1
|
Uno Y, Uehara S, Yamazaki H. Polymorphic cytochromes P450 in non-human primates. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2022; 95:329-364. [PMID: 35953160 DOI: 10.1016/bs.apha.2022.05.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Cynomolgus macaques (Macaca fascicularis, an Old World monkey) are widely used in drug development because of their genetic and physiological similarities to humans, and this trend has continued with the use of common marmosets (Callithrix jacchus, a New World monkey). Information on the major drug-metabolizing cytochrome P450 (CYP, P450) enzymes of these primate species indicates that multiple forms of their P450 enzymes have generally similar substrate selectivities to those of human P450 enzymes; however, some differences in isoform, activity, and substrate specificity account for limited species differences in drug oxidative metabolism. This review provides information on the P450 enzymes of cynomolgus macaques and marmosets, including cDNA, tissue expression, substrate specificity, and genetic variants, along with age differences and induction. Typical examples of important P450s to be considered in drug metabolism studies include cynomolgus CYP2C19, which is expressed abundantly in liver and metabolizes numerous drugs. Moreover, genetic variants of cynomolgus CYP2C19 affect the individual pharmacokinetic data of drugs such as R-warfarin. These findings provide a foundation for understanding each P450 enzyme and the individual pharmacokinetic and toxicological results in cynomolgus macaques and marmosets as preclinical models. In addition, the effects of induction on some drug clearances mediated by P450 enzymes are also described. In summary, this review describes genetic and acquired individual differences in cynomolgus and marmoset P450 enzymes involved in drug oxidation that may be associated with pharmacological and/or toxicological effects.
Collapse
Affiliation(s)
- Yasuhiro Uno
- Joint Faculty of Veterinary Medicine, Kagoshima University, Kagoshima, Japan.
| | | | | |
Collapse
|
2
|
Davydov DR, Dangi B, Yue G, Ahire DS, Prasad B, Zgoda VG. Exploring the Interactome of Cytochrome P450 2E1 in Human Liver Microsomes with Chemical Crosslinking Mass Spectrometry. Biomolecules 2022; 12:biom12020185. [PMID: 35204686 PMCID: PMC8869672 DOI: 10.3390/biom12020185] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 01/19/2022] [Accepted: 01/20/2022] [Indexed: 12/05/2022] Open
Abstract
Aiming to elucidate the system-wide effects of the alcohol-induced increase in the content of cytochrome P450 2E1 (CYP2E1) on drug metabolism, we explored the array of its protein-protein interactions (interactome) in human liver microsomes (HLM) with chemical crosslinking mass spectrometry (CXMS). Our strategy employs membrane incorporation of purified CYP2E1 modified with photoreactive crosslinkers benzophenone-4-maleimide and 4-(N-succinimidylcarboxy)benzophenone. Exposure of bait-incorporated HLM samples to light was followed by isolating the His-tagged bait protein and its crosslinked aggregates on Ni-NTA agarose. Analyzing the individual bands of SDS-PAGE slabs of thereby isolated protein with the toolset of untargeted proteomics, we detected the crosslinked dimeric and trimeric complexes of CYP2E1 with other drug-metabolizing enzymes. Among the most extensively crosslinked partners of CYP2E1 are the cytochromes P450 2A6, 2C8, 3A4, 4A11, and 4F2, UDP-glucuronosyltransferases (UGTs) 1A and 2B, fatty aldehyde dehydrogenase (ALDH3A2), epoxide hydrolase 1 (EPHX1), disulfide oxidase 1α (ERO1L), and ribophorin II (RPN2). These results demonstrate the exploratory power of the proposed CXMS strategy and corroborate the concept of tight functional integration in the human drug-metabolizing ensemble through protein-protein interactions of the constituting enzymes.
Collapse
Affiliation(s)
- Dmitri R. Davydov
- Department of Chemistry, Washington State University, Pullman, WA 99164, USA;
- Correspondence:
| | - Bikash Dangi
- Department of Chemistry, Washington State University, Pullman, WA 99164, USA;
| | - Guihua Yue
- Department of Pharmaceutical Sciences, Washington State University, Spokane, WA 99202, USA; (G.Y.); (D.S.A.); (B.P.)
| | - Deepak S. Ahire
- Department of Pharmaceutical Sciences, Washington State University, Spokane, WA 99202, USA; (G.Y.); (D.S.A.); (B.P.)
| | - Bhagwat Prasad
- Department of Pharmaceutical Sciences, Washington State University, Spokane, WA 99202, USA; (G.Y.); (D.S.A.); (B.P.)
| | - Victor G. Zgoda
- Orekhovich Institute of Biomedical Chemistry, Pogodinskaya 10, 119121 Moscow, Russia;
| |
Collapse
|
3
|
Kojima A, Sogabe A, Nadai M, Katoh M. Species differences in oxidative metabolism of regorafenib. Xenobiotica 2022; 51:1400-1407. [PMID: 35020558 DOI: 10.1080/00498254.2022.2028935] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Despite the prevalence of laboratory animals such as monkeys, rats, and mice in clinical drug trials, we know little regarding the oxidation of regorafenib in these test subjects. This study aimed to elucidate species differences in the kinetics of regorafenib oxidation into two metabolites: regorafenib N-oxide (M-2) and hydroxyregorafenib (M-3).M-2 formation best fitted the Hill equation and showed positive cooperativity in liver and small intestinal microsomes from all species. For all species, M-2 formation had a higher maximum velocity in microsomes from the liver than the small intestines. Maximum velocity was also higher in microsomes from humans and monkeys than those from rats and mice. M-3 formation was well-fitted to the Hill equation and showed positive cooperativity in all microsomes, except those from rat small intestines, where it exhibited biphasic kinetics. At half the maximum velocity, substrate concentration for M-2 and M-3 formation was lower in microsomes from humans than from other species. Moreover, M-2 was the major metabolite in microsomes from humans, monkeys, and mice, whereas M-2 and M-3 were the major metabolites in rat microsomes.M-2 and M-3 formation involving CYP3A4 and CYP3A5 fitted to the Hill equation. However, M-3 formation involving CYP2J2 fitted to the substrate inhibition model.Our study confirmed species differences in regorafenib oxidative metabolism.
Collapse
Affiliation(s)
- Ayaka Kojima
- Department of Pharmaceutics, Faculty of Pharmacy, Meijo University, Nagoya, Japan
| | - Ayuka Sogabe
- Department of Pharmaceutics, Faculty of Pharmacy, Meijo University, Nagoya, Japan
| | - Masayuki Nadai
- Department of Pharmaceutics, Faculty of Pharmacy, Meijo University, Nagoya, Japan
| | - Miki Katoh
- Department of Pharmaceutics, Faculty of Pharmacy, Meijo University, Nagoya, Japan
| |
Collapse
|
4
|
Hu C, Li HW, Ke JQ, Yu XC, Zhao MY, Shi XY, Wu LJ, Tang XL, Xiong YH. Metabolic profiling of lysophosphatidylcholines in chlorpromazine hydrochloride- and N-acetyl- p-amino-phenoltriptolide-induced liver injured rats based on ultra-performance liquid chromatography quadrupole time-of-flight mass spectrometry. Hum Exp Toxicol 2022; 41:9603271221108320. [PMID: 35722787 DOI: 10.1177/09603271221108320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Chlorpromazine hydrochloride (CH) and N-acetyl-p-amino-phenoltriptolide (APAP) are typical acentral dopamine receptor antagonists and antipyretic analgesics in clinical applications, respectively. However, it has been reported that these 2 drugs could cause liver damage. Lysophosphatidylcholines (LPCs) have multiple physiological functions and are metabolized primarily in the liver, where it undergoes significant changes when the liver is damaged. In the study, 15 LPCs in the rat serum with CH- and APAP-induced liver injury were quantified based on ultra-performance liquid chromatography quadrupole time-of-flight mass spectrometry, and multivariate statistical analyses including principal component analysis (PCA) and orthogonal partial least squares discriminate analysis (OPLS-DA) were combined to understand CH- and APAP-induced liver injury from the perspective of LPC metabolic profiling. The quantitative results showed that there were significant changes in 10 LPCs and 5 LPCs after CH- and APAP-administration, separately. The results of PCA and OPLS-DA indicated that CH- and APAP-induced liver injury could be well distinguished by the LPC metabolic profiling, and 7 LPCs and 1 LPC biomarkers that could characterize CH- and APAP-induced liver damage in turn had been screened. This study will not only provide a new perspective for the clinical diagnosis of CH- and APAP-induced liver injury, but also offer a reference for further study of their hepatotoxicity mechanisms.
Collapse
Affiliation(s)
- Cong Hu
- School of Pharmacy, 177505Jiangxi Science and Technology Normal University, Nanchang, P.R. China
| | - Hong-Wei Li
- School of Pharmacy, 177505Jiangxi Science and Technology Normal University, Nanchang, P.R. China
| | - Jia-Qun Ke
- School of Pharmacy, 177505Jiangxi Science and Technology Normal University, Nanchang, P.R. China
| | - Xue-Chun Yu
- School of Pharmacy, 177505Jiangxi Science and Technology Normal University, Nanchang, P.R. China
| | - Mei-Yu Zhao
- School of Pharmacy, 177505Jiangxi Science and Technology Normal University, Nanchang, P.R. China
| | - Xin-Yue Shi
- School of Pharmacy, 177505Jiangxi Science and Technology Normal University, Nanchang, P.R. China
| | - Lin-Jing Wu
- School of Pharmacy, 177505Jiangxi Science and Technology Normal University, Nanchang, P.R. China
| | - Xi-Lan Tang
- School of Pharmacy, 177505Jiangxi Science and Technology Normal University, Nanchang, P.R. China
| | - Yin-Hua Xiong
- School of Pharmacy, 177505Jiangxi Science and Technology Normal University, Nanchang, P.R. China
| |
Collapse
|
5
|
Traber MG, Head B. Vitamin E: How much is enough, too much and why! Free Radic Biol Med 2021; 177:212-225. [PMID: 34699937 DOI: 10.1016/j.freeradbiomed.2021.10.028] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 09/08/2021] [Accepted: 10/11/2021] [Indexed: 12/12/2022]
Abstract
α-Tocopherol (α-T) is a required dietary nutrient for humans and thus is a vitamin. This narrative review focuses on vitamin E structures, functions, biological determinants and its deficiency symptoms in humans. The mechanisms for the preferential α-T tissue enrichment in the human body include the α-T transfer protein (TTPA) and the preferential metabolism of non-α-T forms. Potential new α-T biomarkers, pharmacokinetic data, and whether there are better approaches to evaluate and set the α-T dietary requirement are discussed. Finally, the possible role of α-T supplements in delay of chronic diseases and the evaluation of vitamin E safety are considered.
Collapse
Affiliation(s)
- Maret G Traber
- Linus Pauling Institute, USA; School of Biological and Population Health Sciences, College of Public Health and Human Sciences, USA.
| | - Brian Head
- Linus Pauling Institute, USA; Molecular and Cell Biology Program, Oregon State University, Corvallis, OR, USA
| |
Collapse
|
6
|
Traber MG, Leonard SW, Ebenuwa I, Violet PC, Niyyati M, Padayatty S, Smith S, Bobe G, Levine M. Vitamin E catabolism in women, as modulated by food and by fat, studied using 2 deuterium-labeled α-tocopherols in a 3-phase, nonrandomized crossover study. Am J Clin Nutr 2020; 113:92-103. [PMID: 33184629 PMCID: PMC7779232 DOI: 10.1093/ajcn/nqaa298] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 09/28/2020] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Human vitamin E (α-tocopherol) catabolism is a mechanism for regulating whole-body α-tocopherol. OBJECTIVES To determine the roles of the intestine and liver on α-tocopherol catabolism as affected by fat or fasting, 2 deuterium-labeled (intravenous d6- and oral d3-) forms of α-tocopherol were used. METHODS Healthy women received intravenous d6-α-tocopherol and consumed d3-α-tocopherol with a 600-kcal defined liquid meal (DLM; 40% or 0% fat, n = 10) followed by controlled meals; or the 0% fat DLM (n = 7) followed by a 12-h fast (0% fat-fast), then controlled meals ≤72 h. The order of the 3-phase crossover design was not randomized and there was no blinding. Samples were analyzed by LC/MS to determine the α-tocopherol catabolites and α-carboxyethyl hydroxychromanol (α-CEHC) in urine, feces, and plasma that were catabolized from administered oral d3- and intravenous d6-α-tocopherols. RESULTS Urinary and plasma d3- and d6-α-CEHC concentrations varied differently with the interventions. Mean ± SEM cumulative urinary d6-α-CEHC derived from the intravenous dose excreted over 72 h during the 40% fat (2.50 ± 0.37 μmol/g creatinine) and 0% fat (2.37 ± 0.37 μmol/g creatinine) interventions were similar, but a ∼50% decrease was observed during the 0% fat-fast (1.05 ± 0.39 μmol/g creatinine) intervention (compared with 0% fat, P = 0.0005). Cumulative urinary d3-α-CEHC excretion was not significantly changed by any intervention. Total urinary and fecal excretion of catabolites accounted for <5% of each of the administered doses. CONCLUSIONS Differential catabolism of the intravenous d6-α-tocopherol and oral d3-α-tocopherol doses shows both liver and intestine have roles in α-tocopherol catabolism. During the 40% fat intervention, >90% of urinary d3-α-CEHC excretion was estimated to be liver-derived, whereas during fasting <50% was from the liver with the remainder from the intestine, suggesting that there was increased intestinal α-tocopherol catabolism while d3-α-tocopherol was retained in the intestine in the absence of adequate fat/food for α-tocopherol absorption.This trial was registered at clinicaltrials.gov as NCT00862433.
Collapse
Affiliation(s)
| | - Scott W Leonard
- Linus Pauling Institute, Oregon State University, Corvallis, OR, USA
| | - Ifechukwude Ebenuwa
- Molecular and Clinical Nutrition Section, Intramural Research Program, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, MD, USA
| | - Pierre-Christian Violet
- Molecular and Clinical Nutrition Section, Intramural Research Program, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, MD, USA
| | - Mahtab Niyyati
- Molecular and Clinical Nutrition Section, Intramural Research Program, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, MD, USA
| | - Sebastian Padayatty
- Molecular and Clinical Nutrition Section, Intramural Research Program, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, MD, USA
| | - Sheila Smith
- Molecular and Clinical Nutrition Section, Intramural Research Program, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, MD, USA
| | - Gerd Bobe
- Linus Pauling Institute, Oregon State University, Corvallis, OR, USA
| | - Mark Levine
- Molecular and Clinical Nutrition Section, Intramural Research Program, National Institute of Diabetes and Digestive and Kidney Diseases, NIH, Bethesda, MD, USA
| |
Collapse
|
7
|
Solanki M, Pointon A, Jones B, Herbert K. Cytochrome P450 2J2: Potential Role in Drug Metabolism and Cardiotoxicity. Drug Metab Dispos 2018; 46:1053-1065. [DOI: 10.1124/dmd.117.078964] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Accepted: 04/19/2018] [Indexed: 12/11/2022] Open
|
8
|
Uehara S, Uno Y, Yamazaki H. Hepatic expression of cytochrome P450 enzymes in non-human primate species. J Med Primatol 2017; 46:347-351. [PMID: 28664555 DOI: 10.1111/jmp.12288] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/06/2017] [Indexed: 12/15/2022]
Abstract
Cytochromes P450 (P450) largely remain to be characterized in great apes. Comparative immunochemical detection of drug metabolizing forms of P450s 1A, 2A, 2B, 2C, 2D, 2E, 2J, 3A, 4A, and 4F in liver microsomes from chimpanzees, gorillas, orangutans, gibbons, cynomolgus and rhesus macaques, and common marmosets were carried out.
Collapse
Affiliation(s)
- Shotaro Uehara
- Laboratory of Drug Metabolism and Pharmacokinetics, Showa Pharmaceutical University, Machida, Tokyo, Japan
| | - Yasuhiro Uno
- Pharmacokinetics and Bioanalysis Center, Shin Nippon Biomedical Laboratories, Ltd., Kainan, Wakayama, Japan.,Laboratory of Translational Research, Graduate School of Pharmaceutical Sciences, Hokkaido University, Sapporo, Japan
| | - Hiroshi Yamazaki
- Laboratory of Drug Metabolism and Pharmacokinetics, Showa Pharmaceutical University, Machida, Tokyo, Japan
| |
Collapse
|
9
|
Xie F, Ding X, Zhang QY. An update on the role of intestinal cytochrome P450 enzymes in drug disposition. Acta Pharm Sin B 2016; 6:374-383. [PMID: 27709006 PMCID: PMC5045550 DOI: 10.1016/j.apsb.2016.07.012] [Citation(s) in RCA: 94] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Revised: 07/12/2016] [Accepted: 07/14/2016] [Indexed: 12/05/2022] Open
Abstract
Oral administration is the most commonly used route for drug treatment. Intestinal cytochrome P450 (CYP)-mediated metabolism can eliminate a large proportion of some orally administered drugs before they reach systemic circulation, while leaving the passage of other drugs unimpeded. A better understanding of the ability of intestinal P450 enzymes to metabolize various clinical drugs in both humans and preclinical animal species, including the identification of the CYP enzymes expressed, their regulation, and the relative importance of intestinal metabolism compared to hepatic metabolism, is important for improving bioavailability of current drugs and new drugs in development. Here, we briefly review the expression of drug-metabolizing P450 enzymes in the small intestine of humans and several preclinical animal species, and provide an update of the various factors or events that regulate intestinal P450 expression, including a cross talk between the liver and the intestine. We further compare various clinical and preclinical approaches for assessing the impact of intestinal drug metabolism on bioavailability, and discuss the utility of the intestinal epithelium–specific NADPH-cytochrome P450 reductase-null (IECN) mouse as a useful model for studying in vivo roles of intestinal P450 in the disposition of orally administered drugs.
Collapse
|
10
|
Foti RS, Dalvie DK. Cytochrome P450 and Non-Cytochrome P450 Oxidative Metabolism: Contributions to the Pharmacokinetics, Safety, and Efficacy of Xenobiotics. ACTA ACUST UNITED AC 2016; 44:1229-45. [PMID: 27298339 DOI: 10.1124/dmd.116.071753] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Accepted: 06/10/2016] [Indexed: 12/16/2022]
Abstract
The drug-metabolizing enzymes that contribute to the metabolism or bioactivation of a drug play a crucial role in defining the absorption, distribution, metabolism, and excretion properties of that drug. Although the overall effect of the cytochrome P450 (P450) family of drug-metabolizing enzymes in this capacity cannot be understated, advancements in the field of non-P450-mediated metabolism have garnered increasing attention in recent years. This is perhaps a direct result of our ability to systematically avoid P450 liabilities by introducing chemical moieties that are not susceptible to P450 metabolism but, as a result, may introduce key pharmacophores for other drug-metabolizing enzymes. Furthermore, the effects of both P450 and non-P450 metabolism at a drug's site of therapeutic action have also been subject to increased scrutiny. To this end, this Special Section on Emerging Novel Enzyme Pathways in Drug Metabolism will highlight a number of advancements that have recently been reported. The included articles support the important role of non-P450 enzymes in the clearance pathways of U.S. Food and Drug Administration-approved drugs over the past 10 years. Specific examples will detail recent reports of aldehyde oxidase, flavin-containing monooxygenase, and other non-P450 pathways that contribute to the metabolic, pharmacokinetic, or pharmacodynamic properties of xenobiotic compounds. Collectively, this series of articles provides additional support for the role of non-P450-mediated metabolic pathways that contribute to the absorption, distribution, metabolism, and excretion properties of current xenobiotics.
Collapse
Affiliation(s)
- Robert S Foti
- Pharmacokinetics and Drug Metabolism, Amgen, Cambridge, Massachusetts (R.S.F.); and Pharmacokinetics, Dynamics, and Metabolism, Pfizer, La Jolla, California (D.K.D.)
| | - Deepak K Dalvie
- Pharmacokinetics and Drug Metabolism, Amgen, Cambridge, Massachusetts (R.S.F.); and Pharmacokinetics, Dynamics, and Metabolism, Pfizer, La Jolla, California (D.K.D.)
| |
Collapse
|
11
|
Uehara S, Uno Y, Inoue T, Okamoto E, Sasaki E, Yamazaki H. Marmoset cytochrome P450 2J2 mainly expressed in small intestines and livers effectively metabolizes human P450 2J2 probe substrates, astemizole and terfenadine. Xenobiotica 2016; 46:977-85. [PMID: 26899760 DOI: 10.3109/00498254.2016.1146366] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
1. Common marmoset (Callithrix jacchus), a New World Monkey, has potential to be a useful animal model in preclinical studies. However, drug metabolizing properties have not been fully understood due to insufficient information on cytochrome P450 (P450), major drug metabolizing enzymes. 2. Marmoset P450 2J2 cDNA was isolated from marmoset livers. The deduced amino acid sequence showed a high-sequence identity (91%) with cynomolgus monkey and human P450 2J2 enzymes. A phylogenetic tree revealed that marmoset P450 2J2 was evolutionarily closer to cynomolgus monkey and human P450 2J2 enzymes, than P450 2J forms in pigs, rabbits, rats or mice. 3. Marmoset P450 2J2 mRNA was abundantly expressed in the small intestine and liver, and to a lesser extent in the brain, lung and kidney. Immunoblot analysis also showed expression of marmoset P450 2J2 protein in the small intestine and liver. 4. Enzyme assays using marmoset P450 2J2 protein heterologously expressed in Escherichia coli indicated that marmoset P450 2J2 effectively catalyzed astemizole O-demethylation and terfenadine t-butyl hydroxylation, similar to human and cynomolgus monkey P450 2J2 enzymes. 5. These results suggest the functional characteristics of P450 2J2 enzymes are similar among marmosets, cynomolgus monkeys and humans.
Collapse
Affiliation(s)
- Shotaro Uehara
- a Laboratory of Drug Metabolism and Pharmacokinetics , Showa Pharmaceutical University , Machida , Tokyo , Japan
| | - Yasuhiro Uno
- b Pharmacokinetics and Bioanalysis Center, Shin Nippon Biomedical Laboratories, Ltd , Kainan , Wakayama , Japan
| | - Takashi Inoue
- c Department of Applied Developmental Biology , Central Institute for Experimental Animals , Kawasaki , Japan , and
| | - Eriko Okamoto
- a Laboratory of Drug Metabolism and Pharmacokinetics , Showa Pharmaceutical University , Machida , Tokyo , Japan
| | - Erika Sasaki
- c Department of Applied Developmental Biology , Central Institute for Experimental Animals , Kawasaki , Japan , and.,d Keio Advanced Research Center, Keio University , Minato-Ku, Tokyo , Japan
| | - Hiroshi Yamazaki
- a Laboratory of Drug Metabolism and Pharmacokinetics , Showa Pharmaceutical University , Machida , Tokyo , Japan
| |
Collapse
|