grosset
- Department of Neurology, Institute of Neurological Sciences, Queen Elizabeth University Hospital, Glasgow, Scotland
| | - Huw R Morris
- Department of Clinical Neuroscience, UCL Institute of Neurology, London, UK
| | | |
Collapse
|
13
|
The Association between E326K of GBA and the Risk of Parkinson's Disease. PARKINSONS DISEASE 2018; 2018:1048084. [PMID: 29808112 PMCID: PMC5901859 DOI: 10.1155/2018/1048084] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/03/2017] [Accepted: 12/05/2017] [Indexed: 12/19/2022]
Abstract
It is reported that both the homozygous and heterozygous states of GBA mutations which are the causes of Gaucher disease (GD) are linked to the risk of PD. However, the GBA variant p.E326K (c.1093G > A, rs2230288), which does not result in GD in homozygous carriers, has triggered debate among experts studying Parkinson's disease (PD). In order to determine if the E326K variant of GBA is associated with the risk of PD, a standard meta-analysis was conducted by searching and screening publications, data extraction, and statistical analysis. Finally, a total of 15 publications, containing 5,908 PD patients and 5,605 controls, were included in this analysis. The pooled OR of the E326K genotype analysis was 1.99 (95% CI: 1.57–2.51). The minor allele frequencies of E326K for PD patients and controls were 1.67% and 1.03%, respectively. The pooled OR for the minor allele A was 1.99 (95% CI: 1.58–2.50). According to the subgroup analysis, we found that the significant differences between PD patients and controls for both genotype and allele of E326K also exist in Asians and Caucasians, respectively. In this study, we found that E326K of GBA is associated with the risk of PD in total populations, Asians, and Caucasians, respectively. Further studies are needed to clarify the role of GBA in the pathogenesis of PD.
Collapse
|
14
|
Zhang Y, Shu L, Sun Q, Zhou X, Pan H, Guo J, Tang B. Integrated Genetic Analysis of Racial Differences of Common GBA Variants in Parkinson's Disease: A Meta-Analysis. Front Mol Neurosci 2018. [PMID: 29527153 PMCID: PMC5829555 DOI: 10.3389/fnmol.2018.00043] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Background: Numerous studies have indicated that there is a possible relationship between GBA variants and Parkinson's disease (PD), however, most of them focused on a few variants such as L444P, N370S. We performed a comprehensive pooled analysis to clarify the relationship between variations of GBA and the risk of PD in different racial groups. Methods: Standard meta-analysis was conducted, including generating inclusion and exclusion criteria, searching literature, extracting and analyzing data. Results: Fifty studies containing 20,267 PD patients and 24,807 controls were included. We found that variants 84insGG, IVS2+1G>A, R120W, H255Q, E326K, T369M, N370S, D409H, L444P, R496H and RecNciI increased the risk of PD in total populations (OR: 1.78–10.49; p: <0.00001, 0.00005, 0.0008, 0.005, <0.00001, 0.004, <0.00001, 0.0003, <0.00001, <0.0001, 0.0001). In subgroup analysis by ethnicity, in AJ populations, variants 84insGG, R496H, N370S increased the risk of PD (OR: 9.26–3.51; p: <0.00001, <0.0001, <0.00001). In total non-AJ populations, variants L444P, R120W, IVS2+1G>A, H255Q, N370S, D409H, RecNciI, E326K, T369M increased the risk of PD (OR: 8.66–1.89; p: <0.00001, 0.0008, 0.02, 0.005, <0.00001, 0.001, 0.0001, <0.00001, 0.002). Among the non-AJ populations, pooled analysis from five different groups were done separately. Variants L444P, N370S, H255Q, D409H, RecNciI, E326K increased risk of PD (OR: 6.52–1.84; p: <0.00001, <0.00001, 0.005, 0.005, 0.04, <0.00001) in European/West Asians while R120W and RecNciI in East Asians (OR: 14.93, 3.56; p: 0.001, 0.003). L444P increased the risk of PD in Hispanics, East Asians and Mixed populations (OR: 15.44, 12.43, 7.33; p: 0.00004, <0.00001, 0.009). Lacking of enough original studies, we failed to conduct quantitative analysis in Africa. Conclusions: Obvious racial differences were found for GBA variants in PD. 84insGG and R496H exclusively increased PD risks in AJ populations, so did L444P, R120W, IVS2+1G>A, H255Q, D409H, RecNciI, E326K, T369M in non-AJ populations. N370S increased the risk of PD in both ethnics. In non-AJ subgroup populations, N370S, H255Q, D409H, E326K exclusively increased PD risks in European/West Asians, as were R120W in East Asians. L444P increased the risk of PD in all groups in non-AJ ethnicity. These results will contribute to the future genetic screening of GBA gene in PD.
Collapse
Affiliation(s)
- Yuan Zhang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Li Shu
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Qiying Sun
- Department of Geriatrics, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Changsha, China.,Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, China
| | - Xun Zhou
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Hongxu Pan
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Jifeng Guo
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Changsha, China.,Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, China
| | - Beisha Tang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China.,National Clinical Research Center for Geriatric Disorders, Changsha, China.,Key Laboratory of Hunan Province in Neurodegenerative Disorders, Central South University, Changsha, China.,Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, China.,Parkinson's Disease Center of Beijing Institute for Brain Disorders, Beijing, China
| |
Collapse
|
15
|
Lythe V, Athauda D, Foley J, Mencacci NE, Jahanshahi M, Cipolotti L, Hyam J, Zrinzo L, Hariz M, Hardy J, Limousin P, Foltynie T. GBA-Associated Parkinson’s Disease: Progression in a Deep Brain Stimulation Cohort. JOURNAL OF PARKINSONS DISEASE 2017; 7:635-644. [DOI: 10.3233/jpd-171172] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Vanessa Lythe
- Sobell Department of Motor Neuroscience and Movement Disorders, UCL Institute of Neurology, London, UK
| | - Dilan Athauda
- Sobell Department of Motor Neuroscience and Movement Disorders, UCL Institute of Neurology, London, UK
| | - Jennifer Foley
- Department of Neuropsychology, National Hospital for Neurology and Neurosurgery, London, UK
| | - Niccolò E. Mencacci
- Department of Molecular Neuroscience, UCL Institute of Neurology, London, UK
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Marjan Jahanshahi
- Sobell Department of Motor Neuroscience and Movement Disorders, UCL Institute of Neurology, London, UK
| | - Lisa Cipolotti
- Department of Neuropsychology, National Hospital for Neurology and Neurosurgery, London, UK
| | - Jonathan Hyam
- Sobell Department of Motor Neuroscience and Movement Disorders, UCL Institute of Neurology, London, UK
| | - Ludvic Zrinzo
- Sobell Department of Motor Neuroscience and Movement Disorders, UCL Institute of Neurology, London, UK
| | - Marwan Hariz
- Sobell Department of Motor Neuroscience and Movement Disorders, UCL Institute of Neurology, London, UK
| | - John Hardy
- Department of Molecular Neuroscience, UCL Institute of Neurology, London, UK
| | - Patricia Limousin
- Sobell Department of Motor Neuroscience and Movement Disorders, UCL Institute of Neurology, London, UK
| | - Tom Foltynie
- Sobell Department of Motor Neuroscience and Movement Disorders, UCL Institute of Neurology, London, UK
| |
Collapse
|
16
|
Zampieri S, Cattarossi S, Bembi B, Dardis A. GBA Analysis in Next-Generation Era: Pitfalls, Challenges, and Possible Solutions. J Mol Diagn 2017; 19:733-741. [PMID: 28727984 DOI: 10.1016/j.jmoldx.2017.05.005] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Revised: 04/21/2017] [Accepted: 05/19/2017] [Indexed: 01/11/2023] Open
Abstract
Mutations in the gene encoding the lysosomal enzyme acid β-glucosidase (GBA) are responsible for Gaucher disease and represent the main genetic risk factor for developing Parkinson disease. In past years, next-generation sequencing (NGS) technology has been applied for the molecular analysis of the GBA gene, both as a single gene or as part of gene panels. However, the presence of complex gene-pseudogene rearrangements, resulting from the presence of a highly homologous pseudogene (GBAP1) located downstream of the GBA gene, makes NGS analysis of GBA challenging. Therefore, adequate strategies should be adopted to avoid misdetection of GBA recombinant mutations. Here, we validated a strategy for the identification of GBA mutations using parallel massive sequencing and provide an overview of the major drawbacks encountered during GBA analysis by NGS. We implemented a NGS workflow, using a set of 38 patients with Gaucher disease carrying different GBA alleles identified previously by Sanger sequencing. As expected, the presence of the pseudogene significantly affected data output. However, the combination of specific procedures for the library preparation and data analysis resulted in maximal repeatability and reproducibility, and a robust performance with 97% sensitivity and 100% specificity. In conclusion, the pipeline described here represents a useful approach to deal with GBA sequencing using NGS technology.
Collapse
Affiliation(s)
- Stefania Zampieri
- Regional Coordinator Centre for Rare Diseases, Academic Hospital Santa Maria della Misericordia, Udine, Italy
| | - Silvia Cattarossi
- Regional Coordinator Centre for Rare Diseases, Academic Hospital Santa Maria della Misericordia, Udine, Italy
| | - Bruno Bembi
- Regional Coordinator Centre for Rare Diseases, Academic Hospital Santa Maria della Misericordia, Udine, Italy
| | - Andrea Dardis
- Regional Coordinator Centre for Rare Diseases, Academic Hospital Santa Maria della Misericordia, Udine, Italy.
| |
Collapse
|
17
|
Glucocerebrosidase and parkinsonism: lessons to learn. J Neurol 2016; 263:1033-1044. [PMID: 26995357 DOI: 10.1007/s00415-016-8085-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Revised: 02/26/2016] [Accepted: 02/27/2016] [Indexed: 12/23/2022]
Abstract
Both homo- (causing autosomal-recessive Gaucher's disease; GD) and heterozygous mutations in the glucocerebrosidase gene (GBA) are associated with Parkinson's disease (PD), and represent the most robust known genetic susceptibility factors identified in PD. Since the accumulation of α-synuclein has been considered critical to the pathogenesis of PD among several possible pathways through which glucocerebrosidase (GCase) deficiency may promote the pathogenesis of PD, particular attention was given to the reciprocity with α-synuclein levels, lysosomal dysfunction, endoplasmatic reticulum-Golgi trafficking of GCase, dysregulation of calcium homeostasis and mitochondrial abnormalities. The proportion of PD patients that carry GBA mutations is estimated to be approximately between 5 and 10 %. Individual PD patients with or without GBA mutations cannot be discriminated on clinical or pathological grounds. However, GBA mutation carriers may have slightly earlier age at PD onset, more likely have a positive family history for PD, and more prevalent non-motor symptoms when compared to those patients who are not carriers. Establishing the concept of GBA-related PD promoted a search for the pathogenic mechanisms through which GCase deficiency may influence pathogenesis of PD, suggesting that targeting the GCase-lysosomal pathway might be a rational approach for the development of neuroprotective drugs in PD.
Collapse
|
18
|
Török R, Zádori D, Török N, Csility É, Vécsei L, Klivényi P. An assessment of the frequency of mutations in the GBA and VPS35 genes in Hungarian patients with sporadic Parkinson's disease. Neurosci Lett 2015; 610:135-8. [PMID: 26547032 DOI: 10.1016/j.neulet.2015.11.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Revised: 10/29/2015] [Accepted: 11/01/2015] [Indexed: 10/22/2022]
Abstract
Parkinson's disease (PD) is the second most common neurodegenerative disorder, with cases of either familial or sporadic origin. Several polymorphisms in a number of genes have been proved to have an important role in the development of PD. Particular attention has recently been paid to genes of the glucocerebrosidase (GBA) and the vacuolar protein sorting-associated protein 35 (VPS35). In this study, the three most common mutations (L444P, N370S and R120W) of the GBA gene and the D620N mutation of the VPS35 gene were examined in 124 Hungarian patients diagnosed with sporadic PD (SPD) and 122 control subjects. The frequency of the L444P mutation of the GBA gene proved to be higher in the PD patients (2.4%) than in the controls (0%), although the difference was not statistically significant. All the patients who carried the mutant allele were in the early-onset PD (EOPD) group. However, neither the R120W nor the N370S variant of the GBA gene nor D620N mutation of the VPS35 gene were detected among the PD cases or the controls. Even though these results suggest that the studied mutations are quite rare in SPD patients, the most frequent L444P mutation of the GBA gene may be associated with the development of EOPD in the Hungarian population.
Collapse
Affiliation(s)
- Rita Török
- Department of Neurology, University of Szeged, H-6725 Szeged, Semmelweis u. 6, Hungary
| | - Dénes Zádori
- Department of Neurology, University of Szeged, H-6725 Szeged, Semmelweis u. 6, Hungary
| | - Nóra Török
- Department of Neurology, University of Szeged, H-6725 Szeged, Semmelweis u. 6, Hungary
| | - Éva Csility
- Department of Neurology, University of Szeged, H-6725 Szeged, Semmelweis u. 6, Hungary
| | - László Vécsei
- Department of Neurology, University of Szeged, H-6725 Szeged, Semmelweis u. 6, Hungary; MTA-SZTE Neuroscience Research Group, H-6725 Szeged, Semmelweis u. 6, Hungary
| | - Péter Klivényi
- Department of Neurology, University of Szeged, H-6725 Szeged, Semmelweis u. 6, Hungary.
| |
Collapse
|