7
|
Kirkby NS, Sampaio W, Etelvino G, Alves DT, Anders KL, Temponi R, Shala F, Nair AS, Ahmetaj-Shala B, Jiao J, Herschman HR, Wang X, Wahli W, Santos RA, Mitchell JA. Cyclooxygenase-2 Selectively Controls Renal Blood Flow Through a Novel PPARβ/δ-Dependent Vasodilator Pathway. Hypertension 2018; 71:297-305. [PMID: 29295852 PMCID: PMC5770101 DOI: 10.1161/hypertensionaha.117.09906] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2017] [Revised: 07/12/2017] [Accepted: 12/05/2017] [Indexed: 01/11/2023]
Abstract
Supplemental Digital Content is available in the text. Cyclooxygenase-2 (COX-2) is an inducible enzyme expressed in inflammation and cancer targeted by nonsteroidal anti-inflammatory drugs. COX-2 is also expressed constitutively in discreet locations where its inhibition drives gastrointestinal and cardiovascular/renal side effects. Constitutive COX-2 expression in the kidney regulates renal function and blood flow; however, the global relevance of the kidney versus other tissues to COX-2–dependent blood flow regulation is not known. Here, we used a microsphere deposition technique and pharmacological COX-2 inhibition to map the contribution of COX-2 to regional blood flow in mice and compared this to COX-2 expression patterns using luciferase reporter mice. Across all tissues studied, COX-2 inhibition altered blood flow predominantly in the kidney, with some effects also seen in the spleen, adipose, and testes. Of these sites, only the kidney displayed appreciable local COX-2 expression. As the main site where COX-2 regulates blood flow, we next analyzed the pathways involved in kidney vascular responses using a novel technique of video imaging small arteries in living tissue slices. We found that the protective effect of COX-2 on renal vascular function was associated with prostacyclin signaling through PPARβ/δ (peroxisome proliferator-activated receptor-β/δ). These data demonstrate the kidney as the principle site in the body where local COX-2 controls blood flow and identifies a previously unreported PPARβ/δ-mediated renal vasodilator pathway as the mechanism. These findings have direct relevance to the renal and cardiovascular side effects of drugs that inhibit COX-2, as well as the potential of the COX-2/prostacyclin/PPARβ/δ axis as a therapeutic target in renal disease.
Collapse
Affiliation(s)
- Nicholas S Kirkby
- From the Vascular Biology, National Heart and Lung Institute, Imperial College London, United Kingdom (N.S.K., K.L.A., F.S., A.S.N., B.A.-S., J.A.M.); Department of Physiology and Biophysics, Federal University of Minas Gerais, Belo Horizonte, Brazil (W.S., G.E., D.T.A., R.T., R.A.S.); Department of Medical and Molecular Pharmacology, David Geffen School of Medicine, University of California, Los Angeles (J.J., H.R.H.); Vascular Biology Laboratory, Lee Kong Chian School of Medicine (W.X.) and Lee Kong Chian School of Medicine (W.W), Nanyang Technological University, Singapore, Singapore; Institute of Molecular and Cell Biology, Proteos, Agency for Science Technology and Research, Singapore, Singapore (W.X.); Department of Cell Biology, Institute of Ophthalmology, University College London, United Kingdom (W.X.); Singapore Eye Research Institute (W.X.); and Center for Integrative Genomics, University of Lausanne, Switzerland (W.W.).
| | - Walkyria Sampaio
- From the Vascular Biology, National Heart and Lung Institute, Imperial College London, United Kingdom (N.S.K., K.L.A., F.S., A.S.N., B.A.-S., J.A.M.); Department of Physiology and Biophysics, Federal University of Minas Gerais, Belo Horizonte, Brazil (W.S., G.E., D.T.A., R.T., R.A.S.); Department of Medical and Molecular Pharmacology, David Geffen School of Medicine, University of California, Los Angeles (J.J., H.R.H.); Vascular Biology Laboratory, Lee Kong Chian School of Medicine (W.X.) and Lee Kong Chian School of Medicine (W.W), Nanyang Technological University, Singapore, Singapore; Institute of Molecular and Cell Biology, Proteos, Agency for Science Technology and Research, Singapore, Singapore (W.X.); Department of Cell Biology, Institute of Ophthalmology, University College London, United Kingdom (W.X.); Singapore Eye Research Institute (W.X.); and Center for Integrative Genomics, University of Lausanne, Switzerland (W.W.)
| | - Gisele Etelvino
- From the Vascular Biology, National Heart and Lung Institute, Imperial College London, United Kingdom (N.S.K., K.L.A., F.S., A.S.N., B.A.-S., J.A.M.); Department of Physiology and Biophysics, Federal University of Minas Gerais, Belo Horizonte, Brazil (W.S., G.E., D.T.A., R.T., R.A.S.); Department of Medical and Molecular Pharmacology, David Geffen School of Medicine, University of California, Los Angeles (J.J., H.R.H.); Vascular Biology Laboratory, Lee Kong Chian School of Medicine (W.X.) and Lee Kong Chian School of Medicine (W.W), Nanyang Technological University, Singapore, Singapore; Institute of Molecular and Cell Biology, Proteos, Agency for Science Technology and Research, Singapore, Singapore (W.X.); Department of Cell Biology, Institute of Ophthalmology, University College London, United Kingdom (W.X.); Singapore Eye Research Institute (W.X.); and Center for Integrative Genomics, University of Lausanne, Switzerland (W.W.)
| | - Daniele T Alves
- From the Vascular Biology, National Heart and Lung Institute, Imperial College London, United Kingdom (N.S.K., K.L.A., F.S., A.S.N., B.A.-S., J.A.M.); Department of Physiology and Biophysics, Federal University of Minas Gerais, Belo Horizonte, Brazil (W.S., G.E., D.T.A., R.T., R.A.S.); Department of Medical and Molecular Pharmacology, David Geffen School of Medicine, University of California, Los Angeles (J.J., H.R.H.); Vascular Biology Laboratory, Lee Kong Chian School of Medicine (W.X.) and Lee Kong Chian School of Medicine (W.W), Nanyang Technological University, Singapore, Singapore; Institute of Molecular and Cell Biology, Proteos, Agency for Science Technology and Research, Singapore, Singapore (W.X.); Department of Cell Biology, Institute of Ophthalmology, University College London, United Kingdom (W.X.); Singapore Eye Research Institute (W.X.); and Center for Integrative Genomics, University of Lausanne, Switzerland (W.W.)
| | - Katie L Anders
- From the Vascular Biology, National Heart and Lung Institute, Imperial College London, United Kingdom (N.S.K., K.L.A., F.S., A.S.N., B.A.-S., J.A.M.); Department of Physiology and Biophysics, Federal University of Minas Gerais, Belo Horizonte, Brazil (W.S., G.E., D.T.A., R.T., R.A.S.); Department of Medical and Molecular Pharmacology, David Geffen School of Medicine, University of California, Los Angeles (J.J., H.R.H.); Vascular Biology Laboratory, Lee Kong Chian School of Medicine (W.X.) and Lee Kong Chian School of Medicine (W.W), Nanyang Technological University, Singapore, Singapore; Institute of Molecular and Cell Biology, Proteos, Agency for Science Technology and Research, Singapore, Singapore (W.X.); Department of Cell Biology, Institute of Ophthalmology, University College London, United Kingdom (W.X.); Singapore Eye Research Institute (W.X.); and Center for Integrative Genomics, University of Lausanne, Switzerland (W.W.)
| | - Rafael Temponi
- From the Vascular Biology, National Heart and Lung Institute, Imperial College London, United Kingdom (N.S.K., K.L.A., F.S., A.S.N., B.A.-S., J.A.M.); Department of Physiology and Biophysics, Federal University of Minas Gerais, Belo Horizonte, Brazil (W.S., G.E., D.T.A., R.T., R.A.S.); Department of Medical and Molecular Pharmacology, David Geffen School of Medicine, University of California, Los Angeles (J.J., H.R.H.); Vascular Biology Laboratory, Lee Kong Chian School of Medicine (W.X.) and Lee Kong Chian School of Medicine (W.W), Nanyang Technological University, Singapore, Singapore; Institute of Molecular and Cell Biology, Proteos, Agency for Science Technology and Research, Singapore, Singapore (W.X.); Department of Cell Biology, Institute of Ophthalmology, University College London, United Kingdom (W.X.); Singapore Eye Research Institute (W.X.); and Center for Integrative Genomics, University of Lausanne, Switzerland (W.W.)
| | - Fisnik Shala
- From the Vascular Biology, National Heart and Lung Institute, Imperial College London, United Kingdom (N.S.K., K.L.A., F.S., A.S.N., B.A.-S., J.A.M.); Department of Physiology and Biophysics, Federal University of Minas Gerais, Belo Horizonte, Brazil (W.S., G.E., D.T.A., R.T., R.A.S.); Department of Medical and Molecular Pharmacology, David Geffen School of Medicine, University of California, Los Angeles (J.J., H.R.H.); Vascular Biology Laboratory, Lee Kong Chian School of Medicine (W.X.) and Lee Kong Chian School of Medicine (W.W), Nanyang Technological University, Singapore, Singapore; Institute of Molecular and Cell Biology, Proteos, Agency for Science Technology and Research, Singapore, Singapore (W.X.); Department of Cell Biology, Institute of Ophthalmology, University College London, United Kingdom (W.X.); Singapore Eye Research Institute (W.X.); and Center for Integrative Genomics, University of Lausanne, Switzerland (W.W.)
| | - Anitha S Nair
- From the Vascular Biology, National Heart and Lung Institute, Imperial College London, United Kingdom (N.S.K., K.L.A., F.S., A.S.N., B.A.-S., J.A.M.); Department of Physiology and Biophysics, Federal University of Minas Gerais, Belo Horizonte, Brazil (W.S., G.E., D.T.A., R.T., R.A.S.); Department of Medical and Molecular Pharmacology, David Geffen School of Medicine, University of California, Los Angeles (J.J., H.R.H.); Vascular Biology Laboratory, Lee Kong Chian School of Medicine (W.X.) and Lee Kong Chian School of Medicine (W.W), Nanyang Technological University, Singapore, Singapore; Institute of Molecular and Cell Biology, Proteos, Agency for Science Technology and Research, Singapore, Singapore (W.X.); Department of Cell Biology, Institute of Ophthalmology, University College London, United Kingdom (W.X.); Singapore Eye Research Institute (W.X.); and Center for Integrative Genomics, University of Lausanne, Switzerland (W.W.)
| | - Blerina Ahmetaj-Shala
- From the Vascular Biology, National Heart and Lung Institute, Imperial College London, United Kingdom (N.S.K., K.L.A., F.S., A.S.N., B.A.-S., J.A.M.); Department of Physiology and Biophysics, Federal University of Minas Gerais, Belo Horizonte, Brazil (W.S., G.E., D.T.A., R.T., R.A.S.); Department of Medical and Molecular Pharmacology, David Geffen School of Medicine, University of California, Los Angeles (J.J., H.R.H.); Vascular Biology Laboratory, Lee Kong Chian School of Medicine (W.X.) and Lee Kong Chian School of Medicine (W.W), Nanyang Technological University, Singapore, Singapore; Institute of Molecular and Cell Biology, Proteos, Agency for Science Technology and Research, Singapore, Singapore (W.X.); Department of Cell Biology, Institute of Ophthalmology, University College London, United Kingdom (W.X.); Singapore Eye Research Institute (W.X.); and Center for Integrative Genomics, University of Lausanne, Switzerland (W.W.)
| | - Jing Jiao
- From the Vascular Biology, National Heart and Lung Institute, Imperial College London, United Kingdom (N.S.K., K.L.A., F.S., A.S.N., B.A.-S., J.A.M.); Department of Physiology and Biophysics, Federal University of Minas Gerais, Belo Horizonte, Brazil (W.S., G.E., D.T.A., R.T., R.A.S.); Department of Medical and Molecular Pharmacology, David Geffen School of Medicine, University of California, Los Angeles (J.J., H.R.H.); Vascular Biology Laboratory, Lee Kong Chian School of Medicine (W.X.) and Lee Kong Chian School of Medicine (W.W), Nanyang Technological University, Singapore, Singapore; Institute of Molecular and Cell Biology, Proteos, Agency for Science Technology and Research, Singapore, Singapore (W.X.); Department of Cell Biology, Institute of Ophthalmology, University College London, United Kingdom (W.X.); Singapore Eye Research Institute (W.X.); and Center for Integrative Genomics, University of Lausanne, Switzerland (W.W.)
| | - Harvey R Herschman
- From the Vascular Biology, National Heart and Lung Institute, Imperial College London, United Kingdom (N.S.K., K.L.A., F.S., A.S.N., B.A.-S., J.A.M.); Department of Physiology and Biophysics, Federal University of Minas Gerais, Belo Horizonte, Brazil (W.S., G.E., D.T.A., R.T., R.A.S.); Department of Medical and Molecular Pharmacology, David Geffen School of Medicine, University of California, Los Angeles (J.J., H.R.H.); Vascular Biology Laboratory, Lee Kong Chian School of Medicine (W.X.) and Lee Kong Chian School of Medicine (W.W), Nanyang Technological University, Singapore, Singapore; Institute of Molecular and Cell Biology, Proteos, Agency for Science Technology and Research, Singapore, Singapore (W.X.); Department of Cell Biology, Institute of Ophthalmology, University College London, United Kingdom (W.X.); Singapore Eye Research Institute (W.X.); and Center for Integrative Genomics, University of Lausanne, Switzerland (W.W.)
| | - Xiaomeng Wang
- From the Vascular Biology, National Heart and Lung Institute, Imperial College London, United Kingdom (N.S.K., K.L.A., F.S., A.S.N., B.A.-S., J.A.M.); Department of Physiology and Biophysics, Federal University of Minas Gerais, Belo Horizonte, Brazil (W.S., G.E., D.T.A., R.T., R.A.S.); Department of Medical and Molecular Pharmacology, David Geffen School of Medicine, University of California, Los Angeles (J.J., H.R.H.); Vascular Biology Laboratory, Lee Kong Chian School of Medicine (W.X.) and Lee Kong Chian School of Medicine (W.W), Nanyang Technological University, Singapore, Singapore; Institute of Molecular and Cell Biology, Proteos, Agency for Science Technology and Research, Singapore, Singapore (W.X.); Department of Cell Biology, Institute of Ophthalmology, University College London, United Kingdom (W.X.); Singapore Eye Research Institute (W.X.); and Center for Integrative Genomics, University of Lausanne, Switzerland (W.W.)
| | - Walter Wahli
- From the Vascular Biology, National Heart and Lung Institute, Imperial College London, United Kingdom (N.S.K., K.L.A., F.S., A.S.N., B.A.-S., J.A.M.); Department of Physiology and Biophysics, Federal University of Minas Gerais, Belo Horizonte, Brazil (W.S., G.E., D.T.A., R.T., R.A.S.); Department of Medical and Molecular Pharmacology, David Geffen School of Medicine, University of California, Los Angeles (J.J., H.R.H.); Vascular Biology Laboratory, Lee Kong Chian School of Medicine (W.X.) and Lee Kong Chian School of Medicine (W.W), Nanyang Technological University, Singapore, Singapore; Institute of Molecular and Cell Biology, Proteos, Agency for Science Technology and Research, Singapore, Singapore (W.X.); Department of Cell Biology, Institute of Ophthalmology, University College London, United Kingdom (W.X.); Singapore Eye Research Institute (W.X.); and Center for Integrative Genomics, University of Lausanne, Switzerland (W.W.)
| | - Robson A Santos
- From the Vascular Biology, National Heart and Lung Institute, Imperial College London, United Kingdom (N.S.K., K.L.A., F.S., A.S.N., B.A.-S., J.A.M.); Department of Physiology and Biophysics, Federal University of Minas Gerais, Belo Horizonte, Brazil (W.S., G.E., D.T.A., R.T., R.A.S.); Department of Medical and Molecular Pharmacology, David Geffen School of Medicine, University of California, Los Angeles (J.J., H.R.H.); Vascular Biology Laboratory, Lee Kong Chian School of Medicine (W.X.) and Lee Kong Chian School of Medicine (W.W), Nanyang Technological University, Singapore, Singapore; Institute of Molecular and Cell Biology, Proteos, Agency for Science Technology and Research, Singapore, Singapore (W.X.); Department of Cell Biology, Institute of Ophthalmology, University College London, United Kingdom (W.X.); Singapore Eye Research Institute (W.X.); and Center for Integrative Genomics, University of Lausanne, Switzerland (W.W.)
| | - Jane A Mitchell
- From the Vascular Biology, National Heart and Lung Institute, Imperial College London, United Kingdom (N.S.K., K.L.A., F.S., A.S.N., B.A.-S., J.A.M.); Department of Physiology and Biophysics, Federal University of Minas Gerais, Belo Horizonte, Brazil (W.S., G.E., D.T.A., R.T., R.A.S.); Department of Medical and Molecular Pharmacology, David Geffen School of Medicine, University of California, Los Angeles (J.J., H.R.H.); Vascular Biology Laboratory, Lee Kong Chian School of Medicine (W.X.) and Lee Kong Chian School of Medicine (W.W), Nanyang Technological University, Singapore, Singapore; Institute of Molecular and Cell Biology, Proteos, Agency for Science Technology and Research, Singapore, Singapore (W.X.); Department of Cell Biology, Institute of Ophthalmology, University College London, United Kingdom (W.X.); Singapore Eye Research Institute (W.X.); and Center for Integrative Genomics, University of Lausanne, Switzerland (W.W.).
| |
Collapse
|