1
|
Wu Z, Ma Y, Chen S, Liu Y, Liu X, Cao H, Jin T, Li L, Huang M, Yang F, Dong W. Arginine Biosynthesis Mediates Wulingzhi Extract Resistance to Busulfan-Induced Male Reproductive Toxicity. Int J Mol Sci 2024; 25:6320. [PMID: 38928028 PMCID: PMC11203605 DOI: 10.3390/ijms25126320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 06/01/2024] [Accepted: 06/05/2024] [Indexed: 06/28/2024] Open
Abstract
Busulfan, an indispensable medicine in cancer treatment, can cause serious reproductive system damage to males as a side effect of its otherwise excellent therapeutic results. Its widespread use has also caused its accumulation in the environment and subsequent ecotoxicology effects. As a Chinese medicine, Wulingzhi (WLZ) has the effects of promoting blood circulation and improving female reproductive function. However, the potential effects of WLZ in male reproduction and in counteracting busulfan-induced testis damage, as well as its probable mechanisms, are still ambiguous. In this study, busulfan was introduced in a mouse model to evaluate its production of the testicular damage. The components of different WLZ extracts were compared using an untargeted metabolome to select extracts with greater efficacy, which were further confirmed in vivo. Here, we demonstrate abnormal spermatogenesis and low sperm quality in busulfan-injured testes. The WLZ extracts showed a strong potential to rehabilitate the male reproductive system; this effect was more prominent in room-temperature extracts. Additionally, both water and ethanol WLZ extracts at room temperature alleviated various busulfan-induced adverse effects. In particular, WLZ recovered spermatogenesis, re-activated arginine biosynthesis, and alleviated the increased oxidative stress and inflammation in the testis, ultimately reversing the busulfan-induced testicular injury. Collectively, these results suggest a promising approach to protecting the male reproductive system from busulfan-induced adverse side effects, as well as those of other similar anti-cancer drugs.
Collapse
Affiliation(s)
- Zifang Wu
- College of Animal Science and Technology, Northwest A&F University, Xianyang 712100, China; (Z.W.); (Y.M.); (S.C.); (Y.L.); (H.C.); (T.J.); (L.L.); (M.H.)
| | - Yuxuan Ma
- College of Animal Science and Technology, Northwest A&F University, Xianyang 712100, China; (Z.W.); (Y.M.); (S.C.); (Y.L.); (H.C.); (T.J.); (L.L.); (M.H.)
| | - Shaoxian Chen
- College of Animal Science and Technology, Northwest A&F University, Xianyang 712100, China; (Z.W.); (Y.M.); (S.C.); (Y.L.); (H.C.); (T.J.); (L.L.); (M.H.)
| | - Yuyan Liu
- College of Animal Science and Technology, Northwest A&F University, Xianyang 712100, China; (Z.W.); (Y.M.); (S.C.); (Y.L.); (H.C.); (T.J.); (L.L.); (M.H.)
| | - Xianglin Liu
- College of Forestry, Northwest A&F University, Xianyang 712100, China;
| | - Heran Cao
- College of Animal Science and Technology, Northwest A&F University, Xianyang 712100, China; (Z.W.); (Y.M.); (S.C.); (Y.L.); (H.C.); (T.J.); (L.L.); (M.H.)
| | - Tianqi Jin
- College of Animal Science and Technology, Northwest A&F University, Xianyang 712100, China; (Z.W.); (Y.M.); (S.C.); (Y.L.); (H.C.); (T.J.); (L.L.); (M.H.)
| | - Long Li
- College of Animal Science and Technology, Northwest A&F University, Xianyang 712100, China; (Z.W.); (Y.M.); (S.C.); (Y.L.); (H.C.); (T.J.); (L.L.); (M.H.)
| | - Mengqi Huang
- College of Animal Science and Technology, Northwest A&F University, Xianyang 712100, China; (Z.W.); (Y.M.); (S.C.); (Y.L.); (H.C.); (T.J.); (L.L.); (M.H.)
| | - Fangxia Yang
- College of Forestry, Northwest A&F University, Xianyang 712100, China;
| | - Wuzi Dong
- College of Animal Science and Technology, Northwest A&F University, Xianyang 712100, China; (Z.W.); (Y.M.); (S.C.); (Y.L.); (H.C.); (T.J.); (L.L.); (M.H.)
- College of Forestry, Northwest A&F University, Xianyang 712100, China;
| |
Collapse
|
2
|
Combarel D, Tran J, Delahousse J, Vassal G, Paci A. Individualizing busulfan dose in specific populations and evaluating the risk of pharmacokinetic drug-drug interactions. Expert Opin Drug Metab Toxicol 2023; 19:75-90. [PMID: 36939456 DOI: 10.1080/17425255.2023.2192924] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2023]
Abstract
INTRODUCTION Busulfan is an alkylating agent widely used in the conditioning of hematopoietic stem cell transplantation possessing a complex metabolism and a large interindividual and intra-individual variability, especially in children. Combined with the strong rationale of busulfan PK/PD relationships, factors altering its clearance (e.g., weight, age, and GST-A genetic polymorphism mainly) can also affect clinical outcomes. AREAS COVERED This review aims to provide an overview of the current knowledge on busulfan pharmacokinetics, its pharmacokinetics variabilities in pediatric populations, drug-drug interactions (DDI), and their consequences regarding dose individualization. This review was based on medical literature up until October 2021. EXPERT OPINION To ensure effective busulfan exposure in pediatrics, different weight-based nomograms have been established to determine busulfan dosage and provided improved results (65 - 80% of patients correctly exposed). In addition to nomograms, therapeutic drug monitoring (TDM) of busulfan measuring plasmatic concentrations to estimate busulfan pharmacokinetic parameters can be used. TDM is now widely carried out in routine practices and aims to ensure the targeting of the reported therapeutic windows by individualizing busulfan dosing based on the clearance estimations from a previous dose.
Collapse
Affiliation(s)
- David Combarel
- Service de Pharmacologie, Département de biologie et pathologie médicale, Gustave Roussy, Université Paris-Saclay, Villejuif, France.,Université Paris-Saclay, Faculté de Pharmacie, Université Paris-Saclay, Chatenay-Malabry, France
| | - Julie Tran
- Service de Pharmacologie, Département de biologie et pathologie médicale, Gustave Roussy, Université Paris-Saclay, Villejuif, France
| | - Julia Delahousse
- Service de Pharmacologie, Département de biologie et pathologie médicale, Gustave Roussy, Université Paris-Saclay, Villejuif, France
| | - Gilles Vassal
- Gustave Roussy Comprehensive Cancer Center, & University Paris-Saclay, Villejuif, France
| | - Angelo Paci
- Service de Pharmacologie, Département de biologie et pathologie médicale, Gustave Roussy, Université Paris-Saclay, Villejuif, France.,Université Paris-Saclay, Faculté de Pharmacie, Université Paris-Saclay, Chatenay-Malabry, France
| |
Collapse
|
3
|
Hoang S, Dao N, Myers AL. Electrophilic reactivity of the Busulfan metabolite, EdAG, towards cellular thiols and inhibition of human thioredoxin-1. Biochem Biophys Res Commun 2020; 533:325-331. [PMID: 32958252 DOI: 10.1016/j.bbrc.2020.09.038] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 09/11/2020] [Indexed: 11/26/2022]
Abstract
Busulfan is an alkylating agent used in chemotherapy conditioning regimens prior to hematopoietic stem cell transplantation (HSCT). However, its administration is associated with a great risk of adverse toxicities, which have been historically attributed to busulfan's mechanism of non-specific DNA alkylation. A phase II generated metabolite of busulfan, EdAG (γ-glutamyldehydroalanylglycine), is a dehydroalanine analog of glutathione (GSH) with an electrophilic moiety, suggesting it may bind to proteins and disrupt biological function. However, EdAG's reactions with common cellular thiols such as glutathione (GSH) and l-cysteine are understudied, along with possible inhibition of glutathionylation-dependent enzymes (with active site cysteine residues). We established a physiologically-relevant in vitro model to readily measure thiol loss over time. Using this model, we compared the apparent rates of thiol depletion in the presence of EdAG or arecoline, a toxic constituent of the areca (betel) nut and known GSH depletor. Simulated kinetic modeling revealed that the mean (±SE) alpha (α) second order rate constants describing GSH and l-cysteine depletion in the presence of EdAG were 0.00522 (0.00845) μM-1∙min-1 and 0.0207 (0.00721) μM-1∙min-1, respectively; in the presence of arecoline, the apparent rates of depletion were 0.0619 (0.009) μM-1∙min-1 and 0.2834 (0.0637) μM-1∙min-1 for GSH and l-cysteine, respectively. Under these experimental conditions, we conclude that EdAG was a weaker electrophile than arecoline. Arecoline and EdAG both depleted apparent l-cysteine concentrations to a much greater extent than GSH, approximately 4.58-fold and 3.97-fold change greater, respectively. EdAG modestly inhibited (∼20%) the human thioredoxin-1 (hTrx-1) catalyzed reduction of insulin with a mean IC50 of 93 μM [95% CI: 78.6-110 μM). In summary, EdAG's ability to spontaneously react with endogenous thiols and inhibit hTrx-1 are potentially biochemically relevant in humans. These findings continue to support the growing concept that EdAG, an underrecognized phase II metabolite of busulfan, plays a role in untoward cellular toxicities during busulfan pharmacotherapy.
Collapse
Affiliation(s)
| | - Nhu Dao
- The University of Texas Health Science Center at Houston, School of Dentistry, Houston, TX, USA
| | - Alan L Myers
- The University of Texas Health Science Center at Houston, School of Dentistry, Houston, TX, USA.
| |
Collapse
|
4
|
Li B, He X, Zhuang M, Niu B, Wu C, Mu H, Tang F, Cui Y, Liu W, Zhao B, Peng S, Li G, Hua J. Melatonin Ameliorates Busulfan-Induced Spermatogonial Stem Cell Oxidative Apoptosis in Mouse Testes. Antioxid Redox Signal 2018; 28:385-400. [PMID: 28027652 DOI: 10.1089/ars.2016.6792] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
AIMS Many men endure immunosuppressive or anticancer treatments that contain alkylating agents before the age of sexual maturity, especially the increasing number of preadolescent males who undergo busulfan treatment for myeloablative conditioning before hematopoietic stem cell transplantation. Before sperm production, there are no sperm available for cryopreservation. Thus, it is necessary to identify a solution to ameliorate the busulfan-induced damage of spermatogonial stem cells (SSCs). RESULTS In this study, we demonstrated that melatonin relieved the previously described SSC loss and apoptosis in mouse testes. Melatonin increased the expression of manganese superoxide dismutase (MnSOD), which regulated the production of busulfan-induced reactive oxygen species (ROS). Moreover, melatonin promoted sirtuin type 1 (SIRT1) expression. SIRT1 participated in the deacetylation of p53, which promotes p53 ubiquitin degradation. Decreased concentrations of deacetylated p53 resulted in spermatogonial cell resistance to apoptosis. Acute T cell leukemia cell assay demonstrated that melatonin does not affect busulfan-induced cancer cell apoptosis and ROS. INNOVATION The current evidence suggests that melatonin may alleviate the side effects of alkylating drugs, such as busulfan. CONCLUSION Melatonin promoted MnSOD and SIRT1 expression, which successfully ameliorated busulfan-induced SSC apoptosis caused by high concentrations of ROS and p53. Antioxid. Redox Signal. 28, 385-400.
Collapse
Affiliation(s)
- Bo Li
- 1 College of Veterinary Medicine, Shaanxi Centre of Stem Cell Engineering and Technology, Northwest A&F University , Yangling, Shaanxi, China
| | - Xin He
- 1 College of Veterinary Medicine, Shaanxi Centre of Stem Cell Engineering and Technology, Northwest A&F University , Yangling, Shaanxi, China
| | - Mengru Zhuang
- 1 College of Veterinary Medicine, Shaanxi Centre of Stem Cell Engineering and Technology, Northwest A&F University , Yangling, Shaanxi, China
| | - Bowen Niu
- 1 College of Veterinary Medicine, Shaanxi Centre of Stem Cell Engineering and Technology, Northwest A&F University , Yangling, Shaanxi, China
| | - Chongyang Wu
- 1 College of Veterinary Medicine, Shaanxi Centre of Stem Cell Engineering and Technology, Northwest A&F University , Yangling, Shaanxi, China
| | - Hailong Mu
- 1 College of Veterinary Medicine, Shaanxi Centre of Stem Cell Engineering and Technology, Northwest A&F University , Yangling, Shaanxi, China
| | - Furong Tang
- 1 College of Veterinary Medicine, Shaanxi Centre of Stem Cell Engineering and Technology, Northwest A&F University , Yangling, Shaanxi, China
| | - Yanhua Cui
- 1 College of Veterinary Medicine, Shaanxi Centre of Stem Cell Engineering and Technology, Northwest A&F University , Yangling, Shaanxi, China
| | - Weishuai Liu
- 3 Department of Pathology, Yangling Demonstration Zone Hospital , Yangling, Shaanxi, China
| | - Baoyu Zhao
- 1 College of Veterinary Medicine, Shaanxi Centre of Stem Cell Engineering and Technology, Northwest A&F University , Yangling, Shaanxi, China
| | - Sha Peng
- 1 College of Veterinary Medicine, Shaanxi Centre of Stem Cell Engineering and Technology, Northwest A&F University , Yangling, Shaanxi, China
| | - Guangpeng Li
- 2 Key Laboratory for Mammalian Reproductive Biology and Biotechnology, Ministry of Education, Inner Mongolia University , Hohhot, China
| | - Jinlian Hua
- 1 College of Veterinary Medicine, Shaanxi Centre of Stem Cell Engineering and Technology, Northwest A&F University , Yangling, Shaanxi, China
| |
Collapse
|
5
|
Myers AL, Kawedia JD, Champlin RE, Kramer MA, Nieto Y, Ghose R, Andersson BS. Clarifying busulfan metabolism and drug interactions to support new therapeutic drug monitoring strategies: a comprehensive review. Expert Opin Drug Metab Toxicol 2017; 13:901-923. [PMID: 28766962 DOI: 10.1080/17425255.2017.1360277] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
INTRODUCTION Busulfan (Bu) is an alkylating agent with a limited therapeutic margin and exhibits inter-patient variability in pharmacokinetics (PK). Despite decades of use, mechanisms of Bu PK-based drug-drug interactions (DDIs), as well as the negative downstream effects of these DDIs, have not been fully characterized. Areas covered: This article provides an overview of Bu PK, with a primary focus on how known and potentially unknown drug metabolism pathways influence Bu-associated DDIs. In addition, pharmacogenomics of Bu chemotherapy and Bu-related DDIs observed in the stem cell transplant clinic (SCT) are summarized. Finally the increasing importance of Bu therapeutic drug monitoring is highlighted. Expert opinion: Mechanistic studies of Bu metabolism have shown that in addition to GST isoenzymes, other oxidative enzymes (CYP, FMO) and ABC/MDR drug transporters likely contribute to the overall clearance of Bu. Despite many insights, results from clinical studies, especially in polypharmacy settings and between pediatric and adult patients, remain conflicting. Further basic science and clinical investigative efforts are required to fully understand the key factors determining Bu PK characteristics and its effects on complications after SCT. Improved TDM strategies are promising components to further investigate, for instance DDI mechanisms and patient outcomes, in the highly complex SCT treatment setting.
Collapse
Affiliation(s)
- Alan L Myers
- a Department of Pharmacy Research, Division of Pharmacy , The University of Texas M.D. Anderson Cancer Center , Houston , TX , USA
| | - Jitesh D Kawedia
- a Department of Pharmacy Research, Division of Pharmacy , The University of Texas M.D. Anderson Cancer Center , Houston , TX , USA
| | - Richard E Champlin
- b Department of Stem Cell Transplantation , The University of Texas M.D. Anderson Cancer Center , Houston , TX , USA
| | - Mark A Kramer
- a Department of Pharmacy Research, Division of Pharmacy , The University of Texas M.D. Anderson Cancer Center , Houston , TX , USA
| | - Yago Nieto
- b Department of Stem Cell Transplantation , The University of Texas M.D. Anderson Cancer Center , Houston , TX , USA
| | - Romi Ghose
- c Department of Pharmacological and Pharmaceutical Sciences, College of Pharmacy , The University of Houston , Houston , TX , USA
| | - Borje S Andersson
- b Department of Stem Cell Transplantation , The University of Texas M.D. Anderson Cancer Center , Houston , TX , USA
| |
Collapse
|
6
|
Palmer J, McCune JS, Perales MA, Marks D, Bubalo J, Mohty M, Wingard JR, Paci A, Hassan M, Bredeson C, Pidala J, Shah N, Shaughnessy P, Majhail N, Schriber J, Savani BN, Carpenter PA. Personalizing Busulfan-Based Conditioning: Considerations from the American Society for Blood and Marrow Transplantation Practice Guidelines Committee. Biol Blood Marrow Transplant 2016; 22:1915-1925. [PMID: 27481448 DOI: 10.1016/j.bbmt.2016.07.013] [Citation(s) in RCA: 107] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2016] [Accepted: 07/21/2016] [Indexed: 12/12/2022]
Abstract
The Practice Guidelines Committee of the American Society of Blood or Marrow Transplantation (ASBMT) sought to develop an evidence-based review about personalizing busulfan-based conditioning. The Committee sought to grade the relevant published studies (June 1, 2008 through March 31, 2016) according to criteria set forth by the Steering Committee for Evidence Based Reviews from ASBMT. Unfortunately, the published literature was too heterogeneous and lacked adequately powered and sufficiently controlled studies for this to be feasible. Despite this observation, the continued interest in this topic led the Practice Guidelines Committee to develop a list of most frequently asked questions (FAQs) regarding personalized busulfan dosing. This "Considerations" document is a list of these FAQs and their responses, addressing topics of practical relevance to hematopoietic cell transplantation clinicians.
Collapse
Affiliation(s)
- Jeanne Palmer
- Division of Hematology/Oncology, Mayo Clinic, Phoenix, Arizona.
| | - Jeannine S McCune
- Department of Pharmacology University of Washington, Fred Hutchinson Cancer Research Center, Seattle, Washington.
| | - Miguel-Angel Perales
- Division of Hematology/Oncology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - David Marks
- Pediatric Bone Marrow Transplant, University Hospitals Bristol NHS Trust, Bristol Royal Infirmary, Bristol, United Kingdom
| | - Joseph Bubalo
- Department of Pharmacy Practice, Oregon Health Sciences University, Portland, Oregon
| | - Mohamad Mohty
- Department of Hematology, Hospital Saint-Antoine, University UPMC, Paris, France
| | - John R Wingard
- Division of Hematology/Oncology, University of Florida, Gainesville, Florida
| | - Angelo Paci
- Pharmacology and Drug Analysis Department, Institut de Cancerologie Gustav Roussy, Villejuif, France
| | - Moustapha Hassan
- Department of Clinical Research Centre, Karolinska Institutet, Stockholm, Sweden
| | - Christopher Bredeson
- Hematology, Department of Medicine, Ottawa Hospital Research Institute, Ottawa, Ontario, Canada
| | - Joseph Pidala
- Department of Blood and Marrow Transplantation, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Nina Shah
- Department of Stem Cell Transplantation and Cellular Therapy, MD Anderson Cancer Center, Houston, Texas
| | - Paul Shaughnessy
- Adult Blood and Marrow Transplant, Texas Transplant Physician's Group, San Antonio, Texas
| | - Navneet Majhail
- Department of Hematology and Medical Oncology, Cleveland Clinic, Cleveland, Ohio
| | - Jeff Schriber
- Cancer Transplant Institute, Honor Health, Scottsdale, Arizona
| | - Bipin N Savani
- Division of Hematology/Oncology, Vanderbuilt-Ingram Cancer Center, Nashville, Tennessee
| | - Paul A Carpenter
- Department of Pediatrics, Fred Hutchinson Cancer Research Center, University of Washington, Seattle, Washington
| |
Collapse
|
7
|
Townsend DM, Lushchak VI, Cooper AJL. A comparison of reversible versus irreversible protein glutathionylation. Adv Cancer Res 2015; 122:177-98. [PMID: 24974182 DOI: 10.1016/b978-0-12-420117-0.00005-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Glutathionylation is generally a reversible posttranslational modification that occurs to cysteine residues that have been exposed to reactive oxygen species (P-SSG). This cyclical process can regulate various clusters of proteins, including those involved in critical cellular signaling functions. However, certain conditions can favor the formation of dehydroamino acids, such as 2,3-didehydroalanine (2,3-dehydroalanine, DHA) and 2,3-didehydrobutyrine (2,3-dehydrobutyrine), which can act as Michael acceptors. In turn, these can form Michael adducts with glutathione (GSH), resulting in the formation of a stable thioether conjugate, an irreversible process referred to as nonreducible glutathionylation. This is predicted to be prevalent in nature, particularly in more slowly turning over proteins. Such nonreducible glutathionylation can be distinguished from the more facile cycling signaling processes and is predicted to be of gerontological, toxicological, pharmacological, and oncological relevance. Here, we compare reversible and irreversible glutathionylation.
Collapse
Affiliation(s)
- Danyelle M Townsend
- Department of Pharmaceutical and Biomedical Sciences, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Volodymyr I Lushchak
- Department of Biochemistry and Biotechnology, Vassyl Stefanyk Precarpathian National University, Ivano-Frankivsk, Ukraine
| | - Arthur J L Cooper
- Department of Biochemistry and Molecular Biology, New York Medical College, Valhalla, New York, USA.
| |
Collapse
|