1
|
Marayati R, Williams AP, Bownes LV, Quinn CH, Stewart JE, Mroczek-Musulman E, Atigadda VR, Beierle EA. Novel retinoic acid derivative induces differentiation and growth arrest in neuroblastoma. J Pediatr Surg 2020; 55:1072-1080. [PMID: 32164984 PMCID: PMC7299742 DOI: 10.1016/j.jpedsurg.2020.02.027] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Accepted: 02/20/2020] [Indexed: 02/06/2023]
Abstract
INTRODUCTION Retinoic acid (RA) is a differentiating agent utilized as maintenance therapy for high-risk neuroblastoma (NB), but associated toxicities limit its use. We have previously shown that a non-toxic, novel rexinoid, 9-cis-UAB30 (UAB30), decreased NB cell proliferation and in vivo tumor growth. A second generation, mono-methylated compound, 6-Methyl-UAB30 (6-Me), has been recently designed having greater potency compared with UAB30. In the current study, we hypothesized that 6-Me would inhibit NB cell proliferation and survival and induce differentiation and cell-cycle arrest. METHODS Proliferation and viability were measured in four human NB cell lines following treatment with UAB30 or 6-Me. Cell-cycle was analyzed and tumor cell stemness was evaluated with extreme limiting dilution assays and immunoblotting for expression of stem cell markers. A xenograft murine model was utilized to study the effects of 6-Me in vivo. RESULTS Treatment with 6-Me led to decreased proliferation and viability, induced cell cycle arrest, and increased neurite outgrowth, indicating differentiation of surviving cells. Furthermore, treatment with 6-Me decreased tumorsphere formation and expression of stem cell markers. Finally, inhibition of tumor growth and increased animal survival was observed in vivo following treatment with 6-Me. CONCLUSION These results indicate a potential therapeutic role for this novel rexinoid in neuroblastoma treatment.
Collapse
Affiliation(s)
- Raoud Marayati
- Division of Pediatric Surgery, Department of Surgery, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Adele P. Williams
- Division of Pediatric Surgery, Department of Surgery, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Laura V. Bownes
- Division of Pediatric Surgery, Department of Surgery, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Colin H. Quinn
- Division of Pediatric Surgery, Department of Surgery, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Jerry E. Stewart
- Division of Pediatric Surgery, Department of Surgery, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | | | - Venkatram R. Atigadda
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Elizabeth A. Beierle
- Division of Pediatric Surgery, Department of Surgery, University of Alabama at Birmingham, Birmingham, Alabama, USA
| |
Collapse
|
2
|
Williams AP, Garner EF, Stafman LL, Aye JM, Quinn CH, Marayati R, Stewart JE, Atigadda VR, Mroczek-Musulman E, Moore BP, Beierle EA, Friedman GK. UAB30, A Novel Rexinoid Agonist, Decreases Stemness In Group 3 Medulloblastoma Human Cell Line Xenografts. Transl Oncol 2019; 12:1364-1374. [PMID: 31362265 PMCID: PMC6664160 DOI: 10.1016/j.tranon.2019.07.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 06/29/2019] [Accepted: 07/08/2019] [Indexed: 12/29/2022] Open
Abstract
PURPOSE: In spite of advances in therapy for some subtypes, group 3 medulloblastoma continues to portend a poor prognosis. A subpopulation of medulloblastoma cells expressing the cell surface marker CD133 have been posited as possible stem cell like cancer cells (SCLCC), a potential source of drug resistance and relapse. Retinoids have been shown to affect SCLCC in other brain tumors. Based on these findings, we hypothesized that the CD133-enriched cell population group 3 medulloblastoma cells would be sensitive to the novel rexinoid, UAB30. METHODS: Human medulloblastoma cell lines were studied. Cell sorting based on CD133 expression was performed. Both in vitro and in vivo extreme limiting dilution assays were completed to establish CD133 as a SCLCC marker in these cell lines. Cells were treated with either retinoic acid (RA) or UAB30 and sphere forming capacity and CD133 expression were assessed. Immunoblotting was used to assess changes in stem cell markers. Finally, mice injected with CD133-enriched or CD133-depleted cells were treated with UAB30. RESULTS: CD133-enriched cells more readily formed tumorspheres in vitro at lower cell concentrations and formed tumors in vivo at low cell numbers. Treatment with RA or UAB30 decreased CD133 expression, decreased tumorsphere formation, and decreased expression of cancer stem cell markers. In vivo studies demonstrated that tumors from both CD133-enriched and CD133-depleted cells were sensitive to treatment with UAB30. CONCLUSIONS: CD133 is a marker for medulloblastoma SCLCCs. Both CD133-enriched and CD133-depleted medulloblastoma cell populations demonstrated sensitivity to UAB30, indicating its potential as a therapeutic option for group 3 medulloblastoma.
Collapse
Affiliation(s)
- Adele P Williams
- Division of Pediatric Surgery, Department of Surgery, University of Alabama, Birmingham, Birmingham, AL
| | - Evan F Garner
- Division of Pediatric Surgery, Department of Surgery, University of Alabama, Birmingham, Birmingham, AL
| | - Laura L Stafman
- Division of Pediatric Surgery, Department of Surgery, University of Alabama, Birmingham, Birmingham, AL
| | - Jamie M Aye
- Division of Pediatric Hematology Oncology, Department of Pediatrics, University of Alabama, Birmingham, Birmingham, AL
| | - Colin H Quinn
- Division of Pediatric Surgery, Department of Surgery, University of Alabama, Birmingham, Birmingham, AL
| | - Raoud Marayati
- Division of Pediatric Surgery, Department of Surgery, University of Alabama, Birmingham, Birmingham, AL
| | - Jerry E Stewart
- Division of Pediatric Surgery, Department of Surgery, University of Alabama, Birmingham, Birmingham, AL
| | | | | | - Blake P Moore
- Division of Pediatric Hematology Oncology, Department of Pediatrics, University of Alabama, Birmingham, Birmingham, AL
| | - Elizabeth A Beierle
- Division of Pediatric Surgery, Department of Surgery, University of Alabama, Birmingham, Birmingham, AL.
| | - Gregory K Friedman
- Division of Pediatric Hematology Oncology, Department of Pediatrics, University of Alabama, Birmingham, Birmingham, AL
| |
Collapse
|
3
|
Garner EF, Stafman LL, Williams AP, Aye JM, Goolsby C, Atigadda VR, Moore BP, Nan L, Stewart JE, Hjelmeland AB, Friedman GK, Beierle EA. UAB30, a novel RXR agonist, decreases tumorigenesis and leptomeningeal disease in group 3 medulloblastoma patient-derived xenografts. J Neurooncol 2018; 140:209-224. [PMID: 30132166 PMCID: PMC6239946 DOI: 10.1007/s11060-018-2950-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Accepted: 07/12/2018] [Indexed: 02/06/2023]
Abstract
BACKGROUND Group 3 tumors account for approximately 25-30% of medulloblastomas and have the worst prognosis. UAB30 is a novel synthetic rexinoid shown to have limited toxicities in humans and significant efficacy in the pediatric neuroectodermal tumor, neuroblastoma. We hypothesized that treatment with UAB30 would decrease tumorigenicity in medulloblastoma patient-derived xenografts (PDXs). METHODS Three group 3 medulloblastoma PDXs (D341, D384 and D425) were utilized. Cell viability, proliferation, migration and invasion assays were performed after treatment with UAB30 or 13-cis-retinoic acid (RA). Cell cycle analysis was completed using flow cytometry. A flank model, a cerebellar model, and a model of leptomeningeal metastasis using human medulloblastoma PDX cells was used to assess the in vivo effects of UAB30 and RA. RESULTS UAB30 treatment led to cell differentiation and decreased medulloblastoma PDX cell viability, proliferation, migration and invasion and G1 cell cycle arrest in all three PDXs similar to RA. UAB30 and RA treatment of mice bearing medulloblastoma PDX tumors resulted in a significant decrease in tumor growth and metastasis compared to vehicle treated animals. CONCLUSIONS UAB30 decreased viability, proliferation, and motility in group 3 medulloblastoma PDX cells and significantly decreased tumor growth in vivo in a fashion similar to RA, suggesting that further investigations into the potential therapeutic application of UAB30 for medulloblastoma are warranted.
Collapse
Affiliation(s)
- Evan F Garner
- Division of Pediatric Surgery, Department of Surgery, University of Alabama, Birmingham, Birmingham, AL, USA
| | - Laura L Stafman
- Division of Pediatric Surgery, Department of Surgery, University of Alabama, Birmingham, Birmingham, AL, USA
| | - Adele P Williams
- Division of Pediatric Surgery, Department of Surgery, University of Alabama, Birmingham, Birmingham, AL, USA
| | - Jamie M Aye
- Division of Pediatric Hematology Oncology, Department of Pediatrics, University of Alabama, Birmingham, Birmingham, AL, USA
| | - Caroline Goolsby
- Division of Pediatric Surgery, Department of Surgery, University of Alabama, Birmingham, Birmingham, AL, USA
| | - Venkatram R Atigadda
- Department of Dermatology, University of Alabama, Birmingham, Birmingham, AL, USA
| | - Blake P Moore
- Division of Pediatric Hematology Oncology, Department of Pediatrics, University of Alabama, Birmingham, Birmingham, AL, USA
| | - Li Nan
- Division of Pediatric Hematology Oncology, Department of Pediatrics, University of Alabama, Birmingham, Birmingham, AL, USA
| | - Jerry E Stewart
- Division of Pediatric Surgery, Department of Surgery, University of Alabama, Birmingham, Birmingham, AL, USA
| | - Anita B Hjelmeland
- Department of Cell, Developmental and Integrative Biology, University of Alabama, Birmingham, Birmingham, AL, USA
| | - Gregory K Friedman
- Division of Pediatric Hematology Oncology, Department of Pediatrics, University of Alabama, Birmingham, Birmingham, AL, USA
| | - Elizabeth A Beierle
- Division of Pediatric Surgery, Department of Surgery, University of Alabama, Birmingham, Birmingham, AL, USA.
- , Birmingham, USA.
| |
Collapse
|
4
|
Chou CF, Hsieh YH, Grubbs CJ, Atigadda VR, Mobley JA, Dummer R, Muccio DD, Eto I, Elmets CA, Garvey WT, Chang PL. The retinoid X receptor agonist, 9-cis UAB30, inhibits cutaneous T-cell lymphoma proliferation through the SKP2-p27kip1 axis. J Dermatol Sci 2018; 90:343-356. [PMID: 29599065 PMCID: PMC6329374 DOI: 10.1016/j.jdermsci.2018.03.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Revised: 02/15/2018] [Accepted: 03/08/2018] [Indexed: 01/09/2023]
Abstract
BACKGROUND Bexarotene (Targretin®) is currently the only FDA approved retinoid X receptor (RXR) -selective agonist for the treatment of cutaneous T-cell lymphomas (CTCLs). The main side effects of bexarotene are hypothyroidism and elevation of serum triglycerides (TGs). The novel RXR ligand, 9-cis UAB30 (UAB30) does not elevate serum TGs or induce hypothyroidism in normal subjects. OBJECTIVES To assess preclinical efficacy and mechanism of action of UAB30 in the treatment of CTCLs and compare its action with bexarotene. METHODS With patient-derived CTCL cell lines, we evaluated UAB30 function in regulating growth, apoptosis, cell cycle check points, and cell cycle-related markers. RESULTS Compared to bexarotene, UAB30 had lower half maximal inhibitory concentration (IC50) values and was more effective in inhibiting the G1 cell cycle checkpoint. Both rexinoids increased the stability of the cell cycle inhibitor, p27kip1 protein, in part, through targeting components involved in the ubiquitination-proteasome system: 1) decreasing SKP2, a F-box protein that binds and targets p27kip1 for degradation by 26S proteasome and 2) suppressing 20S proteasome activity (cell line-dependent) through downregulation of PSMA7, a component of the 20S proteolytic complex in 26S proteasome. CONCLUSIONS UAB30 and bexarotene induce both early cell apoptosis and suppress cell proliferation. Inhibition of the G1 to S cell cycle transition by rexinoids is mediated, in part, through downregulation of SKP2 and/or 20S proteasome activity, leading to increased p27kip1 protein stability. Because UAB30 has minimal effect in elevating serum TGs and inducing hypothyroidism, it is potentially a better alternative to bexarotene for the treatment of CTCLs.
Collapse
Affiliation(s)
- Chu-Fang Chou
- Department of Nutrition Sciences, University of Alabama at Birmingham, Birmingham, Alabama, 35294, USA
| | - Yu-Hua Hsieh
- Department of Nutrition Sciences, University of Alabama at Birmingham, Birmingham, Alabama, 35294, USA
| | - Clinton J Grubbs
- Department of Surgery, University of Alabama at Birmingham, Birmingham, Alabama, 35294, USA; Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, Alabama, 35294, USA
| | - Venkatram R Atigadda
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, Alabama, 35294, USA
| | - James A Mobley
- Department of Surgery, University of Alabama at Birmingham, Birmingham, Alabama, 35294, USA
| | - Reinhard Dummer
- Department of Dermatology, University Hospital of Zurich, Switzerland
| | - Donald D Muccio
- Department of Biochemistry, University of Alabama at Birmingham, Birmingham, Alabama, 35294, USA; Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, Alabama, 35294, USA
| | - Isao Eto
- Department of Nutrition Sciences, University of Alabama at Birmingham, Birmingham, Alabama, 35294, USA; Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, Alabama, 35294, USA
| | - Craig A Elmets
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, Alabama, 35294, USA; Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, Alabama, 35294, USA
| | - W Timothy Garvey
- Department of Nutrition Sciences, University of Alabama at Birmingham, Birmingham, Alabama, 35294, USA
| | - Pi-Ling Chang
- Department of Nutrition Sciences, University of Alabama at Birmingham, Birmingham, Alabama, 35294, USA; Department of Dermatology, University of Alabama at Birmingham, Birmingham, Alabama, 35294, USA; Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, Alabama, 35294, USA.
| |
Collapse
|
5
|
Waters AM, Stewart JE, Atigadda VR, Mroczek-Musulman E, Muccio DD, Grubbs CJ, Beierle EA. Preclinical Evaluation of a Novel RXR Agonist for the Treatment of Neuroblastoma. Mol Cancer Ther 2015; 14:1559-69. [PMID: 25944918 DOI: 10.1158/1535-7163.mct-14-1103] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2014] [Accepted: 04/27/2015] [Indexed: 01/11/2023]
Abstract
Neuroblastoma remains a common cause of pediatric cancer deaths, especially for children who present with advanced stage or recurrent disease. Currently, retinoic acid therapy is used as maintenance treatment to induce differentiation and reduce tumor recurrence following induction therapy for neuroblastoma, but unavoidable side effects are seen. A novel retinoid, UAB30, has been shown to generate negligible toxicities. In the current study, we hypothesized that UAB30 would have a significant impact on multiple neuroblastoma cell lines in vitro and in vivo. Cellular survival, cell-cycle analysis, migration, and invasion were studied using AlamarBlue assays, FACS, and Transwell assays, respectively, in multiple cell lines following treatment with UAB30. In addition, an in vivo murine model of human neuroblastoma was utilized to study the effects of UAB30 upon tumor xenograft growth and animal survival. We successfully demonstrated decreased cellular survival, invasion, and migration, cell-cycle arrest, and increased apoptosis after treatment with UAB30. Furthermore, inhibition of tumor growth and increased survival was observed in a murine neuroblastoma xenograft model. The results of these in vitro and in vivo studies suggest a potential therapeutic role for the low toxicity synthetic retinoid X receptor selective agonist, UAB30, in neuroblastoma treatment.
Collapse
|
6
|
Atigadda VR, Xia G, Desphande A, Boerma LJ, Lobo-Ruppert S, Grubbs CJ, Smith CD, Brouillette WJ, Muccio DD. Methyl substitution of a rexinoid agonist improves potency and reveals site of lipid toxicity. J Med Chem 2014; 57:5370-80. [PMID: 24801499 PMCID: PMC4216212 DOI: 10.1021/jm5004792] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
(2E,4E,6Z,8E)-8-(3′,4′-Dihydro-1′(2′H)-naphthalen-1′-ylidene)-3,7-dimethyl-2,4,6-octatrienoic
acid, 9cUAB30, is a selective rexinoid that displays substantial chemopreventive
capacity with little toxicity. 4-Methyl-UAB30, an analogue of 9cUAB30,
is a potent RXR agonist but caused increased lipid biosynthesis unlike
9cUAB30. To evaluate how methyl substitution influenced potency and
lipid biosynthesis, we synthesized four 9cUAB30 homologues with methyl
substitutions at the 5-, 6-, 7-, or 8-position of the tetralone ring.
The syntheses and biological evaluations of these new analogues are
reported here along with the X-ray crystal structures of each homologue
bound to the ligand binding domain of hRXRα. We demonstrate
that each homologue of 9cUAB30 is a more potent agonist, but only
the 7-methyl-9cUAB30 caused severe hyperlipidemia in rats. On the
basis of the X-ray crystal structures of these new rexinoids and bexarotene
(Targretin) bound to hRXRα-LBD, we reveal that each rexinoid,
which induced hyperlipidemia, had methyl groups that interacted with
helix 7 residues of the LBD.
Collapse
Affiliation(s)
- Venkatram R Atigadda
- Departments of †Chemistry, ‡Biochemistry and Molecular Genetics, §Medicine, and ∥Vision Sciences, University of Alabama at Birmingham , Birmingham, Alabama 35294, United States
| | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Methyl-substituted conformationally constrained rexinoid agonists for the retinoid X receptors demonstrate improved efficacy for cancer therapy and prevention. Bioorg Med Chem 2013; 22:178-85. [PMID: 24359708 DOI: 10.1016/j.bmc.2013.11.039] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2013] [Revised: 11/11/2013] [Accepted: 11/20/2013] [Indexed: 11/20/2022]
Abstract
(2E,4E,6Z,8Z)-8-(3',4'-Dihydro-1'(2H)-naphthalen-1'-ylidene)-3,7-dimethyl-2,3,6-octatrienoinic acid, 9cUAB30, is a selective rexinoid for the retinoid X nuclear receptors (RXR). 9cUAB30 displays substantial chemopreventive capacity with little toxicity and is being translated to the clinic as a novel cancer prevention agent. To improve on the potency of 9cUAB30, we synthesized 4-methyl analogs of 9cUAB30, which introduced chirality at the 4-position of the tetralone ring. The syntheses and biological evaluations of the racemic homolog and enantiomers are reported. We demonstrate that the S-enantiomer is the most potent and least toxic even though these enantiomers bind in a similar conformation in the ligand binding domain of RXR.
Collapse
|
8
|
Boerma LJ, Xia G, Qui C, Cox BD, Chalmers MJ, Smith CD, Lobo-Ruppert S, Griffin PR, Muccio DD, Renfrow MB. Defining the communication between agonist and coactivator binding in the retinoid X receptor α ligand binding domain. J Biol Chem 2013; 289:814-26. [PMID: 24187139 DOI: 10.1074/jbc.m113.476861] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Retinoid X receptors (RXRs) are obligate partners for several other nuclear receptors, and they play a key role in several signaling processes. Despite being a promiscuous heterodimer partner, this nuclear receptor is a target of therapeutic intervention through activation using selective RXR agonists (rexinoids). Agonist binding to RXR initiates a large conformational change in the receptor that allows for coactivator recruitment to its surface and enhanced transcription. Here we reveal the structural and dynamical changes produced when a coactivator peptide binds to the human RXRα ligand binding domain containing two clinically relevant rexinoids, Targretin and 9-cis-UAB30. Our results show that the structural changes are very similar for each rexinoid and similar to those for the pan-agonist 9-cis-retinoic acid. The four structural changes involve key residues on helix 3, helix 4, and helix 11 that move from a solvent-exposed environment to one that interacts extensively with helix 12. Hydrogen-deuterium exchange mass spectrometry reveals that the dynamics of helices 3, 11, and 12 are significantly decreased when the two rexinoids are bound to the receptor. When the pan-agonist 9-cis-retinoic acid is bound to the receptor, only the dynamics of helices 3 and 11 are reduced. The four structural changes are conserved in all x-ray structures of the RXR ligand-binding domain in the presence of agonist and coactivator peptide. They serve as hallmarks for how RXR changes conformation and dynamics in the presence of agonist and coactivator to initiate signaling.
Collapse
|