1
|
Octylphenol induces changes in glycosylation pattern, calcium level and ultrastructure of bank vole spermatozoa in vitro. Toxicol In Vitro 2015; 29:529-37. [DOI: 10.1016/j.tiv.2014.12.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Revised: 09/26/2014] [Accepted: 12/18/2014] [Indexed: 11/17/2022]
|
2
|
Miska-Schramm A, Kruczek M, Kapusta J. Effect of copper exposure on reproductive ability in the bank vole (Myodes glareolus). ECOTOXICOLOGY (LONDON, ENGLAND) 2014; 23:1546-1554. [PMID: 25098774 DOI: 10.1007/s10646-014-1295-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 07/22/2014] [Indexed: 06/03/2023]
Abstract
The amount of copper in natural ecosystems is steadily increasing, due to human activities. It accumulates in plants, posing a threat to herbivores. In polluted areas the population density of small rodents is observed to be lower. The decline in rodent numbers may be caused by increased mortality or diminished fertility. This study examined the effect of copper on the reproductive activity of the bank vole (Myodes glareolus), a small rodent which during foraging often wanders into fields where it might be exposed to pollution. The animals were treated with solutions of 0, 150 or 600 ppm Cu. After 12 weeks of exposure the quality and quantity of the male's sperm was tested. To assess morphological development we compared the experimental groups for body weight, the weight of the male's testes and accessory sex glands, the female's uterus, and the number of matured ovary follicles in tested females. At both doses, copper administration led to lower sperm count and caused sperm head anomalies. The higher dose compromised sperm tail membrane integrity, viability and motility. No effect of copper on morphological development was observed in males, and only the lower dose increased testes weight. In females the higher dose had a negative effect on morphological development, and the lower dose increased uterus weight. No effect of copper on ovarian follicle number was found. For the first time, the morphology of the most typical ovarian follicles of the bank vole is presented.
Collapse
Affiliation(s)
- Agata Miska-Schramm
- Institute of Environmental Sciences, Jagiellonian University, Gronostajowa 7, 30-387, Kraków, Poland,
| | | | | |
Collapse
|
3
|
Medarde N, Martínez-Vargas J, Sánchez-Chardi A, López-Fuster MJ, Ventura J. Effect of Robertsonian translocations on sperm head form in the house mouse. Biol J Linn Soc Lond 2013. [DOI: 10.1111/bij.12163] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Nuria Medarde
- Departament de Biologia Animal; de Biologia Vegetal i d'Ecologia; Facultat de Biociències; Universitat Autònoma de Barcelona; E-08193 Cerdanyola del Vallès Spain
| | - Jessica Martínez-Vargas
- Departament de Biologia Animal; de Biologia Vegetal i d'Ecologia; Facultat de Biociències; Universitat Autònoma de Barcelona; E-08193 Cerdanyola del Vallès Spain
| | | | - María José López-Fuster
- Departament de Biologia Animal and Institut de Recerca de la Biodiversitat (IRBio); Facultat de Biologia; Universitat de Barcelona; E-08007 Barcelona Spain
| | - Jacint Ventura
- Departament de Biologia Animal; de Biologia Vegetal i d'Ecologia; Facultat de Biociències; Universitat Autònoma de Barcelona; E-08193 Cerdanyola del Vallès Spain
| |
Collapse
|
4
|
Abstract
Trp53 is a protein which is able to control semen parameters in mice, but the extent of that control depends on the genetic background of the mouse strain. Males from C57BL/6Kw, 129/Sv, C57BL×129 -p53+/+ (wild type controls) and C57BL×129-p53-/- (mutants) strains were used in the study, and histology and light microscopy were applied to evaluate the influence of genetic background and Trp53 (p53) genotype on testes morphology and semen quality in male mice. We showed that sperm head morphology, maturity and tail membrane integrity were controlled only by the genetic background of C57BL/6Kw and 129/Sv males, while testes weight and sperm concentration depended on both the genetic background and p53 genotype. Cell accumulation in seminiferous tubules may be responsible for heavier testes of p53-deficient males. In addition, to examine the effect of sex and p53 genotype on embryo lethality, pairs of control (C57BL×129-p53+/+) and heterozygous (C57BL×129-p53+/-) mice were examined. Before day 7 post coitum (dpc), female and male embryos were equally resorbed in both crosses types. After 7 dpc, preferential female embryo lethality in the heterozygote pairs was responsible for the skewed sex ratio in their progeny. Also, mutant female and male newborns were underrepresented in the litters of the heterozygous breeding pairs.
Collapse
|
5
|
Genetic dissection of a key reproductive barrier between nascent species of house mice. Genetics 2011; 189:289-304. [PMID: 21750261 DOI: 10.1534/genetics.111.129171] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Reproductive isolation between species is often caused by deleterious interactions among loci in hybrids. Finding the genes involved in these incompatibilities provides insight into the mechanisms of speciation. With recently diverged subspecies, house mice provide a powerful system for understanding the genetics of reproductive isolation early in the speciation process. Although previous studies have yielded important clues about the genetics of hybrid male sterility in house mice, they have been restricted to F1 sterility or incompatibilities involving the X chromosome. To provide a more complete characterization of this key reproductive barrier, we conducted an F2 intercross between wild-derived inbred strains from two subspecies of house mice, Mus musculus musculus and Mus musculus domesticus. We identified a suite of autosomal and X-linked QTL that underlie measures of hybrid male sterility, including testis weight, sperm density, and sperm morphology. In many cases, the autosomal loci were unique to a specific sterility trait and exhibited an effect only when homozygous, underscoring the importance of examining reproductive barriers beyond the F1 generation. We also found novel two-locus incompatibilities between the M. m. musculus X chromosome and M. m. domesticus autosomal alleles. Our results reveal a complex genetic architecture for hybrid male sterility and suggest a prominent role for reproductive barriers in advanced generations in maintaining subspecies integrity in house mice.
Collapse
|
6
|
Vasudevan K, Raber J, Sztein J. Fertility comparison between wild type and transgenic mice by in vitro fertilization. Transgenic Res 2009; 19:587-94. [PMID: 19844803 DOI: 10.1007/s11248-009-9336-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2009] [Accepted: 10/06/2009] [Indexed: 10/20/2022]
Abstract
Transgenic mice are increasingly used as animal models for studies of gene function and regulation of mammalian genes. Although there has been continuous and remarkable progress in the development of transgenic technology over several decades, many aspects of the resulting transgenic model's phenotype cannot be completely predicted. For example, it is well known that as a consequence of the random insertion of the injected DNA construct, several founder mice of the new line need to be analyzed for possible differences in phenotype secondary to different insertion sites. The Knock out technique for transgenic production disrupts a specific gene by insertion or homologous recombination creating a null expression or replacement of the gene with a marker to localize it expression. This modification could result in pleiotropic phenotype if the gene is also expressed in tissues other than the target organs. Although the future breeding performance of the newly created model is critical to many studies, it is rarely anticipated that the new integrations could modify the reproductive profile of the new transgenic line. To date, few studies have demonstrated the difference between the parent strain's reproductive performance and the newly developed transgenic model. This study was designed to determine whether a genetic modification, knock out (KO) or transgenics, not anticipated to affect reproductive performance could affect the resulting reproductive profile of the newly developed transgenic mouse. More specifically, this study is designed to study the impact of the genetic modification on the ability of gametes to be fertilized in vitro. We analyzed the reproductive performance of mice with different background strains: FVB/N, C57BL/6 (129Sv/J x C57Bl/6)F1 and outbred CD1((R)) and compared them to mice of the same strain carrying a transgene or KO which was not anticipated to affect fertility. In vitro Fertilization was used to analyze the fertility of the mice. Oocytes from superovulated females were inseminated with sperm of same background. Fertility rate was considered as the percentage of two cell embryos scored 24 h after insemination. The data collected from this study shows that the fertilization rate is affected (reduced to half fold) in some of the transgenic mice compared to the respective Wild Type (WT) mice. For the WT the average fertility rate ranged from 80% (C57BL/6), 90% (FVB/N), 45% (129Sv/J x C57Bl/6)F1 and 43% (CD1). For transgenic mice it was 52% (C57BL/6), 65% (FVB/N), 22% (129Sv/J x C57Bl/6)F1 and 25% (CD1).
Collapse
Affiliation(s)
- Kuzhalini Vasudevan
- NEI Genetic Engineering Core Facility, National Institutes of Health, Rockville, MD, USA.
| | | | | |
Collapse
|
7
|
Kruczek M, Styrna J. Semen quantity and quality correlate with bank vole males' social status. Behav Processes 2009; 82:279-85. [PMID: 19635532 DOI: 10.1016/j.beproc.2009.07.009] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2009] [Revised: 07/13/2009] [Accepted: 07/18/2009] [Indexed: 10/20/2022]
Abstract
Laboratory studies reveal that in several rodent species the females prefer dominant males as mating partners. Here we investigate the correlation between bank vole males' social rank and their sperm quality and quantity. We used agonistic encounters to determine males' social status. Sperm quality was assessed by its motility, viability, maturity, morphology and sperm tail membrane integrity. Relatively more dominant males were heavier than males of lower social status. The males' social position affected the testes, seminal vesicles and coagulation gland development. The weights of these reproductive organs were significantly higher in more dominant males than in more subordinate males. Sperm counts and the values of the other parameters describing sperm quality were higher in high-ranking males than in subordinates. Our results suggest that bank vole females benefit from choosing and mating with high-ranking males by obtaining more and better-quality sperm.
Collapse
Affiliation(s)
- Małgorzata Kruczek
- Institute of Environmental Sciences, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland.
| | | |
Collapse
|
8
|
Yamauchi Y, Riel JM, Wong SJ, Ojarikre OA, Burgoyne PS, Ward MA. Live offspring from mice lacking the Y chromosome long arm gene complement. Biol Reprod 2009; 81:353-61. [PMID: 19420387 DOI: 10.1095/biolreprod.109.076307] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
The mouse Y chromosome long arm (Yq) comprises approximately 70 Mb of repetitive, male-specific DNA together with a short (0.7-Mb) pseudoautosomal region (PAR). The repetitive non-PAR region (NPYq) encodes genes whose deficiency leads to subfertility and infertility, resulting from impaired spermiogenesis. In XSxr(a)Y*(X) mice, the only Y-specific material is provided by the Y chromosome short arm-derived sex reversal factor Sxr(a), which is attached to the X chromosome PAR; these males (NPYq- males) produce sperm with severely malformed heads and are infertile. In the present study, we investigated sperm function in these mice in the context of intracytoplasmic sperm injection (ICSI). Of 261 oocytes injected, 103 reached the 2-cell stage, and 46 developed to liveborn offspring. Using Xist RT-PCR genotyping as well as gamete and somatic cell karyotyping, all six predicted genotypes were identified among ICSI-derived progeny. The sex chromosome constitution of NPYq- males does not allow production of offspring with the same genotype, but one of the expected offspring genotypes is XY*(X)Sxr(a) (NPYq-(2)), which has the same Y gene complement as NPYq-. Analysis of NPYq-(2) males revealed they had normal-sized testes with ongoing spermatogenesis. Like NPYq- males, these males were infertile, and their sperm had malformed heads that nevertheless fertilized eggs via ICSI. In vitro fertilization (IVF), however, was unsuccessful. Overall, we demonstrated that a lack of NPYq-encoded genes does not interfere with the ability of sperm to fertilize oocytes via ICSI but does prevent fertilization via IVF. Thus, NPYq-encoded gene functions are not required after the sperm have entered the oocyte. The present work also led to development of a new mouse model lacking NPYq gene complement that will facilitate future studies of Y-encoded gene function.
Collapse
Affiliation(s)
- Yasuhiro Yamauchi
- Institute for Biogenesis Research, John A Burns School of Medicine, University of Hawaii, Honolulu, Hawaii 96822, USA
| | | | | | | | | | | |
Collapse
|
9
|
Miao DQ, Liang B, Wang JZ, Wang HL, Cui W, Liu Y, Tan JH. Fertilization in vitro with spermatozoa from different mice increased variation in the developmental potential of embryos compared to artificial parthenogenetic activation. Mol Reprod Dev 2009; 76:239-45. [DOI: 10.1002/mrd.20948] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
10
|
Yildiz C, Fleming C, Ottaviani P, McKerlie C. Fresh and frozen-thawed sperm quality, nuclear DNA integrity, invitro fertility, embryo development, and live-born offspring of N-ethyl-N-nitrosourea (ENU) mice. Cryobiology 2008; 57:156-62. [PMID: 18700137 DOI: 10.1016/j.cryobiol.2008.07.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2008] [Revised: 07/15/2008] [Accepted: 07/16/2008] [Indexed: 11/29/2022]
Abstract
Efficient collection, freezing, reliable archiving of sperm, and re-derivation of mutant mice are essential components for large-scale mutagenesis programs in the mouse. Induced mutations (i.e. transgenes, targeted mutations, chemically induced mutations) in mice may cause inherited or temporary sterility, increase abnormal sperm values, or decrease fertility. One purpose of this study was to compare the effect(s) on fresh and frozen-thawed sperm quality, spermatozoa DNA integrity, unassisted in vitro fertility (IVF) rate, in vitro embryo development rate to blastocysts, and live-born offspring rates in non-ENU (control) animals and the F1-generation of N-ethyl-N-nitrosourea (ENU)-treated male mice (765mg/kg C57BL6/J or 600mg/kg 129S1/SvImJ total dose). The second purpose was to determine the effect(s) of parental oocyte donor strain on in vitro fertilization, in vitro embryo development to blastocysts, and live-born offspring rates using sperm and unassisted IVF to re-derive animals from non-ENU control and ENU mice. Sperm assessment parameters included progressive motility, concentration, plasma membrane integrity, membrane function integrity, acrosome integrity, and DNA integrity. There were no significant differences in fresh sperm assessment parameters, DNA integrity, unassisted in vitro fertility rate, in vitro embryo development rate to blastocysts, and live-born offspring rates between non-ENU and C3B6F1/J or B6129S1F1/J ENU mice. In addition, there were no significant differences in frozen-thawed sperm assessment parameters and DNA integrity rates for non-ENU control and ENU C3B6F1/J or B6129SF1/J mice. In vitro fertilization and in vitro embryo development to blastocysts were effected from strain genetic variability (P<0.05). However, the cryopreservation process caused an increase of DNA fragmentation in non-ENU control and ENU C3B6F1/J or B6129S1F1/J hybrid mice compared to fresh control sperm (P<0.01). Unlike the combinations of hybrid sperm and hybrid oocyte, increasing frozen-thawed sperm DNA fragmentation decreased the embryo development rate to blastocyst compared to fresh sperm when C57BL6, C3H, or 129S inbred mice were used as oocyte donors (P<0.05).
Collapse
Affiliation(s)
- Cengiz Yildiz
- Physiology & Experimental Medicine, The Hospital For Sick Children, Department of Laboratory Medicine & Pathobiology, University of Toronto, Toronto, Ont., Canada M5G1X8
| | | | | | | |
Collapse
|
11
|
Kotula-Balak M, Grzmil P, Styrna J, Bilińska B. Immunodetection of aromatase in mice with a partial deletion in the long arm of the Y chromosome. Acta Histochem 2004; 106:55-64. [PMID: 15032329 DOI: 10.1016/j.acthis.2003.09.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Aromatization of androgens into estrogens is catalyzed by a microsomal enzyme, P450 aromatase. Males of the mouse strain B10.BR and its congenic mutant strain B10.BR-Ydel (with a partial deletion in the long arm of the Y chromosome) were used to identify the cellular source of estrogens within the testis. Immunocytochemistry was applied to localize aromatase in cultured Leydig cells, cytoplasmic droplets attached to flagella of spermatozoa, and sections of testes. The presence of aromatase in testes was checked by means of Western-blot analysis. Steroid hormones secreted by Leydig cells in vitro were measured in homogenates of testes using radioimmunological methods. Additionally, a Southern analysis was performed using the Y353/B probe to check the length of the deletion in the Y chromosome. In sections of testis of B10.BR mice, weak to moderate immunohistochemical staining of aromatase was found in Leydig cells, Sertoli cells, and germ cells. In testicular cells of B10.BR-Ydel mice, stronger immunostaining of aromatase was observed, especially in germ cells and Leydig cells. Positivity for aromatase was also found in the cytoplasm of cultured Leydig cells from both strains, but it was higher in cells derived from mutant males. Western-blot analysis revealed one major band of approx. 55kDa of aromatase in testes from both strains. Lower testosterone levels were found in mutant males in supernatants of culture media and homogenates of testes in comparison with control males. In contrast, estradiol levels were always higher in mutants. Therefore, it seems likely that the increased expression of aromatase and, as a consequence, the higher levels of endogenous estrogens enhance the morphological alterations in testis and affect spermatogenesis in mutant males.
Collapse
Affiliation(s)
- Małgorzata Kotula-Balak
- Laboratory of Endocrinology and Tissue Culture, Department of Animal Physiology, Institute of Zoology, Jagiellonian University, Ingardena 6, Kraków 30-060, Poland
| | | | | | | |
Collapse
|
12
|
SIRUNTAWINETI J, YAMAGATA K, NAKANISHI T, BABA T. Occurrence of Small, Round Vesicles in the Acrosome of Elongating Spermatids from a Mouse Mutant Line with Partial Deletion of the Y Chromosome. J Reprod Dev 2002. [DOI: 10.1262/jrd.48.513] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Affiliation(s)
| | - Kazuo YAMAGATA
- Institute of Applied Biochemistry, University of Tsukuba
- Genome Information Research Center, Osaka University
| | - Tomoko NAKANISHI
- Institute of Applied Biochemistry, University of Tsukuba
- Genome Information Research Center, Osaka University
| | - Tadashi BABA
- Institute of Applied Biochemistry, University of Tsukuba
| |
Collapse
|
13
|
Abstract
Sperm from C57BL/6J, DBA/2J, BALB/cJ, 129S3/SvImJ, and FVB/NJ inbred mice were cryopreserved in 3% skim milk/18% raffinose cryoprotectant solution. The post-thaw sperm from all strains were evaluated for their viability and fertility by comparing them against B6D2F1 sperm used as a control. The protocol used for freezing mouse sperm was effective in different strains, because the motility was decreased by 50% after cryopreservation similar to other mammalian sperm. However, the progressive motility and the fertility of each inbred strain were affected differently. The C57BL/6J, BALB/cJ, and 129S3/SvImJ strains were the most affected; their fertility (two-cell cleavage) decreased from 70%, 34%, and 84% when using freshly collected sperm to 6%, 12%, and 6% when using frozen/thawed sperm, respectively. Live newborns derived from frozen/thawed sperm were obtained from all strains in the study. These results corroborate the genetic variation among strains with regard to fertility and susceptibility to cryopreservation.
Collapse
Affiliation(s)
- J M Sztein
- The Jackson Laboratory, Bar Harbor, Maine 04609, USA.
| | | | | |
Collapse
|
14
|
Abstract
It was suggested by Ronald Fisher in 1931 that genes involved in benefit to the male (including spermatogenesis genes) would accumulate on the Y chromosome. The analysis of mouse Y chromosome deletions and the discovery of microdeletions of the human Y chromosome associated with diverse defective spermatogenic phenotypes has revealed the presence of intervals containing one or more genes controlling male germ cell differentiation. These intervals have been mapped, cloned and examined in detail for functional genes. This review discusses the genes mapping to critical spermatogenesis intervals and the evidence indicating which are the most likely candidates underlying Y-linked male infertility.
Collapse
Affiliation(s)
- N A Affara
- Department of Pathology, University of Cambridge, UK
| | | |
Collapse
|
15
|
Mitchell MJ. Spermatogenesis and the mouse Y chromosome: specialisation out of decay. Results Probl Cell Differ 2000; 28:233-70. [PMID: 10626301 DOI: 10.1007/978-3-540-48461-5_10] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- M J Mitchell
- Inserm U.491, Faculté de médecine, Marseille, France
| |
Collapse
|