1
|
Lu H, Suo Z, Lin J, Cong Y, Liu Z. Monocyte-macrophages modulate intestinal homeostasis in inflammatory bowel disease. Biomark Res 2024; 12:76. [PMID: 39095853 PMCID: PMC11295551 DOI: 10.1186/s40364-024-00612-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 07/04/2024] [Indexed: 08/04/2024] Open
Abstract
BACKGROUND Monocytes and macrophages play an indispensable role in maintaining intestinal homeostasis and modulating mucosal immune responses in inflammatory bowel disease (IBD). Although numerous studies have described macrophage properties in IBD, the underlying mechanisms whereby the monocyte-macrophage lineage modulates intestinal homeostasis during gut inflammation remain elusive. MAIN BODY In this review, we decipher the cellular and molecular mechanisms governing the generation of intestinal mucosal macrophages and fill the knowledge gap in understanding the origin, maturation, classification, and functions of mucosal macrophages in intestinal niches, particularly the phagocytosis and bactericidal effects involved in the elimination of cell debris and pathogens. We delineate macrophage-mediated immunoregulation in the context of producing pro-inflammatory and anti-inflammatory cytokines, chemokines, toxic mediators, and macrophage extracellular traps (METs), and participating in the modulation of epithelial cell proliferation, angiogenesis, and fibrosis in the intestine and its accessory tissues. Moreover, we emphasize that the maturation of intestinal macrophages is arrested at immature stage during IBD, and the deficiency of MCPIP1 involves in the process via ATF3-AP1S2 signature. In addition, we confirmed the origin potential of IL-1B+ macrophages and defined C1QB+ macrophages as mature macrophages. The interaction crosstalk between the intestine and the mesentery has been described in this review, and the expression of mesentery-derived SAA2 is upregulated during IBD, which contributes to immunoregulation of macrophage. Moreover, we also highlight IBD-related susceptibility genes (e.g., RUNX3, IL21R, GTF2I, and LILRB3) associated with the maturation and functions of macrophage, which provide promising therapeutic opportunities for treating human IBD. CONCLUSION In summary, this review provides a comprehensive, comprehensive, in-depth and novel description of the characteristics and functions of macrophages in IBD, and highlights the important role of macrophages in the molecular and cellular process during IBD.
Collapse
Affiliation(s)
- Huiying Lu
- Department of Gastroenterology, Huaihe Hospital of Henan University, Henan Province, Kaifeng, 475000, China
- Center for Inflammatory Bowel Disease Research and Department of Gastroenterology, Shanghai Tenth People's Hospital of Tongji University, No. 301 Yanchang Road, Shanghai, 200072, China
| | - Zhimin Suo
- Department of Gastroenterology, Huaihe Hospital of Henan University, Henan Province, Kaifeng, 475000, China
| | - Jian Lin
- Center for Inflammatory Bowel Disease Research and Department of Gastroenterology, Shanghai Tenth People's Hospital of Tongji University, No. 301 Yanchang Road, Shanghai, 200072, China
| | - Yingzi Cong
- Division of Gastroenterology and Hepatology, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
- Center for Human Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Zhanju Liu
- Center for Inflammatory Bowel Disease Research and Department of Gastroenterology, Shanghai Tenth People's Hospital of Tongji University, No. 301 Yanchang Road, Shanghai, 200072, China.
| |
Collapse
|
2
|
Li Y, Law HKW. Deciphering the role of autophagy in the immunopathogenesis of inflammatory bowel disease. Front Pharmacol 2022; 13:1070184. [DOI: 10.3389/fphar.2022.1070184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 10/31/2022] [Indexed: 11/16/2022] Open
Abstract
Inflammatory bowel disease (IBD) is a typical immune-mediated chronic inflammatory disorder. Following the industrialization and changes in lifestyle, the incidence of IBD in the world is rising, which makes health concerns and heavy burdens all over the world. However, the pathogenesis of IBD remains unclear, and the current understanding of the pathogenesis involves dysregulation of mucosal immunity, gut microbiome dysbiosis, and gut barrier defect based on genetic susceptibility and environmental triggers. In recent years, autophagy has emerged as a key mechanism in IBD development and progression because Genome-Wide Association Study revealed the complex interactions of autophagy in IBD, especially immunopathogenesis. Besides, autophagy markers are also suggested to be potential biomarkers and target treatment in IBD. This review summarizes the autophagy-related genes regulating immune response in IBD. Furthermore, we explore the evolving evidence that autophagy interacts with intestinal epithelial and immune cells to contribute to the inflammatory changes in IBD. Finally, we discuss how novel discovery could further advance our understanding of the role of autophagy and inform novel therapeutic strategies in IBD.
Collapse
|
3
|
Delfini M, Stakenborg N, Viola MF, Boeckxstaens G. Macrophages in the gut: Masters in multitasking. Immunity 2022; 55:1530-1548. [PMID: 36103851 DOI: 10.1016/j.immuni.2022.08.005] [Citation(s) in RCA: 53] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 07/17/2022] [Accepted: 08/09/2022] [Indexed: 11/05/2022]
Abstract
The gastrointestinal tract has the important task of absorbing nutrients, a complex process that requires an intact barrier allowing the passage of nutrients but that simultaneously protects the host against invading microorganisms. To maintain and regulate intestinal homeostasis, the gut is equipped with one of the largest populations of macrophages in the body. Here, we will discuss our current understanding of intestinal macrophage heterogeneity and describe their main functions in the different anatomical niches of the gut during steady state. In addition, their role in inflammatory conditions such as infection, inflammatory bowel disease, and postoperative ileus are discussed, highlighting the roles of macrophages in immune defense. To conclude, we describe the interaction between macrophages and the enteric nervous system during development and adulthood and highlight their contribution to neurodegeneration in the context of aging and diabetes.
Collapse
Affiliation(s)
- Marcello Delfini
- Translational Research Center for GI Disorders (TARGID), Department of Chronic Diseases, Metabolism and Ageing, KU Leuven-University of Leuven, Leuven, Belgium
| | - Nathalie Stakenborg
- Translational Research Center for GI Disorders (TARGID), Department of Chronic Diseases, Metabolism and Ageing, KU Leuven-University of Leuven, Leuven, Belgium
| | - Maria Francesca Viola
- Translational Research Center for GI Disorders (TARGID), Department of Chronic Diseases, Metabolism and Ageing, KU Leuven-University of Leuven, Leuven, Belgium
| | - Guy Boeckxstaens
- Translational Research Center for GI Disorders (TARGID), Department of Chronic Diseases, Metabolism and Ageing, KU Leuven-University of Leuven, Leuven, Belgium.
| |
Collapse
|
4
|
Meriwether D, Jones AE, Ashby JW, Solorzano-Vargas RS, Dorreh N, Noori S, Grijalva V, Ball AB, Semis M, Divakaruni AS, Mack JJ, Herschman HR, Martin MG, Fogelman AM, Reddy ST. Macrophage COX2 Mediates Efferocytosis, Resolution Reprogramming, and Intestinal Epithelial Repair. Cell Mol Gastroenterol Hepatol 2022; 13:1095-1120. [PMID: 35017061 PMCID: PMC8873959 DOI: 10.1016/j.jcmgh.2022.01.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 12/30/2021] [Accepted: 01/03/2022] [Indexed: 12/13/2022]
Abstract
BACKGROUND AND AIMS Phagocytosis (efferocytosis) of apoptotic neutrophils by macrophages anchors the resolution of intestinal inflammation. Efferocytosis prevents secondary necrosis and inhibits further inflammation, and also reprograms macrophages to facilitate tissue repair and promote resolution function. Macrophage efferocytosis and efferocytosis-dependent reprogramming are implicated in the pathogenesis of inflammatory bowel disease. We previously reported that absence of macrophage cyclooxygenase 2 (COX2) exacerbates inflammatory bowel disease-like intestinal inflammation. To elucidate the underlying pathogenic mechanism, we investigated here whether COX2 mediates macrophage efferocytosis and efferocytosis-dependent reprogramming, including intestinal epithelial repair capacity. METHODS Using apoptotic neutrophils and synthetic apoptotic targets, we determined the effects of macrophage specific Cox2 knockout and pharmacological COX2 inhibition on the efferocytosis capacity of mouse primary macrophages. COX2-mediated efferocytosis-dependent eicosanoid lipidomics was determined by liquid chromatography tandem mass spectrometry. Small intestinal epithelial organoids were employed to assay the effects of COX2 on efferocytosis-dependent intestinal epithelial repair. RESULTS Loss of COX2 impaired efferocytosis in mouse primary macrophages, in part, by affecting the binding capacity of macrophages for apoptotic cells. This effect was comparable to that of high-dose lipopolysaccharide and was accompanied by both dysregulation of macrophage polarization and the inhibited expression of genes involved in apoptotic cell binding. COX2 modulated the production of efferocytosis-dependent lipid inflammatory mediators that include the eicosanoids prostaglandin I2, prostaglandin E2, lipoxin A4, and 15d-PGJ2; and further affected secondary efferocytosis. Finally, macrophage efferocytosis induced, in a macrophage COX2-dependent manner, a tissue restitution and repair phenotype in intestinal epithelial organoids. CONCLUSIONS Macrophage COX2 potentiates efferocytosis capacity and efferocytosis-dependent reprogramming, facilitating macrophage intestinal epithelial repair capacity.
Collapse
Affiliation(s)
- David Meriwether
- Division of Digestive Diseases, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California,Division of Cardiology, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California,Correspondence Address correspondence to: David Meriwether, PhD, Department of Medicine, Division of Digestive Diseases, David Geffen School of Medicine at UCLA, University of California Los Angeles, 10833 Le Conte Avenue, Los Angeles, CA 90095-5347. fax: 310-206-3605.
| | - Anthony E. Jones
- Department of Medical and Molecular Pharmacology, University of California, Los Angeles, Los Angeles, California
| | - Julianne W. Ashby
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California
| | - R. Sergio Solorzano-Vargas
- Division of Gastroenterology, Department of Pediatrics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California
| | - Nasrin Dorreh
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California
| | - Shoreh Noori
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California
| | - Victor Grijalva
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California
| | - Andréa B. Ball
- Department of Medical and Molecular Pharmacology, University of California, Los Angeles, Los Angeles, California
| | - Margarita Semis
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California
| | - Ajit S. Divakaruni
- Department of Medical and Molecular Pharmacology, University of California, Los Angeles, Los Angeles, California
| | - Julia J. Mack
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California
| | - Harvey R. Herschman
- Department of Medical and Molecular Pharmacology, University of California, Los Angeles, Los Angeles, California
| | - Martin G. Martin
- Division of Gastroenterology, Department of Pediatrics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California
| | - Alan M. Fogelman
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California
| | - Srinivasa T. Reddy
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, California,Department of Medical and Molecular Pharmacology, University of California, Los Angeles, Los Angeles, California,Srinivasa T. Reddy, PhD, Department of Medicine, David Geffen School of Medicine at UCLA, 10833 Le Conte Avenue, Room 43-144 CHS, Los Angeles, CA 90095-1679. fax: 310-206-3605.
| |
Collapse
|
5
|
Abstract
Current practice in IBD is to classify patients based on clinical signs and symptoms and provide treatments accordingly. However, the response of IBD patients to available treatments is highly variable, highlighting clinically significant heterogeneity among patients. Thus, more accurate patient stratification is urgently needed to more effectively target therapeutic interventions to specific patients. Here we review the degree of heterogeneity in IBD, discussing how the microbiota, genetics, and immune system may contribute to the variation among patients. We highlight how molecular heterogeneity may relate to clinical phenotype, but in other situations may be independent of clinical phenotype, encouraging future studies to fill the gaps. Finally, we discuss novel stratification methodologies as a foundation for precision medicine, in particular a novel stratification strategy based on conserved genes across species. All of these dimensions of heterogeneity have potential to provide strategies for patient stratification and move IBD practice towards personalised medicine.
Collapse
Affiliation(s)
- Katja A Selin
- Division of Immunology and Allergy, Department of Medicine, Solna, Karolinska Institutet and University Hospital, Stockholm, Sweden
- Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
- Gastroenterology Unit, Patient Area Gastroenterology, Dermatovenereology and Rheumatology, Karolinska University Hospital, Stockholm, Sweden
- Department of Medicine, Solna, Division of Clinical Medicine, Karolinska Institutet, Solna, Sweden
| | - Charlotte R H Hedin
- Gastroenterology Unit, Patient Area Gastroenterology, Dermatovenereology and Rheumatology, Karolinska University Hospital, Stockholm, Sweden
- Department of Medicine, Solna, Division of Clinical Medicine, Karolinska Institutet, Solna, Sweden
| | - Eduardo J Villablanca
- Division of Immunology and Allergy, Department of Medicine, Solna, Karolinska Institutet and University Hospital, Stockholm, Sweden
- Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
- Department of Medicine, Solna, Division of Clinical Medicine, Karolinska Institutet, Solna, Sweden
| |
Collapse
|
6
|
Rohm TV, Fuchs R, Müller RL, Keller L, Baumann Z, Bosch AJT, Schneider R, Labes D, Langer I, Pilz JB, Niess JH, Delko T, Hruz P, Cavelti-Weder C. Obesity in Humans Is Characterized by Gut Inflammation as Shown by Pro-Inflammatory Intestinal Macrophage Accumulation. Front Immunol 2021; 12:668654. [PMID: 34054838 PMCID: PMC8158297 DOI: 10.3389/fimmu.2021.668654] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 04/26/2021] [Indexed: 12/17/2022] Open
Abstract
Chronic low-grade inflammation is a hallmark of obesity and associated with cardiovascular complications. However, it remains unclear where this inflammation starts. As the gut is constantly exposed to food, gut microbiota, and metabolites, we hypothesized that mucosal immunity triggers an innate inflammatory response in obesity. We characterized five distinct macrophage subpopulations (P1-P5) along the gastrointestinal tract and blood monocyte subpopulations (classical, non-classical, intermediate), which replenish intestinal macrophages, in non-obese (BMI<27kg/m2) and obese individuals (BMI>32kg/m2). To elucidate factors that potentially trigger gut inflammation, we correlated these subpopulations with cardiovascular risk factors and lifestyle behaviors. In obese individuals, we found higher pro-inflammatory macrophages in the stomach, duodenum, and colon. Intermediate blood monocytes were also increased in obesity, suggesting enhanced recruitment to the gut. We identified unhealthy lifestyle habits as potential triggers of gut and systemic inflammation (i.e., low vegetable intake, high processed meat consumption, sedentary lifestyle). Cardiovascular risk factors other than body weight did not affect the innate immune response. Thus, obesity in humans is characterized by gut inflammation as shown by accumulation of pro-inflammatory intestinal macrophages, potentially via recruited blood monocytes. Understanding gut innate immunity in human obesity might open up new targets for immune-modulatory treatments in metabolic disease.
Collapse
Affiliation(s)
- Theresa V Rohm
- Clinic of Endocrinology, Diabetes and Metabolism, University Hospital Basel, Basel, Switzerland.,Department of Biomedicine (DBM), University of Basel, University Hospital Basel, Basel, Switzerland
| | - Regula Fuchs
- Clinic of Endocrinology, Diabetes and Metabolism, University Hospital Basel, Basel, Switzerland
| | - Rahel L Müller
- Clinic of Endocrinology, Diabetes and Metabolism, University Hospital Basel, Basel, Switzerland
| | - Lena Keller
- Clinic of Endocrinology, Diabetes and Metabolism, University Hospital Basel, Basel, Switzerland.,Department of Biomedicine (DBM), University of Basel, University Hospital Basel, Basel, Switzerland
| | - Zora Baumann
- Clinic of Endocrinology, Diabetes and Metabolism, University Hospital Basel, Basel, Switzerland.,Department of Biomedicine (DBM), University of Basel, University Hospital Basel, Basel, Switzerland.,Department of Surgery, University Hospital Basel, Basel, Switzerland
| | - Angela J T Bosch
- Clinic of Endocrinology, Diabetes and Metabolism, University Hospital Basel, Basel, Switzerland.,Department of Biomedicine (DBM), University of Basel, University Hospital Basel, Basel, Switzerland
| | - Romano Schneider
- Department of Biomedicine (DBM), University of Basel, University Hospital Basel, Basel, Switzerland.,Clarunis, Department of Visceral Surgery, University Center for Gastrointestinal and Liver Diseases Basel, St. Clara Hospital and University Hospital Basel, Basel, Switzerland
| | - Danny Labes
- Department of Biomedicine (DBM), University of Basel, University Hospital Basel, Basel, Switzerland
| | - Igor Langer
- Department of Visceral Surgery, Lindenhof Hospital, Bern, Switzerland
| | - Julia B Pilz
- AMB-Arztpraxis MagenDarm Basel, Basel and MagenDarm Aarau, Aarau, Switzerland
| | - Jan H Niess
- Department of Biomedicine (DBM), University of Basel, University Hospital Basel, Basel, Switzerland.,Clarunis, Department of Visceral Surgery, University Center for Gastrointestinal and Liver Diseases Basel, St. Clara Hospital and University Hospital Basel, Basel, Switzerland
| | - Tarik Delko
- Clarunis, Department of Visceral Surgery, University Center for Gastrointestinal and Liver Diseases Basel, St. Clara Hospital and University Hospital Basel, Basel, Switzerland
| | - Petr Hruz
- Department of Biomedicine (DBM), University of Basel, University Hospital Basel, Basel, Switzerland.,Clarunis, Department of Visceral Surgery, University Center for Gastrointestinal and Liver Diseases Basel, St. Clara Hospital and University Hospital Basel, Basel, Switzerland
| | - Claudia Cavelti-Weder
- Clinic of Endocrinology, Diabetes and Metabolism, University Hospital Basel, Basel, Switzerland.,Department of Biomedicine (DBM), University of Basel, University Hospital Basel, Basel, Switzerland.,Department of Endocrinology, Diabetology and Clinical Nutrition, University Hospital Zurich (USZ) and University of Zurich (UZH), Zurich, Switzerland
| |
Collapse
|
7
|
Ortega Moreno L, Fernández-Tomé S, Chaparro M, Marin AC, Mora-Gutiérrez I, Santander C, Baldan-Martin M, Gisbert JP, Bernardo D. Profiling of Human Circulating Dendritic Cells and Monocyte Subsets Discriminates Between Type and Mucosal Status in Patients With Inflammatory Bowel Disease. Inflamm Bowel Dis 2021; 27:268-274. [PMID: 32548643 DOI: 10.1093/ibd/izaa151] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Indexed: 12/30/2022]
Abstract
BACKGROUND Intestinal dendritic cells (DC) and macrophages drive disease progression in patients with inflammatory bowel disease (IBD). We aimed to characterize the activation and homing profile of human circulating DC and monocyte subsets in healthy control patients (CP) and IBD patients. METHODS Eighteen CP and 64 patients with IBD were categorized by diagnoses of Crohn disease (CD) and ulcerative colitis (UC), either endoscopically active (inflamed) or quiescent. Circulating type 1 conventional DC, type 2 conventional DC, plasmacytoid DC, classical monocytes, nonclassical monocytes, and intermediate monocytes were identified by flow cytometry in each individual and characterized for the expression of 18 markers. Association between DC/monocytes and IBD risk was tested by logistic regression. Discriminant canonical analyses were performed to classify the patients in their own endoscopy category considering all markers on each subset. RESULTS CCRL1, CCR3, and CCR5 expression on circulating type 1 DC; CCRL1 expression on nonclassical monocytes; and CCR9 and β7 expression on classical monocytes allowed us to discriminate among the different study groups. Indeed, the same markers (excluding β7) were also associated with IBD when all DC and monocyte subsets were considered at the same time. CONCLUSIONS Monitoring the phenotype of human circulating DC and monocyte subsets may provide novel tools as biomarkers for disease diagnosis (CD/UC) or mucosal status (inflamed/noninflamed) in the absence of an invasive colonoscopy.
Collapse
Affiliation(s)
- Lorena Ortega Moreno
- Servicio de Aparato Digestivo, Hospital Universitario de La Princesa e Instituto de Investigación Sanitaria Princesa & Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas, Madrid, Spain.,Departamento de Medicina, Universidad Autónoma de Madrid, Madrid, Spain
| | - Samuel Fernández-Tomé
- Servicio de Aparato Digestivo, Hospital Universitario de La Princesa e Instituto de Investigación Sanitaria Princesa & Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas, Madrid, Spain
| | - María Chaparro
- Servicio de Aparato Digestivo, Hospital Universitario de La Princesa e Instituto de Investigación Sanitaria Princesa & Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas, Madrid, Spain.,Departamento de Medicina, Universidad Autónoma de Madrid, Madrid, Spain
| | - Alicia C Marin
- Servicio de Aparato Digestivo, Hospital Universitario de La Princesa e Instituto de Investigación Sanitaria Princesa & Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas, Madrid, Spain
| | - Irene Mora-Gutiérrez
- Servicio de Aparato Digestivo, Hospital Universitario de La Princesa e Instituto de Investigación Sanitaria Princesa & Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas, Madrid, Spain
| | - Cecilio Santander
- Servicio de Aparato Digestivo, Hospital Universitario de La Princesa e Instituto de Investigación Sanitaria Princesa & Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas, Madrid, Spain.,Departamento de Medicina, Universidad Autónoma de Madrid, Madrid, Spain
| | - Montserrat Baldan-Martin
- Servicio de Aparato Digestivo, Hospital Universitario de La Princesa e Instituto de Investigación Sanitaria Princesa & Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas, Madrid, Spain
| | - Javier P Gisbert
- Servicio de Aparato Digestivo, Hospital Universitario de La Princesa e Instituto de Investigación Sanitaria Princesa & Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas, Madrid, Spain.,Departamento de Medicina, Universidad Autónoma de Madrid, Madrid, Spain
| | - David Bernardo
- Servicio de Aparato Digestivo, Hospital Universitario de La Princesa e Instituto de Investigación Sanitaria Princesa & Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas, Madrid, Spain.,Mucosal Immunology Lab, Instituto de Biología y Genética Molecular (IBGM), Universidad de Valladolid-CSIC, Valladolid, Spain
| |
Collapse
|
8
|
LOU Z, ZHAO H, LYU G. [Mechanism and intervention of mucosal immune regulation based on "lung and large intestine being interior-exteriorly related" theory of traditional Chinese medicine]. Zhejiang Da Xue Xue Bao Yi Xue Ban 2020; 49:665-678. [PMID: 33448169 PMCID: PMC8800704 DOI: 10.3785/j.issn.1008-9292.2020.12.01] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 10/23/2020] [Indexed: 04/14/2023]
Abstract
The "lung and large intestine being interior-exteriorly related" is one of the classical theories in traditional Chinese medicine, which indicates a close correlation between the lung and large intestine in physiology and pathology, and plays a pivotal role in guiding the treatment of the lung and bowel diseases. Modern medicine has revealed some connections between the lung and large intestine in tissue origin and mucosal immunity, and preliminarily illuminated the material basis and possible regulatory mechanism of the theory. Recently, this theory has been applied to guide the treatment of refractory lung and intestine diseases such as COVID-19 and ulcerative colitis and has obtained reliable efficacy. Existing research results show that the anatomical homogeneity of lung and large intestine promotes the correlation between lung-bowel mucosal immunity, and mucosal immunity and migration and homing of innate lymphocytes are one of the physiological and pathological mechanisms for lung and large intestine to share. Under the guidance of this theory, Chinese medicines with heat-clearing and detoxifying or tonic effects are commonly used in the treatment of the lung and intestinal diseases by regulating lung-bowel mucosal immunity and they can be candidate drugs to treat lung/intestinal diseases simultaneously. However, the existing studies on immune regulation are mainly focused on the expression levels of sIgA and cytokines, as well as the changes in the number of immune cells such as innate lymphocytes and B lymphocytes. While the following aspects need further investigation: the airway/intestinal mucous hypersecretion, the functional changes of pulmonary and intestinal mucosal barrier immune cells, the dynamic process of lung/intestinal mucosal immune interaction, the intervention effect of local pulmonary/intestinal microecology, the correlation and biological basis between the heat-clearing and detoxifying effect and the tonic effect, and its regulation of pulmonary/intestinal mucosal immunity. In this paper, we try to analyze the internal relationship between lung and intestine related diseases from the point of view of the common mucosal immune system of lung and intestine, and summarize the characteristics and rules of traditional Chinese medicine compound and its active ingredients, which have regulatory effect on lung and intestine mucosal immune system, so as to further explain the theoretical connotation of "lung and large intestine being interior-exteriorly related" and provide reference for the research and development of drugs for related diseases.
Collapse
|
9
|
Intestinal Macrophages at the Crossroad between Diet, Inflammation, and Cancer. Int J Mol Sci 2020; 21:ijms21144825. [PMID: 32650452 PMCID: PMC7404402 DOI: 10.3390/ijms21144825] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 07/03/2020] [Accepted: 07/04/2020] [Indexed: 12/11/2022] Open
Abstract
Intestinal macrophages are key players in the regulation of the oral tolerance, controlling gut homeostasis by discriminating innocuous antigens from harmful pathogens. Diet exerts a significant impact on human health, influencing the composition of gut microbiota and the developing of several non-communicable diseases, including cancer. Nutrients and microbiota are able to modify the profile of intestinal macrophages, shaping their key function in the maintenance of the gut homeostasis. Intestinal disease often occurs as a breakdown of this balance: defects in monocyte-macrophage differentiation, wrong dietary habits, alteration of microbiota composition, and impairment in the resolution of inflammation may contribute to the development of intestinal chronic inflammation and colorectal cancer. Accordingly, dietary interventions and macrophage-targeted therapies are emerging as innovative tools for the treatment of several intestinal pathologies. In this review, we will describe the delicate balance between diet, microbiota and intestinal macrophages in homeostasis and how the perturbation of this equilibrium may lead to the occurrence of inflammatory conditions in the gut. The understanding of the molecular pathways and dietary factors regulating the activity of intestinal macrophages might result in the identification of innovative targets for the treatments of intestinal pathologies.
Collapse
|
10
|
Chapuy L, Sarfati M. Single-Cell Protein and RNA Expression Analysis of Mononuclear Phagocytes in Intestinal Mucosa and Mesenteric Lymph Nodes of Ulcerative Colitis and Crohn's Disease Patients. Cells 2020; 9:E813. [PMID: 32230977 PMCID: PMC7226791 DOI: 10.3390/cells9040813] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Revised: 03/19/2020] [Accepted: 03/24/2020] [Indexed: 12/21/2022] Open
Abstract
Inflammatory bowel diseases (IBDs), which include Crohn's disease (CD) and ulcerative colitis (UC), are driven by an abnormal immune response to commensal microbiota in genetically susceptible hosts. In addition to epithelial and stromal cells, innate and adaptive immune systems are both involved in IBD immunopathogenesis. Given the advances driven by single-cell technologies, we here reviewed the immune landscape and function of mononuclear phagocytes in inflamed non-lymphoid and lymphoid tissues of CD and UC patients. Immune cell profiling of IBD tissues using scRNA sequencing combined with multi-color cytometry analysis identifies unique clusters of monocyte-like cells, macrophages, and dendritic cells. These clusters reflect either distinct cell lineages (nature), or distinct or intermediate cell types with identical ontogeny, adapting their phenotype and function to the surrounding milieu (nurture and tissue imprinting). These advanced technologies will provide an unprecedented view of immune cell networks in health and disease, and thus may offer a personalized medicine approach to patients with IBD.
Collapse
Affiliation(s)
| | - Marika Sarfati
- Immunoregulation Laboratory, CRCHUM, Montreal, QC H2X 0A9, Canada;
| |
Collapse
|
11
|
Jia Y, Anwaar S, Li L, Yin Z, Ye Z, Huang Z. A new target for the treatment of inflammatory bowel disease: Interleukin-37. Int Immunopharmacol 2020; 83:106391. [PMID: 32208166 DOI: 10.1016/j.intimp.2020.106391] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 02/22/2020] [Accepted: 03/08/2020] [Indexed: 12/19/2022]
Abstract
Interleukin (IL)-37 belongs to the IL-1 cytokine family. It has anti-inflammatory effects on numerous autoimmune diseases such as asthma, psoriasis, inflammatory bowel disease (IBD), systemic lupus erythematosus (SLE), multiple sclerosis (MS) and rheumatoid arthritis (RA). Mechanistically, IL-37 plays an anti-inflammatory role by regulating the expression of inflammatory factors in two ways: binding extracellular receptors IL-18R or transferring into the nucleus with Smad3. IBD is a kind of idiopathic intestinal inflammatory disease with unknown etiology and pathogenesis. Recent researches had proved that IL-37 is negatively involved in the pathogenesis and development of IBD. Among various inflammatory diseases, IL-37 has been shown to regulate inflammatory development by acting on various immune cells such as neutrophils, macrophages (Mϕ), dendritic cells (DCs), T cells and intestinal epithelial cells. This review summarizes the biological role of IL-37, and its immunoregulatory effects on the immune cells, especially anti-inflammatory function in both human and experimental models of IBD.
Collapse
Affiliation(s)
- Yuning Jia
- Biological Therapy Institute, Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Department of Immunology, Health Science Center, Shenzhen University, Shenzhen 518055, China
| | - Shoaib Anwaar
- Biological Therapy Institute, Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Department of Immunology, Health Science Center, Shenzhen University, Shenzhen 518055, China
| | - Linyun Li
- Biological Therapy Institute, Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Department of Immunology, Health Science Center, Shenzhen University, Shenzhen 518055, China
| | - Zhihua Yin
- Shenzhen City Futian Qu Rheumatology Specialist Hospital, Shenzhen 518089, China
| | - Zhizhon Ye
- Shenzhen City Futian Qu Rheumatology Specialist Hospital, Shenzhen 518089, China.
| | - Zhong Huang
- Biological Therapy Institute, Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Department of Immunology, Health Science Center, Shenzhen University, Shenzhen 518055, China.
| |
Collapse
|
12
|
Caër C, Wick MJ. Human Intestinal Mononuclear Phagocytes in Health and Inflammatory Bowel Disease. Front Immunol 2020; 11:410. [PMID: 32256490 PMCID: PMC7093381 DOI: 10.3389/fimmu.2020.00410] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 02/21/2020] [Indexed: 12/18/2022] Open
Abstract
Inflammatory bowel disease (IBD), including Crohn's disease and ulcerative colitis, is a complex immune-mediated disease of the gastrointestinal tract that increases morbidity and negatively influences the quality of life. Intestinal mononuclear phagocytes (MNPs) have a crucial role in maintaining epithelial barrier integrity while controlling pathogen invasion by activating an appropriate immune response. However, in genetically predisposed individuals, uncontrolled immune activation to intestinal flora is thought to underlie the chronic mucosal inflammation that can ultimately result in IBD. Thus, MNPs are involved in fine-tuning mucosal immune system responsiveness and have a critical role in maintaining homeostasis or, potentially, the emergence of IBD. MNPs include monocytes, macrophages and dendritic cells, which are functionally diverse but highly complementary. Despite their crucial role in maintaining intestinal homeostasis, specific functions of human MNP subsets are poorly understood, especially during diseases such as IBD. Here we review the current understanding of MNP ontogeny, as well as the recently identified human intestinal MNP subsets, and discuss their role in health and IBD.
Collapse
Affiliation(s)
- Charles Caër
- Department of Microbiology and Immunology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Mary Jo Wick
- Department of Microbiology and Immunology, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
13
|
Na YR, Stakenborg M, Seok SH, Matteoli G. Macrophages in intestinal inflammation and resolution: a potential therapeutic target in IBD. Nat Rev Gastroenterol Hepatol 2019; 16:531-543. [PMID: 31312042 DOI: 10.1038/s41575-019-0172-4] [Citation(s) in RCA: 498] [Impact Index Per Article: 99.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/13/2019] [Indexed: 02/07/2023]
Abstract
Macrophages are the gatekeepers of intestinal immune homeostasis as they discriminate between innocuous antigens and potential pathogens to maintain oral tolerance. However, in individuals with a genetic and environmental predisposition, regulation of intestinal immunity is impaired, leading to chronic relapsing immune activation and pathologies of the gastrointestinal tract, such as IBD. As evidence suggests a causal link between defects in the resolution of intestinal inflammation and altered monocyte-macrophage differentiation in patients with IBD, macrophages have been considered as a novel potential target to develop new treatment approaches. This Review discusses the molecular and cellular mechanisms involved in the differentiation and function of intestinal macrophages in homeostasis and inflammation, and their role in resolving the inflammatory process. Understanding the molecular pathways involved in the specification of intestinal macrophages might lead to a new class of targets that promote remission in patients with IBD.
Collapse
Affiliation(s)
- Yi Rang Na
- Department of Microbiology and Immunology, and Institute of Endemic Disease, Seoul National University Medical College, Seoul, South Korea
| | - Michelle Stakenborg
- Department of Chronic Diseases, Metabolism and Ageing, Translational Research Center for Gastrointestinal Disorders (TARGID), University of Leuven, Leuven, Belgium
| | - Seung Hyeok Seok
- Department of Microbiology and Immunology, and Institute of Endemic Disease, Seoul National University Medical College, Seoul, South Korea.
| | - Gianluca Matteoli
- Department of Chronic Diseases, Metabolism and Ageing, Translational Research Center for Gastrointestinal Disorders (TARGID), University of Leuven, Leuven, Belgium.
| |
Collapse
|
14
|
Yamamoto T, Matsunami E, Komori K, Hayashi S, Kadowaki M. The isoflavone puerarin induces Foxp3 + regulatory T cells by augmenting retinoic acid production, thereby inducing mucosal immune tolerance in a murine food allergy model. Biochem Biophys Res Commun 2019; 516:626-631. [PMID: 31235250 DOI: 10.1016/j.bbrc.2019.06.051] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2019] [Accepted: 06/09/2019] [Indexed: 10/26/2022]
Abstract
The disruption of intestinal mucosal immune tolerance can lead to the development of intestinal immune diseases such as food allergy (FA). Regulatory T cells (Tregs) in the mucosa play a critical role in maintaining peripheral immune tolerance in the intestine, and retinoic acid (RA) is absolutely required for the induction of Tregs. We have previously reported that kakkonto, a traditional Japanese herbal medicine, suppresses FA in a murine FA model due to the induction of Tregs in the colonic mucosa. However, the precise molecular mechanisms underlying the induction of Tregs remain unclear. Puerarin, an isoflavone derivative, is a major constituent of kakkonto. Thus, we investigated the effect of puerarin on the induction of Tregs. BALB/c mice were systemically sensitized and then orally challenged with ovalbumin (OVA) as an FA model. Puerarin treatment suppressed the development of allergic diarrhea in FA mice. The gene expression levels of IL-4 and mast cell protease I (mMCP-1) were significantly upregulated in the proximal colon of FA mice but were reduced by puerarin. The proportions of Foxp3+CD4+ cells and CD103+CD11c+ dendritic cells (DCs) were significantly higher among the colonic lamina propria (cLP) cells of puerarin-treated FA mice than among those of untreated FA mice. The gene expression of Aldh1a1, an RA synthesis enzyme, in colonic epithelial cells (CECs) was significantly higher in the puerarin-treated FA mouse colon than in the untreated FA mouse colon. In addition, the preventive effect of puerarin was suppressed in the FA model by pretreatment with LE540, an RA receptor (RAR) antagonist. The induction of Foxp3+CD4+ cells and CD103+CD11c+ DCs by puerarin was reduced by pretreatment with LE540. The present findings indicate that the augmentation of RA production in CECs induced by puerarin enhances the induction of Tregs and suppresses the development of FA in a mouse model. Thus, a natural enhancer of RA production, such as puerarin, has the potential to treat immune diseases attributed to Treg deficiency.
Collapse
Affiliation(s)
- Takeshi Yamamoto
- Division of Gastrointestinal Pathophysiology, Institute of Natural Medicine, University of Toyama, Toyama, Japan.
| | - Emi Matsunami
- Division of Gastrointestinal Pathophysiology, Institute of Natural Medicine, University of Toyama, Toyama, Japan
| | - Koji Komori
- Division of Gastrointestinal Pathophysiology, Institute of Natural Medicine, University of Toyama, Toyama, Japan
| | - Shusaku Hayashi
- Division of Gastrointestinal Pathophysiology, Institute of Natural Medicine, University of Toyama, Toyama, Japan
| | - Makoto Kadowaki
- Division of Gastrointestinal Pathophysiology, Institute of Natural Medicine, University of Toyama, Toyama, Japan
| |
Collapse
|
15
|
Dotan I, Allez M, Danese S, Keir M, Tole S, McBride J. The role of integrins in the pathogenesis of inflammatory bowel disease: Approved and investigational anti-integrin therapies. Med Res Rev 2019; 40:245-262. [PMID: 31215680 PMCID: PMC6973243 DOI: 10.1002/med.21601] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 04/12/2019] [Accepted: 05/13/2019] [Indexed: 12/12/2022]
Abstract
Inflammatory bowel disease (IBD) is characterized by uncontrolled inflammation in the gastrointestinal tract. The underlying pathobiology of IBD includes an increase in infiltrating gut-homing lymphocytes. Although lymphocyte homing is typically a tightly regulated and stepwise process involving multiple integrins and adhesion molecules expressed on endothelial cells, the distinct roles of integrin-expressing immune cells is not fully understood in the pathology of IBD. In this review, we detail the involvement of integrins expressed on specific lymphocyte subsets in the pathogenesis of IBD and discuss the current status of approved and investigational integrin-targeted therapies.
Collapse
Affiliation(s)
- Iris Dotan
- Division of Gastroenterology, Rabin Medical Center, Petah Tikva, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Matthieu Allez
- Department of Gastroenterology, Hôpital Saint-Louis, AP-HP, INSERM U1160, University Denis Diderot, Paris, France
| | - Silvio Danese
- Gastrointestinal Immunopathology Laboratory and IBD Unit, Humanitas Clinical and Research Center, Milan, Italy
| | - Mary Keir
- Department of Research and Early Development, Genentech, South San Francisco, California
| | - Swati Tole
- Department of Product Development, Genentech, South San Francisco, California
| | - Jacqueline McBride
- Department of Research and Early Development, Genentech, South San Francisco, California
| |
Collapse
|
16
|
Dendritic cell profiles in the inflamed colonic mucosa predict the responses to tumor necrosis factor alpha inhibitors in inflammatory bowel disease. Radiol Oncol 2018; 52:443-452. [PMID: 30511938 PMCID: PMC6287181 DOI: 10.2478/raon-2018-0045] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Accepted: 10/25/2018] [Indexed: 12/18/2022] Open
Abstract
Background Dendritic cells play crucial roles in the control of inflammation and immune tolerance in the gut. We aimed to investigate the effects of tumor necrosis factor alpha (TNFa) inhibitors on intestinal dendritic cells in patients with inflammatory bowel disease and the potential role of intestinal dendritic cells in predicting the response to treatment. Patients and methods Intestinal biopsies were obtained from 30 patients with inflammatory bowel disease before and after treatment with TNFa inhibitors. The proportions of lamina propria dendritic cell phenotypes were analysed using flow cytometry. Disease activity was endoscopically assessed at baseline and after the induction treatment. Results At baseline, the proportion of conventional dendritic cells was higher in the inflamed mucosa (7.8%) compared to the uninflamed mucosa (4.5%) (p = 0.003), and the proportion of CD103+ dendritic cells was lower in the inflamed mucosa (47.1%) versus the uninflamed mucosa (57.3%) (p = 0.03). After 12 weeks of treatment, the proportion of conventional dendritic cells in the inflamed mucosa decreased from 7.8% to 4.5% (p = 0.014), whereas the proportion of CD103+ dendritic cells remained unchanged. Eighteen out of 30 (60%) patients responded to their treatment by week 12. Responders had a significantly higher proportion of conventional dendritic cells (9.16% vs 4.4%, p < 0.01) with higher expression of HLA-DR (median fluorescent intensity [MFI] 12152 vs 8837, p = 0.038) in the inflamed mucosa before treatment compared to nonresponders. Conclusions A proportion of conventional dendritic cells above 7% in the inflamed inflammatory bowel disease mucosa before treatment predicts an endoscopic response to TNFa inhibitors.
Collapse
|
17
|
Human intestinal pro-inflammatory CD11c highCCR2 +CX3CR1 + macrophages, but not their tolerogenic CD11c -CCR2 -CX3CR1 - counterparts, are expanded in inflammatory bowel disease. Mucosal Immunol 2018; 11:1114-1126. [PMID: 29743615 DOI: 10.1038/s41385-018-0030-7] [Citation(s) in RCA: 94] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Revised: 03/12/2018] [Accepted: 03/27/2018] [Indexed: 02/07/2023]
Abstract
Although macrophages (Mϕ) maintain intestinal immune homoeostasis, there is not much available information about their subset composition, phenotype and function in the human setting. Human intestinal Mϕ (CD45+HLA-DR+CD14+CD64+) can be divided into subsets based on the expression of CD11c, CCR2 and CX3CR1. Monocyte-like cells can be identified as CD11chighCCR2+CX3CR1+ cells, a phenotype also shared by circulating CD14+ monocytes. On the contrary, their Mϕ-like tissue-resident counterparts display a CD11c-CCR2-CX3CR1- phenotype. CD11chigh monocyte-like cells produced IL-1β, both in resting conditions and after LPS stimulation, while CD11c- Mϕ-like cells produced IL-10. CD11chigh pro-inflammatory monocyte-like cells, but not the others, were increased in the inflamed colon from patients with inflammatory bowel disease (IBD), including Crohn's disease and ulcerative colitis. Tolerogenic IL-10-producing CD11c- Mϕ-like cells were generated from monocytes following mucosal conditioning. Finally, the colonic mucosa recruited circulating CD14+ monocytes in a CCR2-dependent manner, being such capacity expanded in IBD. Mϕ subsets represent, therefore, transition stages from newly arrived pro-inflammatory monocyte-like cells (CD11chighCCR2+CX3CR1+) into tolerogenic tissue-resident (CD11c-CCR2-CX3CR1-) Mϕ-like cells as reflected by the mucosal capacity to recruit circulating monocytes and induce CD11c- Mϕ. The process is nevertheless dysregulated in IBD, where there is an increased migration and accumulation of pro-inflammatory CD11chigh monocyte-like cells.
Collapse
|
18
|
Tumor Necrosis Factor Alpha Antagonism Reveals a Gut/Lung Axis That Amplifies Regulatory T Cells in a Pulmonary Fungal Infection. Infect Immun 2018; 86:IAI.00109-18. [PMID: 29581197 DOI: 10.1128/iai.00109-18] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Accepted: 03/21/2018] [Indexed: 02/07/2023] Open
Abstract
Tumor necrosis factor (TNF) antagonists are popular therapies for inflammatory diseases. These agents enhance the numbers and function of regulatory T cells (Tregs), which are important in controlling inflammatory diseases. However, elevated Treg levels increase susceptibility to infections, including histoplasmosis. We determined the mechanism by which Tregs expand in TNF-neutralized mice infected with Histoplasma capsulatum Lung CD11c+ CD11b+ dendritic cells (DCs), but not alveolar macrophages, from H. capsulatum-infected mice treated with anti-TNF induced a higher percentage of Tregs than control DCs in vitro CD11b+ CD103+ DCs, understood to be unique to the intestines, were augmented in lungs with anti-TNF treatment. In the absence of this subset, DCs from anti-TNF-treated mice failed to amplify Tregs in vitro CD11b+ CD103+ DCs from TNF-neutralized mice displayed higher retinaldehyde dehydrogenase 2 (RALDH2) gene expression, and CD11b+ CD103+ RALDH+ DCs exhibited greater enzyme activity. To determine if CD11b+ CD103+ DCs migrated from gut to lung, fluorescent beads were delivered to the gut via oral gavage, and the lungs were assessed for bead-containing DCs. Anti-TNF induced migration of CD11b+ CD103+ DCs from the gut to the lung that enhanced the generation of Tregs in H. capsulatum-infected mice. Therefore, TNF neutralization promotes susceptibility to pulmonary H. capsulatum infection by promoting a gut/lung migration of DCs that enhances Tregs.
Collapse
|
19
|
Hvas CL, Bendix M, Dige A, Dahlerup JF, Agnholt J. Current, experimental, and future treatments in inflammatory bowel disease: a clinical review. Immunopharmacol Immunotoxicol 2018; 40:446-460. [PMID: 29745777 DOI: 10.1080/08923973.2018.1469144] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Inflammatory bowel diseases (IBDs) may result from dysregulated mucosal immune responses directed toward the resident intestinal microbiota. This review describes the hallmark immunobiology of Crohn's disease and ulcerative colitis as well as therapeutic targets and mechanisms of action for current, experimental, and future treatments in IBD. Conventional therapies include 5-aminosalicylic acid, glucocorticosteroids, thiopurines, and methotrexate. Since 1997, monoclonal antibodies have gained widespread use. These consist of antibodies directed against pro-inflammatory cytokines such as tumor necrosis factor α, interleukin (IL)-12, and IL-23, or anti-homing antibodies directed against α4β7 integrin. Emerging oral therapies include modulators of intracellular signal transduction such as Janus kinase inhibitors. Vitamin D may help to regulate innate and adaptive immune responses. Modulation of the intestinal microbiota, using live microorganisms (probiotics), substrates for the colonic microbiota (prebiotics), or fecal microbiota transplantation (FMT), is in development. Dietary supplements are in widespread use, but providing evidence for their benefit is challenging. Stem cell treatment and nervous stimulation are promising future treatments.
Collapse
Affiliation(s)
- Christian L Hvas
- a Department of Hepatology and Gastroenterology , Aarhus University Hospital , Aarhus C , Denmark
| | - Mia Bendix
- a Department of Hepatology and Gastroenterology , Aarhus University Hospital , Aarhus C , Denmark.,b Medical Department, Randers Regional Hospital , Randers , Denmark
| | - Anders Dige
- a Department of Hepatology and Gastroenterology , Aarhus University Hospital , Aarhus C , Denmark
| | - Jens F Dahlerup
- a Department of Hepatology and Gastroenterology , Aarhus University Hospital , Aarhus C , Denmark
| | - Jørgen Agnholt
- a Department of Hepatology and Gastroenterology , Aarhus University Hospital , Aarhus C , Denmark
| |
Collapse
|
20
|
Dige A, Magnusson MK, Uhrenholt C, Rasmussen TK, Kragstrup T, Öhman L, Dahlerup J, Agnholt J. Effects of Anti-TNF α Treatment on Mucosal Expression of IL-17A, IL-21, and IL-22 and Cytokine-Producing T Cell Subsets in Crohn's Disease. Mediators Inflamm 2018; 2018:3279607. [PMID: 29853788 PMCID: PMC5944277 DOI: 10.1155/2018/3279607] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Revised: 03/12/2018] [Accepted: 04/03/2018] [Indexed: 02/07/2023] Open
Abstract
T helper 17 (Th17) cells produce interleukin (IL) 17-A. In addition, Th17 cells produce IL-21 and IL-22. Th17 cells have a disease-promoting role in Crohn's disease (CD). We investigated the effects of anti-TNFα treatment on mucosal gene expression (qPCR) of IL-17A, IL-21, and IL-22 as well as on the frequency of lamina propria (LP) T cell subsets producing these cytokines (flow cytometry) in 12 active CD patients before and after 4 weeks of anti-TNFα treatment with adalimumab. At baseline, in inflamed mucosa we found increased gene expression of IL-17A and IL-22 but not IL-21 when compared to noninflamed mucosa. There were increased frequencies of IL-21-producing LP T cells but no differences in the frequencies of IL-17A- or IL-22-producing LP T cells when comparing inflamed versus noninflamed mucosa at baseline. There were no changes in the mucosal gene expression of IL-17A, IL-21, and IL-22 or the frequencies of IL-17A-, IL-21- and IL-22-producing LP T cell subsets between baseline and following 4 weeks of adalimumab initiation. Our results do not support the hypothesis that anti-TNFα treatment has an early effect on the mucosal levels of IL-17A, IL-21, and IL-22 or LP T cell production of these cytokines in CD.
Collapse
Affiliation(s)
- Anders Dige
- Gastro-Immuno Research Laboratory (GIRL), Department of Hepatology and Gastroenterology, Aarhus University Hospital, Aarhus, Denmark
| | - Maria K. Magnusson
- Department of Microbiology and Immunology, Institute for Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Claus Uhrenholt
- Gastro-Immuno Research Laboratory (GIRL), Department of Hepatology and Gastroenterology, Aarhus University Hospital, Aarhus, Denmark
| | - Tue Kruse Rasmussen
- Department of Biomedicine, Aarhus University Hospital, 8000 Aarhus C, Denmark
- Department of Rheumatology, Aarhus University Hospital, 8000 Aarhus C, Denmark
| | - Tue Kragstrup
- Department of Biomedicine, Aarhus University Hospital, 8000 Aarhus C, Denmark
- Department of Rheumatology, Aarhus University Hospital, 8000 Aarhus C, Denmark
| | - Lena Öhman
- Department of Microbiology and Immunology, Institute for Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Internal Medicine and Clinical Nutrition, Institute for Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Jens Dahlerup
- Gastro-Immuno Research Laboratory (GIRL), Department of Hepatology and Gastroenterology, Aarhus University Hospital, Aarhus, Denmark
| | - Jørgen Agnholt
- Gastro-Immuno Research Laboratory (GIRL), Department of Hepatology and Gastroenterology, Aarhus University Hospital, Aarhus, Denmark
| |
Collapse
|
21
|
Fuke N, Takagi T, Higashimura Y, Tsuji T, Umeda R, Mizushima K, Tanaka M, Suganuma H, Aizawa K, Yajima N, Naito Y. Lactobacillus brevis KB290 With Vitamin A Ameliorates Murine Intestinal Inflammation Associated With the Increase of CD11c+ Macrophage/CD103- Dendritic Cell Ratio. Inflamm Bowel Dis 2018; 24:317-331. [PMID: 29361084 DOI: 10.1093/ibd/izx003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Indexed: 12/13/2022]
Abstract
BACKGROUND The ratio of colonic anti-inflammatory CD11c+ macrophages (MPs) to inflammatory CD103- dendritic cells (DCs) plays pivotal roles in intestinal inflammation. Little is known about how the ratio is regulated by lactic acid bacteria (LAB) and bifidobacteria (Bif). We investigated the contribution of LAB/Bif to this ratio. METHODS We established an in vitro experimental system using human myeloblastic KG-1 cells, which differentiate into CD11c+ MP-like (CD11c+ MPL) and CD103- DC-like (CD103- DCL) cells, and explored effective LAB/Bif strains. The selected strain's effect on the colonic CD11c+ MP/CD103- DC ratio and intestinal inflammation was examined in mice, and the strain's underlying mechanisms were investigated in vitro. RESULTS We screened 19 strains of LAB/Bif, and found that Lactobacillus brevis KB290 (KB290) increased the CD11c+ MPL/CD103- DCL cell ratio only in the presence of a vitamin A (VA) metabolite, retinoic acid (RA). Supplementation of KB290 with VA increased the CD11c+ MP/CD103- DC ratio in healthy mouse and prevented the disruption of the ratio during colitis. Supplementation of KB290 with pro-VA (β-carotene) also increased the ratio in healthy mouse and ameliorated the development of colitis. The ratio was increased by reduction of CD103- DCs (or CD103- DCL cells). Our in vitro data suggested that KB290 induced cell death in CD103- DCL cells in the presence of RA signaling. CONCLUSIONS Supplementation of KB290 with VA increases the colonic CD11c+ MP/CD103- DC ratio associated with the amelioration of murine colitis, suggesting a possible way to control intestinal inflammation by LAB.
Collapse
Affiliation(s)
- Nobuo Fuke
- Nature & Wellness Research Department, Innovation Division, Nasushiobara, Tochigi, Japan
| | - Tomohisa Takagi
- Department of Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kamigyo-ku, Kyoto, Japan
| | - Yasuki Higashimura
- Department of Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kamigyo-ku, Kyoto, Japan.,Department of Food Science, Ishikawa Prefectural University, Nonoichi, Ishikawa, Japan
| | - Toshifumi Tsuji
- Department of Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kamigyo-ku, Kyoto, Japan
| | - Ryohei Umeda
- Nature & Wellness Research Department, Innovation Division, Nasushiobara, Tochigi, Japan
| | - Katsura Mizushima
- Department of Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kamigyo-ku, Kyoto, Japan
| | - Makoto Tanaka
- Department of Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kamigyo-ku, Kyoto, Japan
| | - Hiroyuki Suganuma
- Nature & Wellness Research Department, Innovation Division, Nasushiobara, Tochigi, Japan
| | - Koichi Aizawa
- Nature & Wellness Research Department, Innovation Division, Nasushiobara, Tochigi, Japan
| | - Nobuhiro Yajima
- Nature & Wellness Research Department, Innovation Division, Nasushiobara, Tochigi, Japan.,Department of Food and Nutritional Science, Tokyo University of Agriculture, Setagaya-ku, Japan
| | - Yuji Naito
- Department of Molecular Gastroenterology and Hepatology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kamigyo-ku, Kyoto, Japan
| |
Collapse
|
22
|
High-dose vitamin D 3 supplementation decreases the number of colonic CD103 + dendritic cells in healthy subjects. Eur J Nutr 2017; 57:2607-2619. [PMID: 28913556 DOI: 10.1007/s00394-017-1531-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Accepted: 08/21/2017] [Indexed: 12/20/2022]
Abstract
PURPOSE Vitamin D may induce tolerance in the intestinal immune system and has been shown to regulate the phenotype of tolerogenic intestinal dendritic cells (DCs) in vitro. It is unknown whether vitamin D supplementation affects human intestinal DCs in vivo, and we aimed to investigate the tolerability and effect on intestinal CD103+DCs of high-dose vitamin D3 treatment in healthy subjects. METHODS Ten healthy subjects received a total of 480,000 IU oral vitamin D3 over 15 days and colonic biopsies were obtained before and after intervention by endoscopy. Lamina propria mononuclear cells (LPMCs) were isolated from the biopsies, stained with DC surface markers and analysed with flow cytometry. Snap-frozen biopsies were analysed with qPCR for DC and regulatory T cell-related genes. RESULTS No hypercalcemia or other adverse events occurred in the test subjects. Vitamin D decreased the number of CD103+ DCs among LPMCs (p = 0.006). Furthermore, vitamin D induced mRNA expression of TGF-β (p = 0.048), TNF-α (p = 0.006) and PD-L1 (p = 0.02) and tended to induce IL-10 expression (p = 0.06). Multivariate factor analysis discriminated between pre- and post-vitamin D supplementation with a combined increased qPCR expression of PD1, PD-L1, TGF-β, IL-10, CD80, CD86, FOXP3, NFATc2 and cathelicidin. CONCLUSION High-dose vitamin D supplementation is well tolerated by healthy subjects and has a direct effect on the CD103+ DCs, local cytokine and surface marker mRNA expression in the colonic mucosa, suggestive of a shift towards a more tolerogenic milieu.
Collapse
|
23
|
Abstract
BACKGROUND Human intestinal innate myeloid cells can be divided into 3 subsets: HLA-DRCD14 cells, HLA-DRCD103 dendritic cells (DCs), and HLA-DRCD14CD103 cells. CD103 DCs generate Treg cells and Th17 cells in the ileum, but their function in the colon remains largely unknown. This study characterized CD103 DCs in the colon and investigated whether these cells are implicated in the pathogenesis of ulcerative colitis (UC). METHODS Normal intestinal mucosa was obtained from intact sites of patients with colorectal cancer (n = 24). Noninflamed and inflamed colonic tissues were obtained from surgically resected specimens of patients with UC (n = 13). Among LinCD45HLA-DR intestinal lamina propria cells, CD14 cells and CD103 DCs were sorted and analyzed for microRNA expression of cytokines and toll-like receptors by quantitative real-time polymerase chain reaction. In addition, IL-4/IL-5/IL-13/IL-17/IFN-γ production and Foxp3 expression by naive T cells cultured with CD14 cells and CD103 DCs were analyzed. RESULTS CD103 DCs in the normal colon showed lower expression of toll-like receptors and proinflammatory cytokines than CD14 cells. Coculture with naive T cells revealed that CD103 DCs generated Treg cells. CD103 DCs from patients with UC did not generate Treg cells, but they induced IFN-γ-, IL-13-, and IL-17-producing CD4 T cells and showed higher expression of IL6 (P < 0.0001), IL23A (P < 0.05), IL12p35 (P < 0.05), and TNF (P < 0.05). CONCLUSIONS In patients with UC, CD103 DCs show the impaired ability to generate Treg cells, but exhibit a colitogenic function inducing Th1/Th2/Th17 responses. These findings show how human CD103 DCs could contribute to the pathogenesis of UC.
Collapse
|
24
|
Smids C, Horjus Talabur Horje CS, van Wijk F, van Lochem EG. The Complexity of alpha E beta 7 Blockade in Inflammatory Bowel Diseases. J Crohns Colitis 2017; 11:500-508. [PMID: 27660340 DOI: 10.1093/ecco-jcc/jjw163] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Accepted: 09/21/2016] [Indexed: 02/08/2023]
Abstract
Monoclonal antibodies targeting integrins are emerging as new treatment option in inflammatory bowel diseases. Integrins are molecules involved in cell adhesion and signalling. After the successful introduction of anti-α4β7, currently anti-β7 is under evaluation in a phase three trial. Anti-β7 blocks both α4β7/MAdCAM-1 and αEβ7/E-cadherin interaction, targeting both the homing to and the retention in the gut of potential pathological T cells. Since the physiological and potential pathological roles of immune cells expressing αEβ7 are less distinct than of those expressing α4β7, an overview of the current state of knowledge on αEβ7 in mice and humans in both health and inflammatory bowel diseases is presented here, also addressing the potential consequences of anti-β7 treatment.
Collapse
Affiliation(s)
- Carolijn Smids
- Department of Gastroenterology and Hepatology, Rijnstate Hospital, Arnhem, The Netherlands
| | | | - Femke van Wijk
- Laboratory of Translational Immunology, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - Ellen G van Lochem
- Department of Microbiology and Immunology, Rijnstate Hospital, Arnhem, The Netherlands
| |
Collapse
|
25
|
Aebisher D, Bartusik D, Tabarkiewicz J. Laser flow cytometry as a tool for the advancement of clinical medicine. Biomed Pharmacother 2017; 85:434-443. [DOI: 10.1016/j.biopha.2016.11.048] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2016] [Revised: 11/08/2016] [Accepted: 11/08/2016] [Indexed: 12/11/2022] Open
|