1
|
Khilnani GC, Tiwari P, Mittal S, Kulkarni AP, Chaudhry D, Zirpe KG, Todi SK, Mohan A, Hegde A, Jagiasi BG, Krishna B, Rodrigues C, Govil D, Pal D, Divatia JV, Sengar M, Gupta M, Desai M, Rungta N, Prayag PS, Bhattacharya PK, Samavedam S, Dixit SB, Sharma S, Bandopadhyay S, Kola VR, Deswal V, Mehta Y, Singh YP, Myatra SN. Guidelines for Antibiotics Prescription in Critically Ill Patients. Indian J Crit Care Med 2024; 28:S104-S216. [PMID: 39234229 PMCID: PMC11369928 DOI: 10.5005/jp-journals-10071-24677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 03/20/2024] [Indexed: 09/06/2024] Open
Abstract
How to cite this article: Khilnani GC, Tiwari P, Mittal S, Kulkarni AP, Chaudhry D, Zirpe KG, et al. Guidelines for Antibiotics Prescription in Critically Ill Patients. Indian J Crit Care Med 2024;28(S2):S104-S216.
Collapse
Affiliation(s)
- Gopi C Khilnani
- Department of Pulmonary, Critical Care and Sleep Medicine, PSRI Hospital, New Delhi, India
| | - Pawan Tiwari
- Department of Pulmonary, Critical Care and Sleep Medicine, AIIMS, New Delhi, India
| | - Saurabh Mittal
- Department of Pulmonary, Critical Care and Sleep Medicine, AIIMS, New Delhi, India
| | - Atul P Kulkarni
- Division of Critical Care Medicine, Department of Anaesthesia, Critical Care and Pain, Tata Memorial Hospital, Homi Bhabha National Institute, Mumbai, Maharashtra, India
| | - Dhruva Chaudhry
- Department of Pulmonary and Critical Care Medicine, University of Health Sciences, Rohtak, Haryana, India
| | - Kapil G Zirpe
- Department of Neuro Trauma Unit, Grant Medical Foundation, Pune, Maharashtra, India
| | - Subhash K Todi
- Department of Critical Care, AMRI Hospital, Kolkata, West Bengal, India
| | - Anant Mohan
- Department of Pulmonary, Critical Care and Sleep Medicine, AIIMS, New Delhi, India
| | - Ashit Hegde
- Department of Medicine & Critical Care, P D Hinduja National Hospital, Mumbai, India
| | - Bharat G Jagiasi
- Department of Critical Care, Kokilaben Dhirubhai Ambani Hospital, Navi Mumbai, Maharashtra, India
| | - Bhuvana Krishna
- Department of Critical Care Medicine, St John's Medical College and Hospital, Bengaluru, India
| | - Camila Rodrigues
- Department of Microbiology, P D Hinduja National Hospital, Mumbai, India
| | - Deepak Govil
- Department of Critical Care and Anesthesia, Medanta – The Medicity, GuruGram, Haryana, India
| | - Divya Pal
- Department of Critical Care and Anesthesia, Medanta – The Medicity, GuruGram, Haryana, India
| | - Jigeeshu V Divatia
- Department of Anaesthesiology, Critical Care and Pain, Tata Memorial Hospital, Homi Bhabha National Institute, Mumbai, Maharashtra, India
| | - Manju Sengar
- Department of Medical Oncology, Tata Memorial Center, Homi Bhabha National Institute, Mumbai, Maharashtra, India
| | - Mansi Gupta
- Department of Pulmonary Medicine, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, Uttar Pradesh, India
| | - Mukesh Desai
- Department of Immunology, Pediatric Hematology and Oncology Bai Jerbai Wadia Hospital for Children, Mumbai, Maharashtra, India
| | - Narendra Rungta
- Department of Critical Care & Anaesthesiology, Rajasthan Hospital, Jaipur, India
| | - Parikshit S Prayag
- Department of Transplant Infectious Diseases, Deenanath Mangeshkar Hospital, Pune, Maharashtra, India
| | - Pradip K Bhattacharya
- Department of Critical Care Medicine, Rajendra Institute of Medical Sciences, Ranchi, Jharkhand, India
| | - Srinivas Samavedam
- Department of Critical Care, Ramdev Rao Hospital, Hyderabad, Telangana, India
| | - Subhal B Dixit
- Department of Critical Care, Sanjeevan and MJM Hospital, Pune, Maharashtra, India
| | - Sudivya Sharma
- Department of Anaesthesiology, Critical Care and Pain, Tata Memorial Hospital, Homi Bhabha National Institute, Mumbai, Maharashtra, India
| | - Susruta Bandopadhyay
- Department of Critical Care, AMRI Hospitals Salt Lake, Kolkata, West Bengal, India
| | - Venkat R Kola
- Department of Critical Care Medicine, Yashoda Hospitals, Hyderabad, Telangana, India
| | - Vikas Deswal
- Consultant, Infectious Diseases, Medanta - The Medicity, Gurugram, Haryana, India
| | - Yatin Mehta
- Department of Critical Care and Anesthesia, Medanta – The Medicity, GuruGram, Haryana, India
| | - Yogendra P Singh
- Department of Critical Care, Max Super Speciality Hospital, Patparganj, New Delhi, India
| | - Sheila N Myatra
- Department of Anaesthesiology, Critical Care and Pain, Tata Memorial Hospital, Homi Bhabha National Institute, Mumbai, Maharashtra, India
| |
Collapse
|
2
|
Sangiorgio G, Calvo M, Migliorisi G, Campanile F, Stefani S. The Impact of Enterococcus spp. in the Immunocompromised Host: A Comprehensive Review. Pathogens 2024; 13:409. [PMID: 38787261 PMCID: PMC11124283 DOI: 10.3390/pathogens13050409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 05/05/2024] [Accepted: 05/14/2024] [Indexed: 05/25/2024] Open
Abstract
The immunocompromised host is usually vulnerable to infectious diseases due to broad-spectrum treatments and immunological dysregulation. The Enterococcus genus consists of normal gut commensals, which acquire a leading role in infective processes among individuals with compromised immune systems. These microorganisms may express a potential virulence and resistance spectrum, enabling their function as severe pathogens. The Enterococcus spp. infections in immunocompromised hosts appear to be difficult to resolve due to the immunological response impairment and the possibility of facing antimicrobial-resistant strains. As regards the related risk factors, several data demonstrated that prior antibiotic exposure, medical device insertion, prolonged hospitalization and surgical interventions may lead to Enterococcus overgrowth, antibiotic resistance and spread among critical healthcare settings. Herein, we present a comprehensive review of Enterococcus spp. in the immunocompromised host, summarizing the available knowledge about virulence factors, antimicrobial-resistance mechanisms and host-pathogen interaction. The review ultimately yearns for more substantial support to further investigations about enterococcal infections and immunocompromised host response.
Collapse
Affiliation(s)
- Giuseppe Sangiorgio
- Department of Biomedical and Biotechnological Sciences, University of Catania, Via Santa Sofia 97, 95123 Catania, Italy; (F.C.); (S.S.)
| | - Maddalena Calvo
- U.O.C. Laboratory Analysis Unit, University Hospital Policlinico-San Marco, Via Santa Sofia 78, 95123 Catania, Italy; (M.C.); (G.M.)
| | - Giuseppe Migliorisi
- U.O.C. Laboratory Analysis Unit, University Hospital Policlinico-San Marco, Via Santa Sofia 78, 95123 Catania, Italy; (M.C.); (G.M.)
| | - Floriana Campanile
- Department of Biomedical and Biotechnological Sciences, University of Catania, Via Santa Sofia 97, 95123 Catania, Italy; (F.C.); (S.S.)
| | - Stefania Stefani
- Department of Biomedical and Biotechnological Sciences, University of Catania, Via Santa Sofia 97, 95123 Catania, Italy; (F.C.); (S.S.)
- U.O.C. Laboratory Analysis Unit, University Hospital Policlinico-San Marco, Via Santa Sofia 78, 95123 Catania, Italy; (M.C.); (G.M.)
| |
Collapse
|
3
|
Cairns KA, Udy AA, Peel TN, Abbott IJ, Dooley MJ, Peleg AY. Therapeutics for Vancomycin-Resistant Enterococcal Bloodstream Infections. Clin Microbiol Rev 2023; 36:e0005922. [PMID: 37067406 PMCID: PMC10283489 DOI: 10.1128/cmr.00059-22] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/18/2023] Open
Abstract
Vancomycin-resistant enterococci (VRE) are common causes of bloodstream infections (BSIs) with high morbidity and mortality rates. They are pathogens of global concern with a limited treatment pipeline. Significant challenges exist in the management of VRE BSI, including drug dosing, the emergence of resistance, and the optimal treatment for persistent bacteremia and infective endocarditis. Therapeutic drug monitoring (TDM) for antimicrobial therapy is evolving for VRE-active agents; however, there are significant gaps in the literature for predicting antimicrobial efficacy for VRE BSIs. To date, TDM has the greatest evidence for predicting drug toxicity for the three main VRE-active antimicrobial agents daptomycin, linezolid, and teicoplanin. This article presents an overview of the treatment options for VRE BSIs, the role of antimicrobial dose optimization through TDM in supporting clinical infection management, and challenges and perspectives for the future.
Collapse
Affiliation(s)
- Kelly A. Cairns
- Department of Infectious Diseases, The Alfred Hospital and Central Clinical School, Monash University, Melbourne, Victoria, Australia
- Pharmacy Department, Alfred Health, Melbourne, Victoria, Australia
| | - Andrew A. Udy
- Australian and New Zealand Intensive Care Research Centre, School of Public Health and Preventive Medicine, Monash University, Melbourne, Victoria, Australia
- Department of Intensive Care and Hyperbaric Medicine, The Alfred, Melbourne, Victoria, Australia
| | - Trisha N. Peel
- Department of Infectious Diseases, The Alfred Hospital and Central Clinical School, Monash University, Melbourne, Victoria, Australia
| | - Iain J. Abbott
- Department of Infectious Diseases, The Alfred Hospital and Central Clinical School, Monash University, Melbourne, Victoria, Australia
- Microbiology Unit, Alfred Health, Melbourne, Victoria, Australia
| | - Michael J. Dooley
- Pharmacy Department, Alfred Health, Melbourne, Victoria, Australia
- Centre for Medicines Use and Safety, Faculty of Pharmacy and Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| | - Anton Y. Peleg
- Department of Infectious Diseases, The Alfred Hospital and Central Clinical School, Monash University, Melbourne, Victoria, Australia
- Infection Program, Monash Biomedicine Discovery Institute, Department of Microbiology, Monash University, Clayton, Victoria, Australia
- Centre to Impact AMR, Monash University, Clayton, Victoria, Australia
| |
Collapse
|
4
|
Therapeutic Options and Outcomes for the Treatment of Children with Gram-Positive Bacteria with Resistances of Concern: A Systematic Review. Antibiotics (Basel) 2023; 12:antibiotics12020261. [PMID: 36830174 PMCID: PMC9952189 DOI: 10.3390/antibiotics12020261] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 01/14/2023] [Accepted: 01/26/2023] [Indexed: 01/31/2023] Open
Abstract
BACKGROUND Methicillin-resistant Staphylococcus aureus (MRSA), methicillin-resistant coagulase-negative Staphylococci (MR-CoNS), and vancomycin-resistant Enterococci (VRE) are increasing worldwide and represent a threat for the limited treatment options in pediatric patients and neonates compared to adults. Recommendations in pediatrics are mainly extrapolated from adults' studies. METHODS A literature search for the treatment of these pathogens in children (<18 years old) was conducted in Embase, MEDLINE, and Cochrane Library. Studies reporting data on single-patient-level outcomes related to a specific antibiotic treatment for multidrug resistant (MDR) Gram-positive bacterial infection in children were included. Studies reporting data from adults and children were included if single-pediatric-level information could be identified (PROSPERO registration: CRD42022383867). RESULTS The search identified 11,740 studies (since January 2000), of which 48 fulfilled both the inclusion and the exclusion criteria and were included in the analysis: 29 for MRSA, 20 for VRE, and seven for MR-CoNS. Most studies were retrospective studies. Vancomycin was mainly used as a comparator, while linezolid and daptomycin were the most studied antimicrobials showing good efficacy. CONCLUSIONS Linezolid showed a safety and efficacy profile in a neonatal setting; daptomycin is increasingly used for MRSA, but the evidence is scarce for VRE.
Collapse
|
5
|
Li G, Walker MJ, De Oliveira DMP. Vancomycin Resistance in Enterococcus and Staphylococcus aureus. Microorganisms 2022; 11:microorganisms11010024. [PMID: 36677316 PMCID: PMC9866002 DOI: 10.3390/microorganisms11010024] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 12/19/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022] Open
Abstract
Enterococcus faecalis, Enterococcus faecium and Staphylococcus aureus are both common commensals and major opportunistic human pathogens. In recent decades, these bacteria have acquired broad resistance to several major classes of antibiotics, including commonly employed glycopeptides. Exemplified by resistance to vancomycin, glycopeptide resistance is mediated through intrinsic gene mutations, and/or transferrable van resistance gene cassette-carrying mobile genetic elements. Here, this review will discuss the epidemiology of vancomycin-resistant Enterococcus and S. aureus in healthcare, community, and agricultural settings, explore vancomycin resistance in the context of van and non-van mediated resistance development and provide insights into alternative therapeutic approaches aimed at treating drug-resistant Enterococcus and S. aureus infections.
Collapse
|
6
|
Shah RA, Hsu JI, Patel RR, Mui UN, Tyring SK. Antibiotic resistance in dermatology: The scope of the problem and strategies to address it. J Am Acad Dermatol 2022; 86:1337-1345. [PMID: 34555484 DOI: 10.1016/j.jaad.2021.09.024] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 08/26/2021] [Accepted: 09/10/2021] [Indexed: 01/05/2023]
Abstract
Antibiotic resistance is a growing health concern that has attracted increasing attention from clinicians and scientists in recent years. Although resistance is an inevitable consequence of bacterial evolution and natural selection, misuse and overuse of antibiotics play a significant role in its acceleration. Antibiotics are the mainstay of therapy for common dermatoses, including acne and rosacea, as well as for skin and soft tissue infections. Therefore, it is critical for dermatologists and physicians across all disciplines to identify, appropriately manage, and prevent cases of antibiotic resistance. This review explores dermatologic conditions in which the development of antibiotic resistance is a risk and discusses mechanisms underlying the development of resistance. We discuss disease-specific strategies for overcoming resistant strains and improving antimicrobial stewardship along with recent advances in the development of novel approaches to counter antibiotic resistance.
Collapse
Affiliation(s)
- Radhika A Shah
- Department of Internal Medicine, Baylor University Medical Center, Dallas, Texas.
| | | | - Ravi R Patel
- Department of Dermatology, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Uyen Ngoc Mui
- Department of Dermatology, Texas Tech University Health Sciences Center, Lubbock, Texas
| | - Stephen K Tyring
- Center for Clinical Studies, Houston, Texas; Department of Dermatology, McGovern Medical School at UTHealth, Houston, Texas
| |
Collapse
|
7
|
Riccardi N, Monticelli J, Antonello RM, Di Lallo G, Frezza D, Luzzati R, Di Bella S. Therapeutic Options for Infections due to vanB Genotype Vancomycin-Resistant Enterococci. Microb Drug Resist 2020; 27:536-545. [PMID: 32799629 DOI: 10.1089/mdr.2020.0171] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Enterococci are ubiquitous, facultative, anaerobic Gram-positive bacteria that mainly reside, as part of the normal microbiota, in the gastrointestinal tracts of several animal species, including humans. These bacteria have the capability to turn from a normal gut commensal organism to an invasive pathogen in patients debilitated by prolonged hospitalization, concurrent illnesses, and/or exposed to broad-spectrum antibiotics. The majority of vancomycin-resistant enterococcus (VRE) infections are linked to the vanA genotype; however, outbreaks caused by vanB-type VREs have been increasingly reported, representing a new challenge for effective antimicrobial treatment. Teicoplanin, daptomycin, fosfomycin, and linezolid are useful antimicrobials for infections due to vanB enterococci. In addition, new drugs have been developed (e.g., dalbavancin, telavancin, and tedizolid), new molecules will soon be available (e.g., eravacycline, omadacycline, and oritavancin), and new treatment strategies are progressively being used in clinical practice (e.g., combination therapies and bacteriophages). The aim of this article is to discuss the pathogenesis of infections due to enterococci harboring the vanB operon (vanBVRE) and their therapeutic, state-of-the-art, and future treatment options and provide a comprehensive and easy to use review for clinical purposes.
Collapse
Affiliation(s)
- Niccolò Riccardi
- Department of Infectious-Tropical Diseases and Microbiology, IRCCS Sacro Cuore Don Calabria Hospital, Negrar di Valpolicella, Verona, Italy
| | - Jacopo Monticelli
- Hospital Direction, AULSS6 Euganea Ospedali Riuniti Padova Sud, Monselice, Italy
| | | | - Gustavo Di Lallo
- Department of Biology, University of Rome "Tor Vergata," Rome, Italy
| | - Domenico Frezza
- Department of Biology, University of Rome "Tor Vergata," Rome, Italy
| | - Roberto Luzzati
- Infectious Diseases Department, Azienda Sanitaria Universitaria Integrata di Trieste, Trieste, Italy
| | - Stefano Di Bella
- Infectious Diseases Department, Azienda Sanitaria Universitaria Integrata di Trieste, Trieste, Italy
| |
Collapse
|
8
|
Khalifa L, Gelman D, Shlezinger M, Dessal AL, Coppenhagen-Glazer S, Beyth N, Hazan R. Defeating Antibiotic- and Phage-Resistant Enterococcus faecalis Using a Phage Cocktail in Vitro and in a Clot Model. Front Microbiol 2018. [PMID: 29541067 PMCID: PMC5835721 DOI: 10.3389/fmicb.2018.00326] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
The deteriorating effectiveness of antibiotics is propelling researchers worldwide towards alternative techniques such as phage therapy: curing infectious diseases using viruses of bacteria called bacteriophages. In a previous paper, we isolated phage EFDG1, highly effective against both planktonic and biofilm cultures of one of the most challenging pathogenic species, the vancomycin-resistant Enterococcus (VRE). Thus, it is a promising phage to be used in phage therapy. Further experimentation revealed the emergence of a mutant resistant to EFDG1 phage: EFDG1r. This kind of spontaneous resistance to antibiotics would be disastrous occurrence, however for phage-therapy it is only a minor hindrance. We quickly and successfully isolated a new phage, EFLK1, which proved effective against both the resistant mutant EFDG1r and its parental VRE, Enterococcus faecalis V583. Furthermore, combining both phages in a cocktail produced an additive effect against E. faecalis V583 strains regardless of their antibiotic or phage-resistance profile. An analysis of the differences in genome sequence, genes, mutations, and tRNA content of both phages is presented. This work is a proof-of-concept of one of the most significant advantages of phage therapy, namely the ability to easily overcome emerging resistant bacteria.
Collapse
Affiliation(s)
- Leron Khalifa
- Faculty of Dental Sciences, Hadassah School of Dental Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Daniel Gelman
- Faculty of Dental Sciences, Hadassah School of Dental Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Mor Shlezinger
- Faculty of Dental Sciences, Hadassah School of Dental Medicine, Hebrew University of Jerusalem, Jerusalem, Israel.,Department of Prosthodontics, Hadassah School of Dental Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Axel Lionel Dessal
- Faculty of Dental Sciences, Hadassah School of Dental Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Shunit Coppenhagen-Glazer
- Faculty of Dental Sciences, Hadassah School of Dental Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Nurit Beyth
- Faculty of Dental Sciences, Hadassah School of Dental Medicine, Hebrew University of Jerusalem, Jerusalem, Israel.,Department of Prosthodontics, Hadassah School of Dental Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Ronen Hazan
- Faculty of Dental Sciences, Hadassah School of Dental Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| |
Collapse
|
9
|
Abstract
PURPOSE OF REVIEW Uncertainties exist regarding the optimal treatment for vancomycin-resistant enterococcal (VRE) bloodstream infections, particularly in settings in which ampicillin cannot be used. RECENT FINDINGS Quinupristin-dalfopristin, linezolid, and daptomycin, all approved between 1999 and 2003, represent the mainstays of therapy for VRE bacteremia, although only linezolid has been specifically approved by the United States Food and Drug Administration for this indication. The main objective of this review is to compare the relative efficacies, dosing strategies, and side-effect profiles of quinupristin-dalfopristin, linezolid, and daptomycin for VRE bacteremia in the pediatric population. A brief description of recently approved broad-spectrum Gram-positive agents that may have a role in the management of VRE bacteremia in upcoming years is also provided. SUMMARY Linezolid, despite its bacteriostatic activity against VRE, may be the most versatile of the available drugs. It has activity against both Enterococcus faecalis and E. faecium, can be administered orally, and resistance appears to be less of a concern with linezolid compared with the other agents. Additionally, the results of two recent meta-analyses demonstrate more favorable outcomes with linezolid compared with daptomycin for the treatment of VRE bacteremia. The clinical pharmacokinetics of linezolid have been well described in children. The most notable concern with linezolid, however, is toxicities associated with prolonged use. Until more prospective data are available, we favor linezolid as first-line therapy for the treatment of VRE bacteremia in children.
Collapse
|
10
|
Intravenous Antibiotics Used in the Treatment of Methicillin-Resistant Staphylococcus Aureus. AACN Adv Crit Care 2015. [PMID: 26200732 DOI: 10.1097/nci.0000000000000095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) continues to cause significant morbidity and mortality. Despite advances in medical care, the prevalence of both community-acquired and hospital-acquired MRSA has progressively increased. Community-acquired MRSA typically occurs in patients without recent illness or hospitalization, presents as acute skin and soft tissue infections, and is usually not multidrug resistant. Hospital-acquired MRSA, however, presents in patients recently hospitalized or treated in long-term care settings and in those who have had medical procedures and is usually associated with multidrug-resistant strains. Both types of infections, if not properly treated, have the potential to become invasive. This article discusses current intravenous antibiotics that are available for the empiric treatment of MRSA infections along with a newer phenomenon known as the "seesaw effect."
Collapse
|
11
|
Scordo KA. Intravenous Antibiotics Used in the Treatment of Methicillin-Resistant Staphylococcus Aureus. AACN Adv Crit Care 2015. [DOI: 10.4037/nci.0000000000000095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) continues to cause significant morbidity and mortality. Despite advances in medical care, the prevalence of both community-acquired and hospital-acquired MRSA has progressively increased. Community-acquired MRSA typically occurs in patients without recent illness or hospitalization, presents as acute skin and soft tissue infections, and is usually not multidrug resistant. Hospital-acquired MRSA, however, presents in patients recently hospitalized or treated in long-term care settings and in those who have had medical procedures and is usually associated with multidrug-resistant strains. Both types of infections, if not properly treated, have the potential to become invasive. This article discusses current intravenous antibiotics that are available for the empiric treatment of MRSA infections along with a newer phenomenon known as the “seesaw effect.”
Collapse
Affiliation(s)
- Kristine Anne Scordo
- Kristine Anne Scordo is Professor and Director, Adult-Gerontology Acute Care Nurse Practitioner Program, College of Nursing, Wright State University, Dayton, OH 45435
| |
Collapse
|
12
|
Bradley JS. Which antibiotic for resistant Gram-positives, and why? J Infect 2014; 68 Suppl 1:S63-75. [DOI: 10.1016/j.jinf.2013.09.016] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/20/2013] [Indexed: 11/30/2022]
|
13
|
Multicenter study of high-dose daptomycin for treatment of enterococcal infections. Antimicrob Agents Chemother 2013; 57:4190-6. [PMID: 23774437 DOI: 10.1128/aac.00526-13] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Enterococci are among the leading pathogens isolated in hospital-acquired infections. Current antimicrobial options for vancomycin-resistant enterococci (VRE) are limited. Prior data suggest that daptomycin at >6 mg/kg of body weight/day may be used to treat enterococcal infections. We retrospectively evaluated the effectiveness and safety of high-dose daptomycin (HD-daptomycin) therapy (>6 mg/kg) in a multicenter cohort of adult patients with enterococcal infections to describe the characteristics and outcomes. Two hundred forty-five patients were evaluated. Enterococcus faecium was identified in 175 (71%), followed by Enterococcus faecalis in 49 (20%) and Enterococcus spp. in 21 (9%); overall, 204 (83%) isolates were VRE. Enterococcal infections included bacteremia (173, 71%) and intra-abdominal (35, 14%) and bone and joint (25, 10%) infections. The median dosage and duration of HD-daptomycin were 8.2 mg/kg/day (interquartile range [IQR], 7.7 to 9.7) and 10 days (IQR, 6 to 15), respectively. The overall clinical success rate was 89% (193/218), and microbiological eradication was observed in 93% (177/191) of patients. The median time to clearance of blood cultures on HD-daptomycin was 3 days (IQR, 2 to 5). The 30-day all-cause mortality rate was 27%, and 5 (2%) patients developed daptomycin-nonsusceptible enterococcal strains while on HD-daptomycin. Seven patients (3%) had creatine phosphokinase (CPK) elevation, yet no HD-daptomycin regimen was discontinued due to an elevated CPK and all patients were asymptomatic. Overall, there was a high frequency of clinical success and microbiological eradication in patients treated with HD-daptomycin for enterococcal infections, even in patients with complicated and difficult-to-treat infections. No adverse event-related discontinuation of HD-daptomycin was noted. HD-daptomycin may be an option for the treatment of enterococcal infections.
Collapse
|
14
|
Abstract
Enterococci have the potential for resistance to virtually all clinically useful antibiotics. Their emergence as important nosocomial pathogens has coincided with increased expression of antimicrobial resistance by members of the genus. The mechanisms underlying antibiotic resistance in enterococci may be intrinsic to the species or acquired through mutation of intrinsic genes or horizontal exchange of genetic material encoding resistance determinants. This paper reviews the antibiotic resistance mechanisms in Enterococcus faecium and Enterococcus faecalis and discusses treatment options.
Collapse
Affiliation(s)
- Brian L Hollenbeck
- Department of Medicine, Lifespan/Rhode Island Hospital and Alpert Medical School of Brown University, Providence, RI, USA
| | | |
Collapse
|
15
|
|