1
|
Wang Y, Wen F, Yao X, Zeng L, Wu J, He Q, Li H, Fang L. Hybrid Hydrogel Composed of Hyaluronic Acid, Gelatin, and Extracellular Cartilage Matrix for Perforated TM Repair. Front Bioeng Biotechnol 2022; 9:811652. [PMID: 35004660 PMCID: PMC8741272 DOI: 10.3389/fbioe.2021.811652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 12/02/2021] [Indexed: 11/25/2022] Open
Abstract
A novel series of composite hydrogels, built from the three components 1), hyaluronic acid methacryloyl (HAMA); 2), gelatin methacryloyl (GelMA), and 3), extracellular cartilage matrix (ECM), was prepared and studied regarding the possible utility in the surgical repair of damaged (perforated) tympanic membrane (TM). Noteworthy is component 3), which was harvested from the ribs of α-1,3-galactosidyltransferase-knockout (α-1,3 GalT-KO) pigs. The absence of α-1,3-galactosyl glycoprotein is hypothesized to prevent rejection due to foreign-body immunogenicity. The composite hydrogels were characterized by various aspects, using a variety of physicochemical techniques: aqueous swelling, structural degradation, behavior under compression, and morphology, e.g., in vitro biocompatibility was assessed by the CCK-8 and live–dead assays and through cytoskeleton staining/microscopy. Alcian blue staining and real-time PCR (RT-PCR) were performed to examine the chondrogenic induction potential of the hydrogels. Moreover, a rat TM defect model was used to evaluate the in vivo performance of the hydrogels in this particular application. Taken together, the results from this study are surprising and promising. Much further development work will be required to make the material ready for surgical use.
Collapse
Affiliation(s)
- Yili Wang
- ENT Department, Joint Centre of Translational Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.,Joint Centre of Translational Medicine, Zhejiang Engineering Research Center for Tissue Repair Materials, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, China
| | - Feng Wen
- ENT Department, Joint Centre of Translational Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.,Joint Centre of Translational Medicine, Zhejiang Engineering Research Center for Tissue Repair Materials, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, China
| | - Xueting Yao
- School of Biomedical Engineering, School of Ophthalmology and Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Lulu Zeng
- School of Biomedical Engineering, School of Ophthalmology and Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Jiaming Wu
- School of Biomedical Engineering, School of Ophthalmology and Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Qinhong He
- School of Biomedical Engineering, School of Ophthalmology and Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, China
| | - Huaqiong Li
- ENT Department, Joint Centre of Translational Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.,Joint Centre of Translational Medicine, Zhejiang Engineering Research Center for Tissue Repair Materials, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, China.,School of Biomedical Engineering, School of Ophthalmology and Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, China.,Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou, China
| | - Lian Fang
- ENT Department, Joint Centre of Translational Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
2
|
A design-thinking approach to therapeutic translation: tympanic regeneration. Curr Opin Otolaryngol Head Neck Surg 2021; 28:274-280. [PMID: 32833885 DOI: 10.1097/moo.0000000000000650] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
PURPOSE OF REVIEW Clinician researchers face the pressures of meeting academic benchmarks combined with advancing new therapies to patients. The vast majority of drug discoveries fail in translation. A new method of meeting the challenges of preclinical therapeutic translation is presented using the example of tympanic regeneration. RECENT FINDINGS The key to a design-thinking approach to therapeutic translation is to 'begin with the end in mind' by widening the scope of the problem, with multiple points of view, to not only understand the disease but the context for the patient and the health system in which it occurs. Idea for therapeutics should be tested in relevant models early and once proof of efficacy is established, translational milestones that represent the greatest risk, such as safety and toxicity should be addressed first. It is important to seek the feedback of industry early to understand what milestones should be best addressed next with limited academic resources. Whenever proceeding, guidelines for maintaining scientific reproducibility should be followed to minimize risk of failure during transfer into industry. SUMMARY A Design-thinking approach addresses the potential failures in drug discovery and preclinical translation.
Collapse
|
3
|
Chen J, Bekale LA, Khomtchouk KM, Xia A, Cao Z, Ning S, Knox SJ, Santa Maria PL. Locally administered heparin-binding epidermal growth factor-like growth factor reduces radiation-induced oral mucositis in mice. Sci Rep 2020; 10:17327. [PMID: 33060741 PMCID: PMC7567084 DOI: 10.1038/s41598-020-73875-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Accepted: 09/21/2020] [Indexed: 01/28/2023] Open
Abstract
Oral mucositis refers to lesions of the oral mucosa observed in patients with cancer being treated with radiation with or without chemotherapy, and can significantly affect quality of life. There is a large unmet medical need to prevent oral mucositis that can occur with radiation either alone or in combination with chemotherapy. We investigated the efficacy of locally administered heparin-binding epidermal growth factor-like growth factor (HB-EGF), a potent epithelial proliferation and migration stimulator of the oral mucosa as a potential therapy to prevent radiation induced oral mucositis. Using a single dose (20 Gy) of radiation to the oral cavity of female C57BL/6 J mice, we evaluated the efficacy of HB-EGF treatment (5 µl of 10 µg/ml) solution. The results show that HB-EGF delivered post radiation, significantly increased the area of epithelial thickness on the tongue (dorsal tongue (42,106 vs 53,493 µm2, p < 0.01), ventral tongue (30,793 vs 39,095 µm2, *p < 0.05)) compared to vehicle control, enhanced new epithelial cell division, and increased the quality and quantity of desmosomes in the oral mucosa measured in the tongue and buccal mucosa. This data provides the proof of concept that local administration of HB-EGF has the potential to be developed as a topical treatment to mitigate oral mucositis following radiation.
Collapse
Affiliation(s)
- Jing Chen
- Department of Otolaryngology, Head and Neck Surgery, Stanford University, 801 Welch Road, Stanford, CA, 94305-5739, USA
| | - Laurent A Bekale
- Department of Otolaryngology, Head and Neck Surgery, Stanford University, 801 Welch Road, Stanford, CA, 94305-5739, USA.
| | - Kelly M Khomtchouk
- Department of Otolaryngology, Head and Neck Surgery, Stanford University, 801 Welch Road, Stanford, CA, 94305-5739, USA
| | - Anping Xia
- Department of Otolaryngology, Head and Neck Surgery, Stanford University, 801 Welch Road, Stanford, CA, 94305-5739, USA
| | - Zhixin Cao
- Department of Otolaryngology, Head and Neck Surgery, Stanford University, 801 Welch Road, Stanford, CA, 94305-5739, USA
- Department of Pathology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, Shandong, China
| | - Shoucheng Ning
- Department of Radiation Oncology, Stanford University, Stanford, CA, 94305, USA
| | - Susan J Knox
- Department of Radiation Oncology, Stanford University, Stanford, CA, 94305, USA
| | - Peter L Santa Maria
- Department of Otolaryngology, Head and Neck Surgery, Stanford University, 801 Welch Road, Stanford, CA, 94305-5739, USA.
| |
Collapse
|
4
|
Epithelial separation theory for post-tonsillectomy secondary hemorrhage: evidence in a mouse model and potential heparin-binding epidermal growth factor-like growth factor therapy. Eur Arch Otorhinolaryngol 2017; 275:569-578. [PMID: 29188436 DOI: 10.1007/s00405-017-4810-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Accepted: 11/09/2017] [Indexed: 01/19/2023]
Abstract
OBJECTIVE To provide histological evidence to investigate a theory for post-tonsillectomy secondary hemorrhage (PTH) in a mouse model and to evaluate the potential for heparin-binding epidermal growth factor-like growth factor (HB-EGF) treatment on wound healing in this model. METHODS A prospective randomized single-blinded cohort study. A uniform tongue wound was created in 84 mice (day 0). Mice were randomized to HB-EGF (treatment, n = 42) or saline (control, n = 42). In treatment mice, HB-EGF 5 µg/ml was administered intramuscularly into the wound daily (days 0-14). In control mice, normal saline was administered daily. Three mice from each group were sacrificed daily through day 14 and the wounds evaluated histologically by blinded reviewers. RESULTS Key stages of wound healing, including keratinocyte proliferation and migration, wound contraction, epithelial separation, and neoangiogenesis, are defined with implications for post-tonsillectomy wound healing. Epithelial separation (59 vs. 100%, p = 0.003) and wound reopening (8 vs. 48%, p < 0.001) were reduced with HB-EGF. Epithelial thickness (220 vs. 30 µm, p = 0.04) was greater with HB-EGF. Wound closure (days 4-5 vs. day 6, p = 0.01) occurred earlier with HB-EGF. CONCLUSIONS In healing of oral keratinocytes on muscle epithelial separation secondary to muscle, contraction occurs concurrently with neoangiogenesis in the base of the wound, increasing the risk of hemorrhage. This potentially explains why post-tonsillectomy secondary hemorrhage occurs and its timing. HB-EGF-treated wounds showed greater epithelial thickness, less frequent epithelial separation and wound reopening, and earlier wound closure prior to neovascularization, suggesting that HB-EGF may be a potential preventative therapy for PTH. LEVEL OF EVIDENCE NA-animal studies or basic research.
Collapse
|
5
|
Santa Maria PL, Gottlieb P, Santa Maria C, Kim S, Puria S, Yang YP. Functional Outcomes of Heparin-Binding Epidermal Growth Factor-Like Growth Factor for Regeneration of Chronic Tympanic Membrane Perforations in Mice. Tissue Eng Part A 2017; 23:436-444. [PMID: 28142401 PMCID: PMC5444491 DOI: 10.1089/ten.tea.2016.0395] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Accepted: 01/27/2017] [Indexed: 02/02/2023] Open
Abstract
We aim to demonstrate that regeneration of chronic tympanic perforations with heparin-binding epidermal growth factor-like growth factor (HB-EGF) delivered by an injectable hydrogel restored hearing to levels similar to that of nonperforated tympanic membranes. Chronic tympanic membrane perforation is currently managed as an outpatient surgery with tympanoplasty. Due to the costs of this procedure in the developed world and a lack of accessibility and resources in developing countries, there is a great need for a new treatment that does not require surgery. In this study, we show in a mouse model through measurement of auditory brainstem response and distortion product otoacoustic emissions that tympanic perforations lead to hearing loss and this can be predominantly recovered with HB-EGF treatment (5 μg/mL). Our animal model suggests a return to function between 2 and 6 months after treatment. Auditory brainstem response thresholds had returned to the control levels at 2 months, but the distortion product otoacoustic emissions returned between 2 and 6 months. We also show how the vibration characteristics of the regenerated tympanic membrane, as measured by laser Doppler vibrometry, can be similar to that of an unperforated tympanic membrane. Using the best available methods for preclinical evaluation in animal models, it is likely that HB-EGF-like growth factor treatment leads to regeneration of chronic tympanic membrane perforations and restoration of the tympanic membrane to normal function, suggesting a potential route for nonsurgical treatment.
Collapse
Affiliation(s)
- Peter Luke Santa Maria
- Department of Otolaryngology, Head and Neck Surgery, Stanford University, Stanford, California
- Ear Sciences Centre, The University of Western Australia, Nedlands, Australia
- Ear Science Institute Australia, Subiaco, Australia
| | - Peter Gottlieb
- Department of Mechanical Engineering, Stanford University, Stanford, California
| | - Chloe Santa Maria
- Department of Otolaryngology, Head and Neck Surgery, Stanford University, Stanford, California
- Ear Sciences Centre, The University of Western Australia, Nedlands, Australia
- Ear Science Institute Australia, Subiaco, Australia
| | - Sungwoo Kim
- Department of Orthopedic Surgery, Stanford University, Stanford, California
| | - Sunil Puria
- Department of Otolaryngology, Head and Neck Surgery, Stanford University, Stanford, California
- Department of Mechanical Engineering, Stanford University, Stanford, California
| | - Yunzhi Peter Yang
- Department of Orthopedic Surgery, Stanford University, Stanford, California
- Department of Materials Science and Engineering, Stanford University, Stanford, California
- Department of Bioengineering, Stanford University, Stanford, California
| |
Collapse
|
6
|
Santa Maria PL, Kim S, Varsak YK, Yang YP. In Response to the Letter to the Editor Regarding: Heparin Binding-Epidermal Growth Factor-Like Growth Factor for the Regeneration of Chronic Tympanic Membrane Perforations in Mice. Tissue Eng Part A 2016; 22:570-1. [PMID: 26908042 DOI: 10.1089/ten.tea.2016.0059] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Peter Luke Santa Maria
- 1 Department of Otolaryngology, Head and Neck Surgery, Stanford University , Stanford, California
| | - Sungwoo Kim
- 2 Department of Orthopedic Surgery, Stanford University , Stanford, California
| | - Yasin Kursad Varsak
- 1 Department of Otolaryngology, Head and Neck Surgery, Stanford University , Stanford, California
| | - Yunzhi Peter Yang
- 2 Department of Orthopedic Surgery, Stanford University , Stanford, California.,3 Materials Science and Engineering, Stanford University , Stanford, California
| |
Collapse
|