Luoma PV. Elimination of endoplasmic reticulum stress and cardiovascular, type 2 diabetic, and other metabolic diseases.
Ann Med 2013;
45:194-202. [PMID:
22928964 PMCID:
PMC3581057 DOI:
10.3109/07853890.2012.700116]
[Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/29/2012] [Accepted: 05/11/2012] [Indexed: 12/21/2022] Open
Abstract
Multiple factors including unhealthy living habits influence the life-maintaining functions of the endoplasmic reticulum (ER) and induce ER stress and metabolic abnormalities. The ER responds to the disturbances by activating mechanisms that increase the capacity to eliminate ER stress. This article elucidates the effects of ER activation that eliminates both ER stress and associated cardiovascular, type 2 diabetic (DM2), and other metabolic diseases. ER-activating compounds eliminate ER stress by lowering elevated cholesterol, regress atherosclerosis, decrease cardiovascular mortality, reduce blood glucose and insulin, and, together with the normalization of glucose-insulin homeostasis, remove insulin resistance, pancreatic β-cell failure, and DM2. A deficient cytochrome P450 activity in hepatic ER leads to cholesterol accumulation that induces stress and xanthoma formation, whereas P450-activating therapy up-regulates apolipoprotein AI and LDLR genes, down-regulates apolipoprotein B gene, and produces an antiatherogenic plasma lipoprotein profile. The ER activation reduces the stress also by eliminating hepatic fat and converting saturated fatty acids (FAs) to unsaturated FAs. Cognitive processes require gene expression modification, and preclinical studies indicate that ER-activating therapy improves cognition. Promotion of healthy lifestyle choices and indicated therapies are key factors in the prevention and elimination of ER stress and associated global health problems.
Collapse