1
|
McDonough JH, McMonagle JD, Capacio BR. Anticonvulsant effectiveness of scopolamine against soman-induced seizures in African green monkeys. Drug Chem Toxicol 2021; 45:2185-2192. [PMID: 34251950 DOI: 10.1080/01480545.2021.1916171] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Prolonged seizures are a hallmark feature of intoxication with anticholinesterase nerve agents such as soman. While benzodiazepine drugs are typically used to control these seizures, studies in both rats and guinea pigs have shown that potent, centrally acting anticholinergic drugs such as scopolamine can also terminate such seizures. The present study was performed to determine if scopolamine could produce similar anticonvulsant effects in a nonhuman primate model of soman intoxication. Adult male African green monkeys, implanted with telemetry devices to record cortical electroencephalographic activity, were pretreated with pyridostigmine (0.02 mg/kg, intramuscularly [im]) and 40 min later challenged with 15 µg/kg (im) of the nerve agent soman. One min after soman exposure the animals were treated with atropine (0.4 mg/kg, im) and the oxime 2-PAM (25.7 mg/kg, im). One min after the start of seizure activity the animals were administered scopolamine (0.01-0.1 mg/kg, im), using an up-down dosing design over successive animals. Scopolamine was highly effective in stopping soman-induced seizures with an ED50 = 0.0312 mg/kg (0.021-0.047 mg/kg = 95% confidence limits). Seizure control was rapid, with all epileptiform activity stopping on average 21.7 min after scopolamine treatment. A separate pK study showed that scopolamine absorption peaked approximately 10 min after im administration and a dose of 0.032 mg/kg produced maximum plasma levels of 17.62 ng/ml. The results show that scopolamine exerts potent and rapid anticonvulsant action against soman-induced seizures and that it may serve as a valuable adjunct to current antidote treatments for nerve agent intoxication.
Collapse
Affiliation(s)
- John H McDonough
- Neuroscience Department, US Army Medical Research Institute of Chemical Defense, Aberdeen Proving Ground, MD, USA
| | - Joseph D McMonagle
- Neuroscience Department, US Army Medical Research Institute of Chemical Defense, Aberdeen Proving Ground, MD, USA
| | - Benedict R Capacio
- Medical Toxicology Research Division, Pharmaceutical Sciences Department, US Army Medical Research Institute of Chemical Defense, Aberdeen Proving Ground, MD, USA
| |
Collapse
|
2
|
Wigenstam E, Forsberg E, Bucht A, Thors L. Efficacy of atropine and scopolamine on airway contractions following exposure to the nerve agent VX. Toxicol Appl Pharmacol 2021; 419:115512. [PMID: 33785355 DOI: 10.1016/j.taap.2021.115512] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 03/10/2021] [Accepted: 03/25/2021] [Indexed: 11/25/2022]
Abstract
Nerve agents are highly toxic organophosphorus compounds that inhibit acetylcholinesterase resulting in rapid accumulation of the neurotransmitter acetylcholine (ACh) causing a cholinergic syndrome including respiratory failure. In the present study, respiratory responses and antimuscarinic treatment efficacy was evaluated ex vivo using rat precision-cut lung slices (PCLS) exposed to the nerve agent VX. The respiratory effects were evaluated either by adding exogenous ACh directly to the culture medium or by applying electric-field stimulation (EFS) to the PCLS to achieve a release of endogenous ACh from neurons in the lung tissue. The airway contraction induced by both methods was enhanced by VX and resulted in lingering airway recovery, in particular when airways were exposed to a high VX-dose. Both contractions induced by EFS and exogenously added ACh were significantly reduced by administration of the antimuscarinic drugs atropine or scopolamine. Two additions of atropine or scopolamine after maximal ACh-induced airway response was demonstrated effective to reverse the contraction. By adding consecutive doubled doses of antimuscarinics, high efficiency to reduce the cholinergic airway response was observed. However, the airways were not completely recovered by atropine or scopolamine, indicating that non-muscarinic mechanisms were involved in the smooth muscle contractions. In conclusion, it was demonstrated that antimuscarinic treatment reversed airway contraction induced by VX but supplemental pharmacological interventions are needed to fully recover the airways. Further studies should therefore clarify the mechanisms of physiological responses in lung tissue following nerve agent exposures to improve the medical management of poisoned individuals.
Collapse
Affiliation(s)
- E Wigenstam
- Swedish Defence Research Agency, CBRN Defence and Security, Umeå, Sweden
| | - E Forsberg
- Swedish Defence Research Agency, CBRN Defence and Security, Umeå, Sweden
| | - A Bucht
- Swedish Defence Research Agency, CBRN Defence and Security, Umeå, Sweden
| | - L Thors
- Swedish Defence Research Agency, CBRN Defence and Security, Umeå, Sweden.
| |
Collapse
|
3
|
Saygı Bacanak M, Aydın B, Cabadak H, Nurten A, Gören MZ, Enginar N. Contribution of M 1 and M 2 muscarinic receptor subtypes to convulsions in fasted mice treated with scopolamine and given food. Behav Brain Res 2019; 364:423-430. [PMID: 29158113 DOI: 10.1016/j.bbr.2017.11.018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Revised: 11/14/2017] [Accepted: 11/16/2017] [Indexed: 01/24/2023]
Abstract
Treatment of fasted mice and rats with the nonselective muscarinic antagonist, scopolamine or atropine, causes convulsions after food intake. This study evaluated the effect of fasting on the expression of M1 and M2 muscarinic receptors in the brain regions, the relationship between receptor expression and seizure stages, and the muscarinic receptor subtype which plays a role in the occurrence of convulsions. Mice were grouped as allowed to eat ad lib (fed) and deprived of food for 24h (fasted). Fasted animals developed convulsions after being treated with scopolamine (60%) or the selective M1 receptor antagonist pirenzepine (10mg/kg; 20% and 60mg/kg; 70%) and given food. Fasting increased expression of M1 receptors in the frontal cortex and M2 receptors in the hippocampus, but produced no change in the expression of both receptors in the amygdaloid complex. Food intake after fasting decreased M1 receptor expression in the frontal cortex and M1 and M2 receptor expression in the hippocampus. Seizure severity was uncorrelated with muscarinic receptor expression in the brain regions. Taken together, these findings provide evidence for the role of M1 muscarinic receptor antagonism and fasting-induced increases in M1 and M2 expression possible underlying mechanism in the occurrence of convulsions in fasted animals.
Collapse
Affiliation(s)
- Merve Saygı Bacanak
- Department of Medical Pharmacology, Istanbul Faculty of Medicine, Istanbul University, Turkey
| | - Banu Aydın
- Department of Biophysics, School of Medicine, Marmara University, Turkey
| | - Hülya Cabadak
- Department of Biophysics, School of Medicine, Marmara University, Turkey
| | - Asiye Nurten
- Department of Physiology, Faculty of Medicine, Istanbul Yeni Yuzyil University, Turkey
| | - Mehmet Zafer Gören
- Department of Medical Pharmacology, School of Medicine, Marmara University Istanbul, Turkey
| | - Nurhan Enginar
- Department of Medical Pharmacology, Istanbul Faculty of Medicine, Istanbul University, Turkey.
| |
Collapse
|
4
|
Antimuscarinic-induced convulsions in fasted animals after food intake: evaluation of the effects of levetiracetam, topiramate and different doses of atropine. Naunyn Schmiedebergs Arch Pharmacol 2015; 389:57-62. [DOI: 10.1007/s00210-015-1175-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Accepted: 09/21/2015] [Indexed: 10/22/2022]
|
5
|
Nurten A, Ozen I, Karamursel S, Kara I. Electroencephalographic characterization of scopolamine-induced convulsions in fasted mice after food intake. Seizure 2006; 15:509-19. [PMID: 16890459 DOI: 10.1016/j.seizure.2006.06.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2005] [Revised: 05/24/2006] [Accepted: 06/12/2006] [Indexed: 11/15/2022] Open
Abstract
The present study was conducted to evaluate scopolamine-induced convulsions in fasted mice after food intake effects on the cortical electroencephalogram (EEG). Continuous EEG recordings were taken with Neuroscan for 10 min in freely moving mice with six chronic cortical electrode implants. Animals were weighed and deprived of food for 48 h. EEG recordings were taken at the 24th and 48th hour after their food deprivations. Later, all animals were treated with saline or scopolamine of 3mg/kg i.p. and EEG recordings were repeated for 10 min. Twenty minutes later, they were given food pellets and were allowed to eat ad libitum. All animals were observed for 60 min to determine the incidence and onset of convulsions and EEG recordings were taken simultaneously. The present results demonstrate that food deprivation causes differences in EEG in the elapsed time. The changes in EEG induced after food deprivation become different with scopolamine administration. In scopolamine treatment group, eating caused a series of high-voltage polyspikes and synchronized spikes with a predominant frequency in the 1-3 Hz range and fast activity that represents a typical epileptiform manifestation. It was concluded that the EEG properties and the behavioral patterns of these convulsions are in accordance with each other.
Collapse
Affiliation(s)
- Asiye Nurten
- Istanbul University, Institute for Experimental Medical Research, Department of Neuroscience, 34280, Istanbul, Turkey.
| | | | | | | |
Collapse
|
6
|
Capacio BR, Byers CE, Caro ST, McDonough JH. Pharmacokinetics of intramuscularly administered biperiden in guinea pigs challenged with soman. Drug Chem Toxicol 2003; 26:1-13. [PMID: 12643036 DOI: 10.1081/dct-120017553] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Biperiden is an anticholinergic compound that has demonstrated effectiveness for treating organophosphate-induced seizure/convulsions. The plasma levels of biperiden associated with this efficacy have not yet been defined. In this study, the pharmacokinetics and tissue distribution of biperiden after intramuscular administration of 0.5 mg/kg were conducted while monitoring pharmacodynamic (electroencephalographic) data in soman-exposed guinea pigs. Overall, 59% of the animals had seizures terminated within 30 min of the biperiden administration. The mean time to seizure termination was 15.9 min. The pharmacokinetics of biperiden after i.m. administration to guinea pigs were best described by a one-compartment model with first-order absorption and elimination. The maximal plasma biperiden concentration (34.4 ng/mL) in seizure-terminated animals occurred at 26.3 min. Extensive partitioning into peripheral tissues was noted supporting the relatively large volume of distribution observed. Maximal biperiden concentrations in the cortex and brain stem were found at 30 min and were 2.3 and 1.7 times greater, respectively, than that in plasma. The time for maximal plasma concentration was found to corresponded well with the mean time to seizure termination following drug administration.
Collapse
Affiliation(s)
- B R Capacio
- U.S. Army Medical Research Institute of Chemical Defense, Aberdeen Proving Ground, MD 21010-5400, USA.
| | | | | | | |
Collapse
|
7
|
Capacio BR, Caro ST, Smith JR, Byers CE. The determination of biperiden in plasma using gas chromatography mass spectrometry: pharmacokinetics after intramuscular administration to guinea pigs. Biomed Chromatogr 2002; 16:47-55. [PMID: 11816011 DOI: 10.1002/bmc.113] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
A gas chromatographic-mass spectrometric (GC-MS) method has been developed for the analysis of the biperiden from plasma. The method utilizes 290 microl of plasma and a simple hexane extraction/clean-up procedure. Standard curves were linear over the range of 1.9-250 ng/mL. The range of correlation coefficients for the individual standard curves was 0.9984-0.9999; the largest coefficient of variation expressed as a percentage (% CV) was 11.5%. Precision and accuracy were examined by assessing between-day and within-day variability. For between-day precision, the % CVs ranged from 2.86 to 5.17%. Accuracy as expressed by percentage error ranging from -2.16 to 5.83%. The study for within-day precision demonstrated % CVs from 0.95 to 5.55% with accuracy from -3.37 to 2.45%. Applicability of the method was demonstrated by examining the pharmacokinetics of intramuscular (i.m.) biperiden as an anticonvulsant treatment in a guinea pig model for organophosphate (OP)-induced seizure activity. Mean pharmacokinetic parameter estimates were similar to literature values; selected mean pharmacokinetic parameter estimates were: apparent volume of distribution, 13.9 L/kg; half-life of elimination, 93 min; time to maximal plasma concentration, 27.4 min; and maximal plasma concentration, 32.22 eta g/mL. The time to maximal plasma concentration was found to be similar to the onset time for terminating OP-induced seizure activity in guinea pigs receiving biperiden as an anticonvulsant treatment. The studies indicate that the method affords the required precision, accuracy and sensitivity to assay biperiden at the doses utilized for these pharmacokinetic studies after i.m. administration to guinea pigs.
Collapse
Affiliation(s)
- B R Capacio
- Pharmacology Division, US Army Medical Research Institute of Chemical Defense, Aberdeen Proving Ground, MD 21010-5400, USA.
| | | | | | | |
Collapse
|
8
|
McDonough JH, Zoeffel LD, McMonagle J, Copeland TL, Smith CD, Shih TM. Anticonvulsant treatment of nerve agent seizures: anticholinergics versus diazepam in soman-intoxicated guinea pigs. Epilepsy Res 2000; 38:1-14. [PMID: 10604601 DOI: 10.1016/s0920-1211(99)00060-1] [Citation(s) in RCA: 111] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A total of eight anticholinergic drugs (aprophen, atropine, azaprophen, benactyzine, biperiden, procyclidine, scopolamine, trihexyphenidyl) were tested in parallel with diazepam for the ability to terminate seizure activity induced by the nerve agent soman. Guinea pigs, implanted with electrodes to record cortical electroencephalographic (EEG) activity, were pretreated with pyridostigmine Br (0.026 mg/kg, i.m.) and 30 min later challenged with 2 x LD50 soman (56 microg/kg, s.c.) followed 1 min later by treatment with atropine SO4 (2 mg/kg, i.m.) and pralidoxime chloride (2-PAM Cl; 25 mg/kg, i.m.). All guinea pigs developed sustained seizure activity following this treatment. Dose-effect curves were determined for the ability of each drug to terminate seizure activity when anticonvulsant treatment was given either 5 or 40 min after seizure onset. Body weight gain and recovery of behavioral performance of a previously trained one-way avoidance task were measured after exposure. With the exception of atropine, all anticholinergic drugs were effective at lower doses than diazepam in terminating seizures when given 5 min after seizure onset; benactyzine, procyclidine and aprophen terminated seizures most rapidly while scopolamine, trihexyphenidyl, biperiden, and diazepam were significantly slower. When given 40 min after seizure onset, diazepam was the most potent compound tested, followed by scopolamine, benactyzine and biperiden; atropine was not effective when tested 40 min after seizure onset. For diazepam, the time to terminate the seizure was the same whether it was given at the 5- or 40-min delay. In contrast, most anticholinergics were significantly slower in terminating seizure activity when
Collapse
Affiliation(s)
- J H McDonough
- Pharmacology Division, U.S. Army Medical Research Institute of Chemical Defense, Aberdeen Proving Ground, MD 21010-5400, USA.
| | | | | | | | | | | |
Collapse
|
9
|
Enginar N, Yamantürk P, Nurten A, Koyuncuoğlu H. Scopolamine-induced convulsions in food given fasted mice: effects of clonidine and tizanidine. Epilepsy Res 1999; 35:155-60. [PMID: 10372568 DOI: 10.1016/s0920-1211(99)00008-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We recently reported that scopolamine pretreated mice fasted for 48 h developed clonic convulsions soon after they were allowed to eat ad libidum. Pretreatment with MK-801, the non-competitive NMDA antagonist, decreased the incidence of these convulsions. We suggested that a possible scopolamine-induced glutamatergic hyperactivity could account for these convulsions. Using alpha2-agonists, clonidine, which has been shown to inhibit glutamate release, and tizanidine, the present study was performed to find some additional data for the role of glutamate in the underlying mechanism of scopolamine-induced convulsions in food given fasted mice. Animals fasted for 48 h and pretreated (i.p.) with saline, clonidine (0.05, 0.10, 1 mg/kg) or tizanidine (0.10, 0.15, 0.30, 0.45 mg/kg) were treated (i.p.) with either saline or scopolamine (3 mg/kg). Then 20 min later, they were allowed to eat ad libidum and were observed for 30 min for the incidence and onset of clonic convulsions. All doses of clonidine pretreatment completely suppressed (0%) scopolamine-induced clonic convulsions (75%). On the other hand, only 0.15 mg/kg tizanidine pretreatment significantly decreased (15%) the incidence of convulsions; however as well as 0.15 mg/kg, both 0.30 and 0.45 mg/kg tizanidine pretreatments significantly increased latency to the onset of convulsions.
Collapse
Affiliation(s)
- N Enginar
- Department of Pharmacology, Istanbul Faculty of Medicine, University of Istanbul, Turkey.
| | | | | | | |
Collapse
|
10
|
Abstract
This report describes studies of anticonvulsants for the organophosphorus (OP) nerve agent soman: a basic research effort to understand how different pharmacological classes of compounds influence the expression of seizure produced by soman in rats, and a drug screening effort to determine whether clinically useful antiepileptics can modulate soman-induced seizures in rats. Electroencephalographic (EEG) recordings were used in these studies. Basic studies were conducted in rats pretreated with HI-6 and challenged with 1.6 x LD50 soman. Antimuscarinic compounds were extremely effective in blocking (pretreatment) or terminating soman seizures when given 5 min after seizure onset. However, significantly higher doses were required when treatment was delayed for more than 10 min, and some antimuscarinic compounds lost anticonvulsant efficacy when treatment was delayed for more than 40 min. Diazepam blocked seizure onset, yet seizures could recur after an initial period of anticonvulsant effect at doses </=2.5 mg/kg. Diazepam could terminate ongoing seizures when given 5 min after seizure onset, but doses up to 20 mg/kg were ineffective when treatment was delayed for 40 min. The GABA uptake inhibitor, tiagabine, was ineffective in blocking or terminating soman motor convulsions or seizures. The glutamate receptor antagonists, NBQX, GYKI 52466, and memantine, had weak or minimal antiseizure activity, even at doses that virtually eliminated signs of motor convulsions. The antinicotinic, mecamylamine, was ineffective in blocking or stopping seizure activity. Pretreatment with a narrow range of doses of alpha2-adrenergic agonist, clonidine, produced variable protection (40-60%) against seizure onset; treatment after seizure onset with clonidine was not effective. Screening studies in rats, using HI-6 pretreatment, showed that benzodiazepines (diazepam, midazolam and lorazepam) were quite effective when given 5 min after seizure onset, but lost their efficacy when given 40 min after onset. The barbiturate, pentobarbital, was modestly effective in terminating seizures when given 5 or 40 min after seizure onset, while other clinically effective antiepileptic drugs, trimethadione and valproic acid, were only slightly effective when given 5 min after onset. In contrast, phenytoin, carbamazepine, ethosuximide, magnesium sulfate, lamotrigine, primidone, felbamate, acetazolamide, and ketamine were ineffective.
Collapse
Affiliation(s)
- T Shih
- Pharmacology and Drug Assessment Divisions, US Army Medical Research Institute of Chemical Defense, Aberdeen Proving Ground, Md., USA
| | | | | |
Collapse
|
11
|
Enginar N, Nurten A, Yamantürk P, Koyuncuoğlu H. Scopolamine-induced convulsions in food given fasted mice: effects of physostigmine and MK-801. Epilepsy Res 1997; 28:137-42. [PMID: 9267778 DOI: 10.1016/s0920-1211(97)00041-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
We recently reported that scopolamine pretreated mice fasted for 48 h developed clonic convulsions soon after they were allowed to eat a small amount of food for 30 s. The present experiments were performed to determine whether animals also develop convulsions when they were allowed to eat ad libitum and to find some evidence for the contribution of the cholinergic and/or glutamatergic systems in the underlying mechanism(s) of convulsions. Animals fasted for 48 h were treated with 3 mg/kg scopolamine or saline. Twenty minutes later, they were allowed to eat either ad libitum or a small portion of food for 30 s. Scopolamine pretreated animals after starting to eat ad libitum or a small amount in a restricted time developed convulsions in a few minutes, the incidence being 76 and 54%, respectively. Pretreatment of 0.17 mg/kg MK-801, the noncompetitive NMDA antagonist, decreased the incidence of scopolamine-induced convulsions (22%) without affecting latency to the onset of seizures. Pretreatment of 0.1 mg/kg physostigmine, the cholinesterase inhibitor, changed neither the incidence (90%) nor latency to the onset of scopolamine-induced convulsions.
Collapse
Affiliation(s)
- N Enginar
- Department of pharmacology, Istanbul Faculty of Medicine, University of Istanbul, Turkey
| | | | | | | |
Collapse
|
12
|
McDonough JH, Shih TM. Neuropharmacological mechanisms of nerve agent-induced seizure and neuropathology. Neurosci Biobehav Rev 1997; 21:559-79. [PMID: 9353792 DOI: 10.1016/s0149-7634(96)00050-4] [Citation(s) in RCA: 392] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
This paper proposes a three phase "model" of the neuropharmacological processes responsible for the seizures and neuropathology produced by nerve agent intoxication. Initiation and early expression of the seizures are cholinergic phenomenon; anticholinergics readily terminate seizures at this stage and no neuropathology is evident. However, if not checked, a transition phase occurs during which the neuronal excitation of the seizure per se perturbs other neurotransmitter systems: excitatory amino acid (EAA) levels increase reinforcing the seizure activity; control with anticholinergics becomes less effective; mild neuropathology is occasionally observed. With prolonged epileptiform activity the seizure enters a predominantly non-cholinergic phase: it becomes refractory to some anticholinergics; benzodiazepines and N-methyl-D-aspartate (NMDA) antagonists remain effective as anticonvulsants, but require anticholinergic co-administration; mild neuropathology is evident in multiple brain regions. Excessive influx of calcium due to repeated seizure-induced depolarization and prolonged stimulation of NMDA receptors is proposed as the ultimate cause of neuropathology. The model and data indicate that rapid and aggressive management of seizures is essential to prevent neuropathology from nerve agent exposure.
Collapse
Affiliation(s)
- J H McDonough
- Pharmacology Division, U.S. Army Medical Research Institute of Chemical Defense, Aberdeen Proving Ground, MD 21010-5425, USA
| | | |
Collapse
|
13
|
Kramer U, Harel S. Transdermal scopolamine for refractory seizures. J Child Neurol 1997; 12:139-41. [PMID: 9075023 DOI: 10.1177/088307389701200211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- U Kramer
- Department of Pediatrics, Tel-Aviv Sourasky Medical Center, Sackler Faculty of Medicine, Tel-Aviv University, Israel
| | | |
Collapse
|