1
|
Harland JB, LaLonde AB, Thomas DJ, Castella DG, Kampf JW, Zeller M, Alp EE, Hu MY, Zhao J, Lehnert N. Vibrational properties of heme-nitrosoalkane complexes in comparison with those of their HNO analogs, and reactivity studies towards nitric oxide and Lewis acids. Dalton Trans 2024; 53:13906-13924. [PMID: 39093017 DOI: 10.1039/d4dt01632g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
C-Nitroso compounds (RNO, R = alkyl and aryl) are byproducts of drug metabolism and bind to heme proteins, and their heme-RNO adducts are isoelectronic to ferrous nitroxyl (NO-/HNO) complexes. Importantly, heme-HNO compounds are key intermediates in the reduction of NO to N2O and nitrite to ammonium in the nitrogen cycle. Ferrous heme-RNO complexes act as stable analogs of these species, potentially allowing for the investigation of the vibrational and electronic properties of unstable heme-HNO intermediates. In this paper, a series of six-coordinate ferrous heme-RNO complexes (where R = iPr and Ph) were prepared using the TPP2- and 3,5-Me-BAFP2- co-ligands, and tetrahydrofuran, pyridine, and 1-methylimidazole as the axial ligands (bound trans to RNO). These complexes were characterized using different spectroscopic methods and X-ray crystallography. The complex [Fe(TPP)(THF)(iPrNO)] was further utilized for nuclear resonance vibrational spectroscopy (NRVS), allowing for the detailed assignment of the Fe-N(R)O vibrations of a heme-RNO complex for the first time. The vibrational properties of these species were then correlated with those of their HNO analogs, using DFT calculations. Our studies support previous findings that RNO ligands in ferrous heme complexes do not elicit a significant trans effect. In addition, the complexes are air-stable, and do not show any reactivity of their RNO ligands towards NO. So although ferrous heme-RNO complexes are suitable structural and electronic models for their HNO analogs, they are unsuitable to model the reactivity of heme-HNO complexes. We further investigated the reaction of our heme-RNO complexes with different Lewis acids. Here, [Fe(TPP)(THF)(iPrNO)] was found to be unreactive towards Lewis acids. In contrast, [Fe(3,5-Me-BAFP)(iPrNO)2] is reactive towards all of the Lewis acids investigated here, but in most cases the iron center is simply oxidized, resulting in the loss of the iPrNO ligand. In the case of the Lewis acid B2(pin)2, the reduced product [Fe(3,5-Me-BAFP)(iPrNH2)(iPrNO)] was identified by X-ray crystallography.
Collapse
Affiliation(s)
- Jill B Harland
- Department of Chemistry and Department of Biophysics, University of Michigan, Ann Arbor, MI 48109, USA.
| | - Ashley B LaLonde
- Department of Chemistry and Department of Biophysics, University of Michigan, Ann Arbor, MI 48109, USA.
| | - Diamond J Thomas
- Department of Chemistry and Department of Biophysics, University of Michigan, Ann Arbor, MI 48109, USA.
| | - Daniel G Castella
- Department of Chemistry and Department of Biophysics, University of Michigan, Ann Arbor, MI 48109, USA.
| | - Jeff W Kampf
- Department of Chemistry and Department of Biophysics, University of Michigan, Ann Arbor, MI 48109, USA.
| | - Matthias Zeller
- Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, Indiana 47907, USA
| | - E Ercan Alp
- Advanced Photon Source, Argonne National Laboratory, Illinois 60439, USA
| | - Michael Y Hu
- Advanced Photon Source, Argonne National Laboratory, Illinois 60439, USA
| | - Jiyong Zhao
- Advanced Photon Source, Argonne National Laboratory, Illinois 60439, USA
| | - Nicolai Lehnert
- Department of Chemistry and Department of Biophysics, University of Michigan, Ann Arbor, MI 48109, USA.
| |
Collapse
|
2
|
Adomako-Bonsu AG, Jacobsen J, Maser E. Metabolic activation of 2,4,6-trinitrotoluene; a case for ROS-induced cell damage. Redox Biol 2024; 72:103082. [PMID: 38527399 PMCID: PMC10979124 DOI: 10.1016/j.redox.2024.103082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 02/07/2024] [Accepted: 02/08/2024] [Indexed: 03/27/2024] Open
Abstract
The explosive compound 2,4,6-trinitrotoluene (TNT) is well known as a major component of munitions. In addition to its potential carcinogenicity and mutagenicity in humans, recent reports have highlighted TNT toxicities in diverse organisms due to its occurrence in the environment. These toxic effects have been linked to the intracellular metabolism of TNT, which is generally characterised by redox cycling and the generation of noxious reactive molecules. The reactive intermediates formed, such as nitroso and hydroxylamine compounds, also interact with oxygen molecules and cellular components to cause macromolecular damage and oxidative stress. The current review aims to highlight the crucial role of TNT metabolism in mediating TNT toxicity, via increased generation of reactive oxygen species. Cellular proliferation of reactive species results in depletion of cellular antioxidant enzymes, DNA and protein adduct formation, and oxidative stress. While TNT toxicity is well known, its ability to induce oxidative stress, resulting from its reductive activation, suggests that some of its toxic effects may be caused by its reactive metabolites. Hence, further research on TNT metabolism is imperative to elucidate TNT-induced toxicities.
Collapse
Affiliation(s)
- Amma Gyapomah Adomako-Bonsu
- Institute of Toxicology and Pharmacology for Natural Scientists, University Medical School Schleswig-Holstein Campus Kiel, Brunswiker Str. 10, 24105, Kiel, Germany
| | - Jana Jacobsen
- Institute of Toxicology and Pharmacology for Natural Scientists, University Medical School Schleswig-Holstein Campus Kiel, Brunswiker Str. 10, 24105, Kiel, Germany
| | - Edmund Maser
- Institute of Toxicology and Pharmacology for Natural Scientists, University Medical School Schleswig-Holstein Campus Kiel, Brunswiker Str. 10, 24105, Kiel, Germany.
| |
Collapse
|
3
|
Powell SM, Prather KY, Nguyen N, Thomas LM, Richter-Addo GB. Interactions of metronidazole and chloramphenicol with myoglobin: Crystal structure of a Mb-acetamide product. J PORPHYR PHTHALOCYA 2023; 27:1142-1147. [PMID: 37868702 PMCID: PMC10588810 DOI: 10.1142/s1088424623500700] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2023]
Abstract
Nitroorganics present a general concern for a safe environment due to their health hazards. However, some nitroorganics such as metronidazole (Mtz) and chloramphenicol (CAM) also possess medicinal value. Mtz and CAM can undergo reductive bioactivation presumably via their nitroso derivatives. We show, using UV-vis spectroscopy, that sperm whale myoglobin (swMb) and its distal pocket mutants retaining H-bonding capacity react with Mtz in the presence of dithionite to generate products with spectra suggestive of the Fe-bound nitroso (Fe-RNO; λmax ~420 nm) forms. We have crystallized and solved the X-ray crystal structure of an H64Q swMb-acetamide compound to 1.76 Å resolution; formation of this compound results from the serendipitous crystallographic trapping, by the heme center, of acetamide from the reductive decomposition of Mtz. Only one of the swMb proteins, namely H64Q swMb with a relatively flexible Gln64 residue, reacted with CAM presumably due to the bulky nature of CAM that generally may restrict its access to the heme site.
Collapse
Affiliation(s)
- Samantha M. Powell
- Price Family Foundation Institute of Structural Biology, Stephenson Life Sciences Research Center, and Department of Chemistry and Biochemistry, University of Oklahoma, 101 Stephenson Parkway, Norman, OK, U.S.A. 73019
- Biological Sciences Division, Pacific Northwest National Laboratory, 902 Batelle Blvd, Richland, WA, U.S.A. 99352
| | - Kiana Y. Prather
- Price Family Foundation Institute of Structural Biology, Stephenson Life Sciences Research Center, and Department of Chemistry and Biochemistry, University of Oklahoma, 101 Stephenson Parkway, Norman, OK, U.S.A. 73019
- University of Oklahoma College of Medicine, 800 Stanton L. Young Blvd, Oklahoma City, OK 73117
| | - Nancy Nguyen
- Price Family Foundation Institute of Structural Biology, Stephenson Life Sciences Research Center, and Department of Chemistry and Biochemistry, University of Oklahoma, 101 Stephenson Parkway, Norman, OK, U.S.A. 73019
- University of Oklahoma College of Medicine, 800 Stanton L. Young Blvd, Oklahoma City, OK 73117
| | - Leonard M. Thomas
- Price Family Foundation Institute of Structural Biology, Stephenson Life Sciences Research Center, and Department of Chemistry and Biochemistry, University of Oklahoma, 101 Stephenson Parkway, Norman, OK, U.S.A. 73019
| | - George B. Richter-Addo
- Price Family Foundation Institute of Structural Biology, Stephenson Life Sciences Research Center, and Department of Chemistry and Biochemistry, University of Oklahoma, 101 Stephenson Parkway, Norman, OK, U.S.A. 73019
| |
Collapse
|
4
|
Nemeikaitė-Čėnienė A, Marozienė A, Misevičienė L, Tamulienė J, Yantsevich AV, Čėnas N. 5Flavoenzyme-catalyzed single-electron reduction of nitroaromatic antiandrogens: implications for their cytotoxicity. Free Radic Res 2021; 55:246-254. [PMID: 34098820 DOI: 10.1080/10715762.2021.1919304] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The therapeutic action of nitroaromatic antiandrogens nilutamide and flutamide may be complicated by their cytotoxicity, whose mechanisms are still incomprehensively understood. In particular this concerns the enzymatic redox cycling of flutamide and its metabolites, and its impact on their cytotoxicity. In this work, we examined the single-electron reduction of nilutamide, flutamide, its metabolites 2-hydroxyflutamide and 4-nitro-3-trifluorormethyl-phenylamine, and a topical antiandrogen (3-amino-2-hydroxy-2-methyl-N-(4-nitro-3-trifluoromethyl)-phenyl) propanamide by NADPH:cytochrome P-450 reductase and adrenodoxin reductase/adrenodoxin. The obtained steady-state bimolecular rate constants of oxidant reduction (kcat/Km) enabled to establish single-electron reduction midpoint potentials (E17) of compounds, -0.377 - -0.413 V, which were in line with enthalpies of formation of their free radicals, obtained by quantum mechanical calculations. Using murine hepatoma MH22a cells, the obtained cytotoxicity vs. E17 correlation based on the data of model nitroaromatic compounds shows that redox cycling and oxidative stress could be the main factor of cytotoxicity of nitroaromatic antiandrogens. Other minor cytotoxicity factors could be their redox metabolism involving NAD(P)H:quinone oxidoreductase (NQO1) and cytochromes P-450.
Collapse
Affiliation(s)
| | | | - Lina Misevičienė
- Institute of Biochemistry of Vilnius University, Vilnius, Lithuania
| | - Jelena Tamulienė
- Institute of Theoretical Physics and Astronomy of Vilnius University, Vilnius, Lithuania
| | | | - Narimantas Čėnas
- Institute of Biochemistry of Vilnius University, Vilnius, Lithuania
| |
Collapse
|
5
|
Laghrib F, Aghris S, Ajermoun N, Hrioua A, Bakasse M, Lahrich S, El Mhammedi MA. Recent progress in controlling the synthesis and assembly of nanostructures: Application for electrochemical determination of p-nitroaniline in water. Talanta 2020; 219:121234. [PMID: 32887125 DOI: 10.1016/j.talanta.2020.121234] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2020] [Revised: 05/30/2020] [Accepted: 05/31/2020] [Indexed: 01/11/2023]
Abstract
The development of nanoparticle research has grown considerably in recent years. One of the reasons for the considerable current interest in nanoparticles is because such materials frequently display unusual physical (structural, electronic, magnetic, and optical) and chemical (catalytic) properties. The development of nanomaterials is of interest to the scientific community and industrial companies. Different methods (physical, chemical, and biological) allow their manufacture. In particular, a major effort has been devoted to the development and improvement of synthesis methods in order to obtain nano-objects of controlled size and shape, a necessary pre-requisite to their organization, and to the study of their intrinsic and collective properties. Reviews play an important role in keeping interested parties up to date on the current state of the research in any academic field. This review aims to focus on the development of nanoparticles and stabilization with adsorbed/covalently attached ligands in solution phase since these factors are deeply related to the origins of the particles' stability, the media to which they are exposed, and the involved applications. This study also examines the factors that influence the synthesis of nanoparticles. It aims to provide an overview of existing electrochemical sensors, particularly those that operate with nanomaterial-based electrode modifications for p-nitroaniline (PNA) determination and to propose guidelines for related research and development activities. Emphasis was placed on the procedure for the analysis of PNA in water samples using nanosilver-based electrodes.
Collapse
Affiliation(s)
- F Laghrib
- Sultan Moulay Slimane University of Beni Mellal, Laboratory of Chemistry, Modeling and Environmental Sciences, Polydisciplinary Faculty, 25000 Khouribga, Morocco
| | - S Aghris
- Sultan Moulay Slimane University of Beni Mellal, Laboratory of Chemistry, Modeling and Environmental Sciences, Polydisciplinary Faculty, 25000 Khouribga, Morocco
| | - N Ajermoun
- Sultan Moulay Slimane University of Beni Mellal, Laboratory of Chemistry, Modeling and Environmental Sciences, Polydisciplinary Faculty, 25000 Khouribga, Morocco
| | - A Hrioua
- Sultan Moulay Slimane University of Beni Mellal, Laboratory of Chemistry, Modeling and Environmental Sciences, Polydisciplinary Faculty, 25000 Khouribga, Morocco
| | - M Bakasse
- University Chouaib Doukkali, Organic Micropollutants Analysis Team, Faculty of Sciences, El Jadida, Morocco
| | - S Lahrich
- Sultan Moulay Slimane University of Beni Mellal, Laboratory of Chemistry, Modeling and Environmental Sciences, Polydisciplinary Faculty, 25000 Khouribga, Morocco
| | - M A El Mhammedi
- Sultan Moulay Slimane University of Beni Mellal, Laboratory of Chemistry, Modeling and Environmental Sciences, Polydisciplinary Faculty, 25000 Khouribga, Morocco.
| |
Collapse
|
6
|
Askari MS, Effaty F, Gennarini F, Orio M, Le Poul N, Ottenwaelder X. Tuning Inner-Sphere Electron Transfer in a Series of Copper/Nitrosoarene Adducts. Inorg Chem 2020; 59:8678-8689. [PMID: 32073833 DOI: 10.1021/acs.inorgchem.9b03175] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
A series of copper/nitrosoarene complexes was created that mimics several steps in biomimetic O2 activation by copper(I). The reaction of the copper(I) complex of N,N,N',N'-tetramethypropylenediamine with a series of para-substituted nitrosobenzene derivatives leads to adducts in which the nitrosoarene (ArNO) is reduced by zero, one, or two electrons, akin to the isovalent species dioxygen, superoxide, and peroxide, respectively. The geometric and electronic structures of these adducts were characterized by means of X-ray diffraction, vibrational analysis, ultraviolet-visible spectroscopy, NMR, electrochemistry, and density functional theory (DFT) calculations. The bonding mode of the NO moiety depends on the oxidation state of the ArNO moiety: κN for ArNO, mononuclear η2-NO and dinuclear μ-η2:η1 for ArNO•-, and dinuclear μ-η2:η2 for ArNO2-. 15N isotopic labeling confirms the reduction state by measuring the NO stretching frequency (1392 cm-1 for κN-ArNO, 1226 cm-1 for η2-ArNO•-, 1133 cm-1 for dinuclear μ-η2:η1-ArNO•-, and 875 cm-1 for dinuclear μ-η2:η2 for ArNO2-). The 15N NMR signal disappears for the ArNO•- species, establishing a unique diagnostic for the radical state. Electrochemical studies indicate reduction waves that are consistent with one-electron reduction of the adducts and are compared with studies performed on Cu-O2 analogues. DFT calculations were undertaken to confirm our experimental findings, notably to establish the nature of the charge-transfer transitions responsible for the intense green color of the complexes. In fine, this family of complexes is unique in that it walks through three redox states of the ArNO moiety while keeping the metal and its supporting ligand the same. This work provides snapshots of the reactivity of the toxic nitrosoarene molecules with the biologically relevant Cu(I) ion.
Collapse
Affiliation(s)
- Mohammad S Askari
- Department of Chemistry and Biochemistry, Concordia University, Montreal, Quebec H4B 1R6, Canada
| | - Farshid Effaty
- Department of Chemistry and Biochemistry, Concordia University, Montreal, Quebec H4B 1R6, Canada
| | - Federica Gennarini
- Department of Chemistry and Biochemistry, Concordia University, Montreal, Quebec H4B 1R6, Canada.,Laboratoire de Chimie, Électrochimie Moléculaires et Chimie Analytique, UMR, CNRS 6521, Université de Bretagne Occidentale, Brest 29238, France
| | - Maylis Orio
- Aix Marseille Université, CNRS, Centrale Marseille, iSm2, Marseille 13007, France
| | - Nicolas Le Poul
- Laboratoire de Chimie, Électrochimie Moléculaires et Chimie Analytique, UMR, CNRS 6521, Université de Bretagne Occidentale, Brest 29238, France
| | - Xavier Ottenwaelder
- Department of Chemistry and Biochemistry, Concordia University, Montreal, Quebec H4B 1R6, Canada
| |
Collapse
|
7
|
Marozienė A, Lesanavičius M, Davioud-Charvet E, Aliverti A, Grellier P, Šarlauskas J, Čėnas N. Antiplasmodial Activity of Nitroaromatic Compounds: Correlation with Their Reduction Potential and Inhibitory Action on Plasmodium falciparum Glutathione Reductase. Molecules 2019; 24:molecules24244509. [PMID: 31835450 PMCID: PMC6943496 DOI: 10.3390/molecules24244509] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Revised: 11/21/2019] [Accepted: 12/04/2019] [Indexed: 02/02/2023] Open
Abstract
With the aim to clarify the mechanism(s) of action of nitroaromatic compounds against the malaria parasite Plasmodium falciparum, we examined the single-electron reduction by P. falciparum ferredoxin:NADP+ oxidoreductase (PfFNR) of a series of nitrofurans and nitrobenzenes (n = 23), and their ability to inhibit P. falciparum glutathione reductase (PfGR). The reactivity of nitroaromatics in PfFNR-catalyzed reactions increased with their single-electron reduction midpoint potential (E17). Nitroaromatic compounds acted as non- or uncompetitive inhibitors towards PfGR with respect to NADPH and glutathione substrates. Using multiparameter regression analysis, we found that the in vitro activity of these compounds against P. falciparum strain FcB1 increased with their E17 values, octanol/water distribution coefficients at pH 7.0 (log D), and their activity as PfGR inhibitors. Our data demonstrate that both factors, the ease of reductive activation and the inhibition of PfGR, are important in the antiplasmodial in vitro activity of nitroaromatics. To the best of our knowledge, this is the first quantitative demonstration of this kind of relationship. No correlation between antiplasmodial activity and ability to inhibit human erythrocyte GR was detected in tested nitroaromatics. Our data suggest that the efficacy of prooxidant antiparasitic agents may be achieved through their combined action, namely inhibition of antioxidant NADPH:disulfide reductases, and the rapid reduction by single-electron transferring dehydrogenases-electrontransferases.
Collapse
Affiliation(s)
- Audronė Marozienė
- Department of Xenobiotics Biochemistry, Institute of Biochemistry of Vilnius University, Saulėtekio 7, LT-10257 Vilnius, Lithuania; (A.M.); (M.L.); (J.Š.)
| | - Mindaugas Lesanavičius
- Department of Xenobiotics Biochemistry, Institute of Biochemistry of Vilnius University, Saulėtekio 7, LT-10257 Vilnius, Lithuania; (A.M.); (M.L.); (J.Š.)
| | - Elisabeth Davioud-Charvet
- UMR7042 CNRS-Unistra-UHA, Laboratoire d’Innovation Moléculaire et Applications (LIMA), Bioorganic and Medicinal Chemistry Team, European School of Chemistry, Polymers and Materials, 25 rue Becquerel, F-67087 Strasbourg, France;
| | - Alessandro Aliverti
- Department of Biosciences, Universita degli Studi di Milano, via Celoria 26, I-20133 Milano, Italy;
| | - Philippe Grellier
- MCAM, UMR7245, Museum National d’Histoire Naturelle, CNRS, 61 rue Buffon, F-75231 Paris CEDEX 05, France;
| | - Jonas Šarlauskas
- Department of Xenobiotics Biochemistry, Institute of Biochemistry of Vilnius University, Saulėtekio 7, LT-10257 Vilnius, Lithuania; (A.M.); (M.L.); (J.Š.)
| | - Narimantas Čėnas
- Department of Xenobiotics Biochemistry, Institute of Biochemistry of Vilnius University, Saulėtekio 7, LT-10257 Vilnius, Lithuania; (A.M.); (M.L.); (J.Š.)
- Correspondence: ; Tel.: +370-5-223-4392
| |
Collapse
|
8
|
Pang SY, Duan JB, Zhou Y, Gao Y, Jiang J. Oxidation kinetics of anilines by aqueous permanganate and effects of manganese products: Comparison to phenols. CHEMOSPHERE 2019; 235:104-112. [PMID: 31255750 DOI: 10.1016/j.chemosphere.2019.06.156] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2019] [Revised: 06/20/2019] [Accepted: 06/21/2019] [Indexed: 06/09/2023]
Abstract
In this study, the potential applicability of potassium permanganate (Mn(VII)) for anilines elimination was systematically investigated firstly, with a focus on the effect of manganese intermediates on the kinetics of anilines versus phenols. It was found that Mn(VII) could fairly oxidize anilines, where the second-order rate constants (kMn(VII)) values for anilines always decreased as pH increased from 5 to 9. This interesting pH-dependency was successfully described by the kinetic models proposed in literature to account for the unusual pH-rate profiles for phenols, where the formation of intermediates between Mn(VII) and phenols or anilines was likely involved. The effect of manganese products such as MnO2 and Mn(III) on the oxidation of anilines by Mn(VII) was demonstrated. Under slightly acidic conditions, the reactions of Mn(VII) with anilines displayed autocatalysis, suggesting a similar catalytic role of MnO2 formed in situ as compared to phenols. Several ligands (e.g., pyrophosphate) inhibited the formation of MnO2 colloids and lowered the oxidation rates of anilines by Mn(VII) at acidic pH, while these ligands greatly accelerated the kinetics of phenols under similar conditions. The contrasting effects of ligands might be mainly attributed to the different reactivity of ligand-stabilized Mn(III) formed in situ toward anilines vs phenols. The complex effect of humic acid was highly dependent on solution pH, possible due to the dual role of humic acid that it could act as a reductant (competitively consuming Mn(VII) and phenoxy or aniline radical) as well as a ligand (stabilizing manganese intermediates such as Mn(III) species) to affect Mn(VII) reactions.
Collapse
Affiliation(s)
- Su-Yan Pang
- Key Laboratory of Songliao Aquatic Environment, Ministry of Education, School of Municipal and Environmental Engineering, Jilin Jianzhu University, Changchun, 130118, China; College of Chemical and Environmental Engineering, Harbin University of Science and Technology, Harbin, 150040, China
| | - Jie-Bin Duan
- Key Laboratory of Songliao Aquatic Environment, Ministry of Education, School of Municipal and Environmental Engineering, Jilin Jianzhu University, Changchun, 130118, China; College of Chemical and Environmental Engineering, Harbin University of Science and Technology, Harbin, 150040, China
| | - Yang Zhou
- Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou, 510006, China
| | - Yuan Gao
- Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou, 510006, China.
| | - Jin Jiang
- Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou, 510006, China
| |
Collapse
|
9
|
Emhoff KA, Balaraman L, Salem AM, Mudarmah KI, Boyd WC. Coordination chemistry of organic nitric oxide derivatives. Coord Chem Rev 2019. [DOI: 10.1016/j.ccr.2019.06.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
10
|
Nemeikaitė-Čėnienė A, Šarlauskas J, Jonušienė V, Marozienė A, Misevičienė L, Yantsevich AV, Čėnas N. Kinetics of Flavoenzyme-Catalyzed Reduction of Tirapazamine Derivatives: Implications for Their Prooxidant Cytotoxicity. Int J Mol Sci 2019; 20:ijms20184602. [PMID: 31533349 PMCID: PMC6769651 DOI: 10.3390/ijms20184602] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 09/06/2019] [Accepted: 09/11/2019] [Indexed: 12/23/2022] Open
Abstract
Derivatives of tirapazamine and other heteroaromatic N-oxides (ArN→O) exhibit promising antibacterial, antiprotozoal, and tumoricidal activities. Their action is typically attributed to bioreductive activation and free radical generation. In this work, we aimed to clarify the mechanism(s) of aerobic mammalian cell cytotoxicity of ArN→O performing the parallel studies of their reactions with NADPH:cytochrome P-450 reductase (P-450R), adrenodoxin reductase/adrenodoxin (ADR/ADX), and NAD(P)H:quinone oxidoreductase (NQO1); we found that in P-450R and ADR/ADX-catalyzed single-electron reduction, the reactivity of ArN→O (n = 9) increased with their single-electron reduction midpoint potential (E17), and correlated with the reactivity of quinones. NQO1 reduced ArN→O at low rates with concomitant superoxide production. The cytotoxicity of ArN→O in murine hepatoma MH22a and human colon adenocarcinoma HCT-116 cells increased with their E17, being systematically higher than that of quinones. The cytotoxicity of both groups of compounds was prooxidant. Inhibitor of NQO1, dicoumarol, and inhibitors of cytochromes P-450 α-naphthoflavone, isoniazid and miconazole statistically significantly (p < 0.02) decreased the toxicity of ArN→O, and potentiated the cytotoxicity of quinones. One may conclude that in spite of similar enzymatic redox cycling rates, the cytotoxicity of ArN→O is higher than that of quinones. This is partly attributed to ArN→O activation by NQO1 and cytochromes P-450. A possible additional factor in the aerobic cytotoxicity of ArN→O is their reductive activation in oxygen-poor cell compartments, leading to the formation of DNA-damaging species similar to those forming under hypoxia.
Collapse
Affiliation(s)
- Aušra Nemeikaitė-Čėnienė
- State Research Institute Center for Innovative Medicine, Santariškių St. 5, LT-08406 Vilnius, Lithuania.
| | - Jonas Šarlauskas
- Department of Xenobiotics Biochemistry, Institute of Biochemistry of Vilnius University, Saulėtekio 7, LT-10257 Vilnius, Lithuania.
| | - Violeta Jonušienė
- Department of Biochemistry and Molecular Biology, Institute of Biosciences of Vilnius University, Saulėtekio 7, LT-10257 Vilnius, Lithuania.
| | - Audronė Marozienė
- Department of Xenobiotics Biochemistry, Institute of Biochemistry of Vilnius University, Saulėtekio 7, LT-10257 Vilnius, Lithuania.
| | - Lina Misevičienė
- Department of Xenobiotics Biochemistry, Institute of Biochemistry of Vilnius University, Saulėtekio 7, LT-10257 Vilnius, Lithuania.
| | - Aliaksei V Yantsevich
- Institute of Bioorganic Chemistry, NAS of Belarus, Kuprevicha 5/2, BY-220072 Minsk, Belarus.
| | - Narimantas Čėnas
- Department of Xenobiotics Biochemistry, Institute of Biochemistry of Vilnius University, Saulėtekio 7, LT-10257 Vilnius, Lithuania.
| |
Collapse
|
11
|
Myers SR, Pinorini-Godly MT, Reddy TV, Daniel FB, Reddy G. Gas Chromatographic and Mass Spectrometric Determination of Hemoglobin Adducts of 1,3-Dinitrobenzene and 1,3,5-Trinitrobenzene in Shrew Cryptotis Parva. Int J Toxicol 2016. [DOI: 10.1080/109158199225233] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Abstract
1,3-Dinitrobenzene (DNB) and 1,3,5-trinitrobenzene (TNB) are used primarily in explosive compositions and munitions and have been detected as environmental contaminants of surface waters as well as ground waters near production waste disposal sites. Hemoglobin (Hb) adducts have recently been proposed as biological markers of exposure assessment for various environmental compounds, including nitroaromatics. In the present study, we have investigated the formation of DNB and TNB hemoglobin adducts in vivo and in vitro in the blood of shrew (Cryptotis parva). DNB and TNB hemoglobin adducts were detected by gas chromatography/mass spectrometry (GC/MS) after either basic (0.1 N NaOH) or acid (2 N HCl) hydrolysis followed by organic solvent extraction and derivatization of the corresponding amines. The levels of DNB-Hb adducts detected after basic hydrolysis (238.7 & pm; 50.2 pg/mg Hb) are higher than the corresponding levels detected after acid hydrolysis (52.5 & pm; 16.2 pg/mg Hb). For the TNB-Hb the levels after acid hydrolysis (132.2 & pm; 37.8 pg/mg Hb) are higher than the levels detected after basic hydrolysis (44.7 & pm; 15.3 pg-mg Hb). These results demonstrate the effectiveness of the hemoglobin adduct model for monitoring exposure to nitroaromatics.
Collapse
Affiliation(s)
- Steven R. Myers
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, Kentucky, USA
| | - Maria T. Pinorini-Godly
- Department of Pharmacology and Toxicology, University of Louisville School of Medicine, Louisville, Kentucky, USA
| | - Tirumuru V. Reddy
- U.S. Environmental Protection Agency, National Exposure Research Laboratory, Ecological Exposure Research Division, Cincinnati, Ohio, USA
| | - F. Bernard Daniel
- U.S. Environmental Protection Agency, National Exposure Research Laboratory, Ecological Exposure Research Division, Cincinnati, Ohio, USA
| | - Gunda Reddy
- U.S. Army Center for Health Promotion and Preventive Medicine, Aberdeen Proving Ground, Maryland, USA
| |
Collapse
|
12
|
Ghosh P, Das MT, Thakur IS. Mammalian cell line-based bioassays for toxicological evaluation of landfill leachate treated by Pseudomonas sp. ISTDF1. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2014; 21:8084-8094. [PMID: 24671403 DOI: 10.1007/s11356-014-2802-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2013] [Accepted: 03/12/2014] [Indexed: 06/03/2023]
Abstract
Landfill leachate has become a serious environmental concern because of the presence of many hazardous compounds which even at trace levels are a threat to human health and environment. Therefore, it is important to assess the toxicity of leachate generated and discharge it conforming to the safety standards. The present work examined the efficiency of an earlier reported Pseudomonas sp. strain ISTDF1 for detoxification of leachate collected from Okhla landfill site (New Delhi, India). GC-MS analysis performed after treatment showed the removal of compounds like alpha-limonene diepoxide, brominated dioxin-2-one, Bisphenol A, nitromusk, phthalate derivative, and nitrobenzene originally found in untreated leachate. ICP-AES analysis for heavy metals also showed reduction in concentrations of Zn, Cd, Cr, Fe, Ni, and Pb bringing them within the limit of safety discharge. Methyl tetrazolium (MTT) assay for cytotoxicity, alkaline comet assay for genotoxicity, and 7-ethoxyresorufin-O-deethylase (EROD) assay for dioxin-like behavior were carried out in human hepato-carcinoma cell line HepG2 to evaluate the toxic potential of treated and untreated leachates. The bacterium reduced toxicity as shown by 2.5-fold reduction of MTT EC50 value, 7-fold reduction in Olive Tail Moment, and 2.8-fold reduction in EROD induction after 240 h of bacterial treatment.
Collapse
Affiliation(s)
- Pooja Ghosh
- School of Environmental Sciences, Jawaharlal Nehru University, New Delhi, 110067, India,
| | | | | |
Collapse
|
13
|
Sakuratani Y, Zhang HQ, Nishikawa S, Yamazaki K, Yamada T, Yamada J, Hayashi M. Categorization of nitrobenzenes for repeated dose toxicity based on adverse outcome pathways. SAR AND QSAR IN ENVIRONMENTAL RESEARCH 2013; 24:35-46. [PMID: 23039897 DOI: 10.1080/1062936x.2012.728995] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Adoption of the data-gap filling method for complex endpoints such as repeated dose toxicity (RDT) and reproductive/developmental toxicity is one of the most important issues affecting international chemical management at present. A categorization method based on adverse outcome pathways (AOPs) has recently been investigated for such complex endpoints. In this paper, we report results of the categorization of nitrobenzenes for RDT based on the AOPs obtained by analysing the detailed RDT test reports for 24 different nitrobenzenes already evaluated. In most RDT testing of nitrobenzenes without hydroxyl groups or acid groups, findings related to haemolytic anaemia and liver effects were observed at low dosages. It was, therefore, possible to assume common AOPs for haemolytic anaemia and liver effects induced by these nitrobenzenes. As a result, a group of nitrobenzenes was defined as a single category for both haemolytic anaemia and liver effects, respectively, based on these AOPs.
Collapse
Affiliation(s)
- Y Sakuratani
- Chemical Management Center, National Institute of Technology and Evaluation, Tokyo, Japan.
| | | | | | | | | | | | | |
Collapse
|
14
|
Yi J, Ye G, Thomas LM, Richter-Addo GB. Degradation of human hemoglobin by organic C-nitroso compounds. Chem Commun (Camb) 2013; 49:11179-81. [PMID: 24149619 DOI: 10.1039/c3cc46174b] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Jun Yi
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, Oklahoma, USA.
| | | | | | | |
Collapse
|
15
|
O'Brien PJ, Chan K, Silber PM. Human and animal hepatocytes in vitro with extrapolation in vivo. Chem Biol Interact 2005; 150:97-114. [PMID: 15522264 DOI: 10.1016/j.cbi.2004.09.003] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Human and animal hepatocytes are now being used as an in vitro technique to aid drug discovery by predicting the in vivo metabolic pathways of drugs or new chemical entities (NCEs), identifying drug-metabolizing enzymes and predicting their in vivo induction. Because of the difficulty of establishing whether the cytotoxic susceptibility of human hepatocytes to xenobiotics/drugs in vitro could be used to predict in vivo human hepatotoxicity, a comparison of the susceptibility of the hepatocytes of human and animal models to six chemical classes of drugs/xenobiotics in vitro have been related to their in vivo hepatotoxicity and the corresponding activity of their metabolizing enzymes. This study showed that the cytotoxic effectiveness of 16 halobenzenes towards rat hepatocytes in vitro using higher doses and short incubation times correlated well with rat hepatotoxic effectiveness in vivo with lower doses/longer times. The hepatic/hepatocyte xenobiotic metabolizing enzyme activities of various animal species and human have been reviewed for use by veterinarians and research scientists. Where possible, recommendations have been made regarding which animal hepatocyte model is most applicable for modeling the susceptibility to xenobiotic induced hepatotoxicity of those humans with slow versus rapid metabolizing enzyme polymorphisms. These recommendations are based on the best human fit for animal drug/xenobiotic metabolizing enzymes in terms of activity, kinetics and substrate/inhibitor specificity. The use of human hepatocytes from slow versus rapid metabolizing individuals for drug metabolism/cytotoxicity studies; and the research use of freshly isolated rat hepatocytes and "Accelerated Cytotoxicity Mechanism Screening" (ACMS) techniques for identifying drug/xenobiotic reactive metabolites are also described. Using these techniques the molecular hepatocytotoxic mechanisms found in vitro for seven classes of xenobiotics/drugs were found to be similar to the rat hepatotoxic mechanisms reported in vivo.
Collapse
Affiliation(s)
- Peter J O'Brien
- Graduate Department of Pharmaceutical Sciences, Faculty of Pharmacy, University of Toronto, 19 Russell St., Toronto, Ont., Canada M5S 2S2.
| | | | | |
Collapse
|
16
|
Copeland DM, West AH, Richter-Addo GB. Crystal structures of ferrous horse heart myoglobin complexed with nitric oxide and nitrosoethane. Proteins 2003; 53:182-92. [PMID: 14517970 DOI: 10.1002/prot.10495] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The interactions of nitric oxide (NO) and organic nitroso compounds with heme proteins are biologically important, and adduct formation between NO-containing compounds and myoglobin (Mb) have served as prototypical systems for studies of these interactions. We have prepared crystals of horse heart (hh) MbNO from nitrosylation of aqua-metMb crystals, and we have determined the crystal structure of hh MbNO at a resolution of 1.9 A. The Fe-N-O angle of 147 degrees in hh MbNO is larger than the corresponding 112 degrees angle previously determined from the crystal structure of sperm whale MbNO (Brucker et al., Proteins 1998;30:352-356) but is similar to the 150 degrees angle determined from a MS XAFS study of a frozen solution of hh MbNO (Rich et al., J Am Chem Soc 1998;120:10827-10836). The Fe-N(O) bond length of 2.0 A (this work) is longer than the 1.75 A distance determined from the XAFS study and suggests distal pocket influences on FeNO geometry. The nitrosyl N atom is located 3.0 A from the imidazole N(epsilon) atom of the distal His64 residue, suggesting electrostatic stabilization of the FeNO moiety by His64. The crystal structure of the nitrosoethane adduct of ferrous hh Mb was determined at a resolution of 1.7 A. The nitroso O atom of the EtNO ligand is located 2.7 A from the imidazole N(epsilon) atom of His64, suggesting a hydrogen bond interaction between these groups. To the best of our knowledge, the crystal structure of hh Mb(EtNO) is the first such determination of a nitrosoalkane adduct of a heme protein.
Collapse
Affiliation(s)
- Daniel M Copeland
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, Oklahoma 73019, USA
| | | | | |
Collapse
|
17
|
Abstract
Arylamines and nitroarenes are very important intermediates in the industrial manufacture of dyes, pesticides and plastics, and are significant environmental pollutants. The metabolic steps of N-oxidation and nitroreduction to yield N-hydroxyarylamines are crucial for the toxic properties of arylamines and nitroarenes. Nitroarenes are reduced by microorganisms in the gut or by nitroreductases and aldehyde dehydrogenase in hepatocytes to nitrosoarenes and N-hydroxyarylamines. N-Hydroxyarylamines can be further metabolized to N-sulphonyloxyarylamines, N-acetoxyarylamines or N-hydroxyarylamine N-glucuronide. These highly reactive intermediates are responsible for the genotoxic and cytotoxic effects of this class of compounds. N-Hydroxyarylamines can form adducts with DNA, tissue proteins, and the blood proteins albumin and haemoglobin in a dose-dependent manner. DNA and protein adducts have been used to biomonitor humans exposed to such compounds. All these steps are dependent on enzymes, which are present in polymorphic forms. This article reviews the metabolism of arylamines and nitroarenes and the biomonitoring studies performed in animals and humans exposed to these substances.
Collapse
Affiliation(s)
- Gabriele Sabbioni
- Walther-Straub-Institut für Pharmakologie und Toxikologie, Ludwig-Maximilians-Universität München, Nussbaumstrasse 26, D-80336 München, Germany.
| | | |
Collapse
|
18
|
Grellier P, Sarlauskas J, Anusevicius Z, Maroziene A, Houee-Levin C, Schrevel J, Cenas N. Antiplasmodial activity of nitroaromatic and quinoidal compounds: redox potential vs. inhibition of erythrocyte glutathione reductase. Arch Biochem Biophys 2001; 393:199-206. [PMID: 11556806 DOI: 10.1006/abbi.2001.2487] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Prooxidant nitroaromatic and quinoidal compounds possess antimalarial activity, which might be attributed either to their formation of reactive oxygen species or to their inhibition of antioxidant enzyme glutathione reductase (GR, EC 1.6.4.2). We have examined the activity in vitro against Plasmodium falciparum of 24 prooxidant compounds of different structure (nitrobenzenes, nitrofurans, quinones, 1,1'-dibenzyl-4,4'-bipyridinium, and methylene blue), which possess a broad range of single-electron reduction potentials (E(1)(7)) and erythrocyte glutathione reductase inhibition constants (K(i(GR))). For a series of homologous derivatives of 2-(5'-nitrofurylvinyl)quinoline-4-carbonic acid, the relationship between compound K(i(GR)) and concentration causing 50% parasite growth inhibition (IC(50)) was absent. For all the compounds examined in this study, the dependence of IC(50) on their K(i(GR)) was insignificant. In contrast, IC(50) decreased with an increase in E(1)(7) and positive electrostatic charge of aromatic part of molecule (Z): log IC(50) (microM) = -(0.9846 +/- 0.3525) - (7.2850 +/- 1.2340) E(1)(7) (V) - (1.1034 +/- 0.1832) Z (r(2) = 0.8015). The redox cycling activity of nitroaromatic and quinoidal compounds in ferredoxin:NADP(+) reductase-catalyzed reaction and the rate of oxyhemoglobin oxidation in lysed erythrocytes increased with an increase in their E(1)(7) value. Our findings imply that the antiplasmodial activity of nitroaromatic and quinoidal compounds is mainly influenced by their ability to form reactive oxygen species, and much less significantly by the GR inhibition.
Collapse
Affiliation(s)
- P Grellier
- Laboratoire de Biologie Parasitaire et Chimiothérapie, Muséum National d'Histoire Naturelle, IFR 63, 61 rue Buffon, 75231 Paris Cedex 05, France
| | | | | | | | | | | | | |
Collapse
|
19
|
Cenas N, Nemeikaite-Ceniene A, Sergediene E, Nivinskas H, Anusevicius Z, Sarlauskas J. Quantitative structure-activity relationships in enzymatic single-electron reduction of nitroaromatic explosives: implications for their cytotoxicity. BIOCHIMICA ET BIOPHYSICA ACTA 2001; 1528:31-8. [PMID: 11514095 DOI: 10.1016/s0304-4165(01)00169-6] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The mechanisms of cytotoxicity of polynitroaromatic explosives, an important group of environmental pollutants, remain insufficiently studied so far. We have found that the rate constants of single-electron enzymatic reduction, and the enthalpies of single-electron reduction of nitroaromatic compounds (DeltaHf(ArNO(2)(-*)), obtained by quantum mechanical calculation, may serve as useful tools for the analysis of cytotoxicity of nitroaromatic explosives with respect to the possible involvement of oxidative stress. The single-electron reduction rate constants of a number of explosives including 2,4,6-trinitrotoluene (TNT) and 2,4,6-trinitrophenyl-N-methylnitramine (tetryl), and model nitroaromatic compounds by ferredoxin:NADP(+) reductase (FNR, EC 1.18.1.2) and NADPH:cytochrome P-450 reductase (P-450R, EC 1.6.2.4) increased with a decrease in DeltaHf(ArNO(2)(-*)). This indicates that the reduction rates are determined by the electron transfer energetics, but not by the particular structure of the explosives. The cytotoxicity of explosives to bovine leukemia virus-transformed lamb kidney fibroblasts (line FLK) increased with a corresponding increase in their reduction rate constant by P-450R and FNR, or with a decrease in their DeltaHf(ArNO(2)(-*)). This points to an importance of oxidative stress in the toxicity of explosives in this cell line, which was further evidenced by the protective effects of desferrioxamine and the antioxidant N,N'-diphenyl-p-phenylene diamine, and an increase in lipid peroxidation. DT-diaphorase (EC 1.6.99.2) exerted a minor and equivocal role in the cytotoxicity of explosives to FLK cells.
Collapse
Affiliation(s)
- N Cenas
- Institute of Biochemistry, Vilnius, Lithuania.
| | | | | | | | | | | |
Collapse
|
20
|
Myers SR, Pinorini-godly MT. Characterization of Hemoglobin Adducts of 1,3-Dinitrobenzene and 1,3,5-Trinitrobenzene. Polycycl Aromat Compd 2000. [DOI: 10.1080/10406630008028533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
21
|
Aromatic Amines, Nitroarenes, and Heterocyclic Aromatic Amines. Toxicology 1999. [DOI: 10.1016/b978-012473270-4/50089-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
22
|
Hetherington LH, Livingstone DR, Walker CH. Two- and one-electron dependent In vitro reductive metabolism of nitroaromatics by Mytilus edulis, Carcinus maenas and Asterias rubens. ACTA ACUST UNITED AC 1996. [DOI: 10.1016/0742-8413(95)02092-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
23
|
Siim BG, Wilson WR. Efficient redox cycling of nitroquinoline bioreductive drugs due to aerobic nitroreduction in Chinese hamster cells. Biochem Pharmacol 1995; 50:75-82. [PMID: 7605348 DOI: 10.1016/0006-2952(95)00112-d] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Nitroquinoline bioreductive drugs with 4-alkylamino substituents undergo one-electron reduction in mammalian cells, resulting in futile redox cycling due to oxidation of the nitro radical anion in aerobic cultures, and eventual reduction to the corresponding amines in the absence of oxygen. Rates of drug-induced oxygen consumption (R) due to redox cycling in cyanide-treated AA8 cell cultures were determined for 17 nitroquinolines. There was a linear dependence of log R on the one-electron reduction potential at pH 7 (E(7)1 with a slope of 7.1 V-1, excluding compounds with substituents ortho to the nitro group. The latter had anomalously low rates of oxygen consumption relative to E(7)1, suggesting that interaction with the active site of nitroreductases is impeded sterically for such compounds. Absolute values of R (and the observed E(7)1 dependence) were well predicted by a simple kinetic model that used rates of net nitroreduction to the amines under anoxia as a measure of the rates of one-electron reduction in aerobic cells. This indicates that redox cycling of 4-alkylaminonitroquinolines occurs at high efficiency in aerobic cells, suggesting that there are no quantitatively significant fates of nitro radical anions in cells other than their reaction with oxygen (or their spontaneous disproportionation under hypoxia).
Collapse
Affiliation(s)
- B G Siim
- Department of Pathology, University of Auckland, New Zealand
| | | |
Collapse
|
24
|
Goeptar AR, Scheerens H, Vermeulen NP. Oxygen and xenobiotic reductase activities of cytochrome P450. Crit Rev Toxicol 1995; 25:25-65. [PMID: 7734059 DOI: 10.3109/10408449509089886] [Citation(s) in RCA: 171] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The oxygen reductase and xenobiotic reductase activities of cytochrome P450 (P450) are reviewed. During the oxygen reductase activity of P450, molecular oxygen is reduced to superoxide anion radicals (O2-.) most likely by autooxidation of a P450 ferric-dioxyanion complex. The formation of reactive oxygen species (O2-., hydrogen peroxide, and, notably, hydroxyl free radicals) presents a potential toxication pathway, particularly when effective means of detoxication are lacking. Under anaerobic conditions, P450 may also be involved in the reduction of xenobiotics. During the xenobiotic reductase activity of P450, xenobiotics are reduced by the ferrous xenobiotic complex. After xenobiotic reduction by P450, xenobiotic free radicals are formed that are often capable of reacting directly with tissue macromolecules. Unfortunately, the compounds that are reductively activated by P450 have little structural similarity. The precise molecular mechanism underlying the xenobiotic reductase activity of P450 is, therefore, not yet fully understood. Moreover, description of the molecular mechanisms of xenobiotic and oxygen reduction reactions by P450 is limited by the lack of knowledge of the three-dimensional (3D) structure of the mammalian P450 proteins.
Collapse
Affiliation(s)
- A R Goeptar
- Leiden/Amsterdam Center for Drug Research, Vrije Universiteit, The Netherlands
| | | | | |
Collapse
|
25
|
Burns LA, Bradley SG, White KL, McCay JA, Fuchs BA, Stern M, Brown RD, Musgrove DL, Holsapple MP, Luster MI. Immunotoxicity of nitrobenzene in female B6C3F1 mice. Drug Chem Toxicol 1994; 17:271-315. [PMID: 7988385 DOI: 10.3109/01480549409017862] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Nitrobenzene (NBZ) is primarily employed as an oxidizing agent in the synthesis of analine and benzene compounds. It produces myelotoxic effects and effects on erythrocytes in both animal models and man. Reported hepatosplenomegaly and effects on the bone marrow are indicators that NBZ may be immunotoxic. In these studies, female B6C3F1 mice were exposed to 30, 100 and 300 mg/kg of NBZ in corn oil by gavage for 14 consecutive days. To assess the immunotoxic potential of NBZ, body and organ weights were determined and selected immunologic and host resistance responses were studied. In these studies, the liver and spleen appeared to be the primary target organs. Both liver and spleen weights were dose dependently increased. Gross histopathologic examinations revealed significant changes in the spleen, consisting of severe congestion of the red pulp areas with erythrocytes and reticulocytes. Serum chemistry profiles showed increases in alanine aminotransferase and aspartate aminotransferase activities, indicating liver toxicity. Hematologic studies showed a decrease in erythrocyte number and a concomitant increase in mean corpuscular hemoglobin and mean corpuscular volume. A dose-dependent increase in peripheral reticulocytes was also seen. DNA synthesis was enhanced, as was the number of formed elements and the number of monocyte/granulocyte stem cells in the bone marrow of treated mice. IgM responses were decreased and the phagocytic activity of macrophages in the liver was dose dependently increased with a concomitant decrease in the activities in the spleen and lung. Other immunological parameters examined were unchanged. Host resistance to microbial or viral infection was not markedly altered by NBZ; however, there were trends towards increased susceptibility where T-cell function contributes to host defense. These data indicate that NBZ-induced hemolysis and liver injury are linked to the observed alterations in bone marrow activity.
Collapse
Affiliation(s)
- L A Burns
- Department of Pharmacology, Medical College of Virginia/Virginia Commonwealth University, Richmond 23298
| | | | | | | | | | | | | | | | | | | |
Collapse
|