1
|
O’Neill CE, Sun K, Sundararaman S, Chang JC, Glynn SA. The impact of nitric oxide on HER family post-translational modification and downstream signaling in cancer. Front Physiol 2024; 15:1358850. [PMID: 38601214 PMCID: PMC11004480 DOI: 10.3389/fphys.2024.1358850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 02/16/2024] [Indexed: 04/12/2024] Open
Abstract
The human epidermal growth factor receptor (HER) family consists of four members, activated by two families of ligands. They are known for mediating cell-cell interactions in organogenesis, and their deregulation has been associated with various cancers, including breast and esophageal cancers. In particular, aberrant epidermal growth factor receptor (EGFR) and HER2 signaling drive disease progression and result in poorer patient outcomes. Nitric oxide (NO) has been proposed as an alternative activator of the HER family and may play a role in this aberrant activation due to its ability to induce s-nitrosation and phosphorylation of the EGFR. This review discusses the potential impact of NO on HER family activation and downstream signaling, along with its role in the efficacy of therapeutics targeting the family.
Collapse
Affiliation(s)
- Ciara E. O’Neill
- Lambe Institute for Translational Research, Discipline of Pathology, School of Medicine, University of Galway, Galway, Ireland
| | - Kai Sun
- Houston Methodist Research Institute, Houston, TX, United States
- Dr Mary and Ron Neal Cancer Center, Houston Methodist Hospital, Houston, TX, United States
| | | | - Jenny C. Chang
- Houston Methodist Research Institute, Houston, TX, United States
- Dr Mary and Ron Neal Cancer Center, Houston Methodist Hospital, Houston, TX, United States
| | - Sharon A. Glynn
- Lambe Institute for Translational Research, Discipline of Pathology, School of Medicine, University of Galway, Galway, Ireland
| |
Collapse
|
2
|
Protein Phosphorylation in Cancer: Role of Nitric Oxide Signaling Pathway. Biomolecules 2021; 11:biom11071009. [PMID: 34356634 PMCID: PMC8301900 DOI: 10.3390/biom11071009] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 07/05/2021] [Accepted: 07/06/2021] [Indexed: 12/16/2022] Open
Abstract
Nitric oxide (NO), a free radical, plays a critical role in a wide range of physiological and pathological processes. Due to its pleiotropic function, it has been widely investigated in various types of cancers and is strongly associated with cancer development. Mounting pieces of evidence show that NO regulates various cancer-related events, which mainly depends on phosphorylating the key proteins in several signaling pathways. However, phosphorylation of proteins modulated by NO signaling pathway may lead to different effects in different types of cancer, which is complex and remains unclear. Therefore, in this review, we focus on the effect of protein phosphorylation modulated by NO signaling pathway in different types of cancers including breast cancer, lung cancer, prostate cancer, colon cancer, gastric cancer, pancreatic cancer, ovarian cancer, and neuroblastoma. Phosphorylation of key proteins, including p38 MAPK, ERK, PI3K, STAT3, and p53, modified by NO in various signaling pathways affects different cancer-related processes including cell apoptosis, proliferation, angiogenesis, metastasis, and several cancer therapies. Our review links the NO signaling pathway to protein phosphorylation in cancer development and provides new insight into potential targets and cancer therapy.
Collapse
|
3
|
Osgood RS, Upham BL, Bushel PR, Velmurugan K, Xiong KN, Bauer AK. Secondhand Smoke-Prevalent Polycyclic Aromatic Hydrocarbon Binary Mixture-Induced Specific Mitogenic and Pro-inflammatory Cell Signaling Events in Lung Epithelial Cells. Toxicol Sci 2017; 157:156-171. [PMID: 28329830 PMCID: PMC5808746 DOI: 10.1093/toxsci/kfx027] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Low molecular weight polycyclic aromatic hydrocarbons (LMW PAHs; < 206.3 g/mol) are prevalent and ubiquitous environmental contaminants, presenting a human health concern, and have not been as thoroughly studied as the high MW PAHs. LMW PAHs exert their pulmonary effects, in part, through P38-dependent and -independent mechanisms involving cell-cell communication and the production of pro-inflammatory mediators known to contribute to lung disease. Specifically, we determined the effects of two representative LMW PAHs, 1-methylanthracene (1-MeA) and fluoranthene (Flthn), individually and as a binary PAH mixture on the dysregulation of gap junctional intercellular communication (GJIC) and connexin 43 (Cx43), activation of mitogen activated protein kinases (MAPK), and induction of inflammatory mediators in a mouse non-tumorigenic alveolar type II cell line (C10). Both 1-MeA, Flthn, and the binary PAH mixture of 1-MeA and Flthn dysregulated GJIC in a dose and time-dependent manner, reduced Cx43 protein, and activated the following MAPKs: P38, ERK1/2, and JNK. Inhibition of P38 MAPK prevented PAH-induced dysregulation of GJIC, whereas inhibiting ERK and JNK did not prevent these PAHs from dysregulating GJIC indicating a P38-dependent mechanism. A toxicogenomic approach revealed significant P38-dependent and -independent pathways involved in inflammation, steroid synthesis, metabolism, and oxidative responses. Genes in these pathways were significantly altered by the binary PAH mixture when compared with 1-MeA and Flthn alone suggesting interactive effects. Exposure to the binary PAH mixture induced the production and release of cytokines and metalloproteinases from the C10 cells. Our findings with a binary mixture of PAHs suggest that combinations of LMW PAHs may elicit synergistic or additive inflammatory responses which warrant further investigation and confirmation.
Collapse
Affiliation(s)
- Ross S. Osgood
- Department of Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045
| | - Brad L. Upham
- Department of Pediatrics and Human Development, Michigan State University, East Lansing, Michigan 48824
| | - Pierre R. Bushel
- Biostatistics & Computational Biology Branch, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina 27709
| | - Kalpana Velmurugan
- Department of Environmental and Occupational Health, University of Colorado Anschutz Medical Center, Aurora, Colorado 80045
| | - Ka-Na Xiong
- Department of Environmental and Occupational Health, University of Colorado Anschutz Medical Center, Aurora, Colorado 80045
| | - Alison K. Bauer
- Department of Environmental and Occupational Health, University of Colorado Anschutz Medical Center, Aurora, Colorado 80045
| |
Collapse
|
4
|
Polycyclic aromatic hydrocarbon-induced signaling events relevant to inflammation and tumorigenesis in lung cells are dependent on molecular structure. PLoS One 2013; 8:e65150. [PMID: 23755184 PMCID: PMC3670909 DOI: 10.1371/journal.pone.0065150] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2013] [Accepted: 04/23/2013] [Indexed: 12/12/2022] Open
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are ubiquitous environmental and occupational toxicants, which are a major human health concern in the U.S. and abroad. Previous research has focused on the genotoxic events caused by high molecular weight PAHs, but not on non-genotoxic events elicited by low molecular weight PAHs. We used an isomeric pair of low molecular weight PAHs, namely 1-Methylanthracene (1-MeA) and 2-Methylanthracene (2-MeA), in which only 1-MeA possessed a bay-like region, and hypothesized that 1-MeA, but not 2-MeA, would affect non-genotoxic endpoints relevant to tumor promotion in murine C10 lung cells, a non-tumorigenic type II alveolar pneumocyte and progenitor cell type of lung adenocarcinoma. The non-genotoxic endpoints assessed were dysregulation of gap junction intercellular communication function and changes in the major pulmonary connexin protein, connexin 43, using fluorescent redistribution and immunoblots, activation of mitogen activated protein kinases (MAPK) using phosphospecific MAPK antibodies for immunoblots, and induction of inflammatory genes using quantitative RT-PCR. 2-MeA had no effect on any of the endpoints, but 1-MeA dysregulated gap junctional communication in a dose and time dependent manner, reduced connexin 43 protein expression, and altered membrane localization. 1-MeA also activated ERK1/2 and p38 MAP kinases. Inflammatory genes, such as cyclooxygenase 2, and chemokine ligand 2 (macrophage chemoattractant 2), were also upregulated in response to 1-MeA only. These results indicate a possible structure-activity relationship of these low molecular weight PAHs relevant to non-genotoxic endpoints of the promoting aspects of cancer. Therefore, our novel findings may improve the ability to predict outcomes for future studies with additional toxicants and mixtures, identify novel targets for biomarkers and chemotherapeutics, and have possible implications for future risk assessment for these PAHs.
Collapse
|
5
|
Hill T, Osgood RS, Velmurugan K, Alexander CM, Upham BL, Bauer AK. Bronchoalveolar Lavage Fluid Utilized Ex Vivo to Validate In Vivo Findings: Inhibition of Gap Junction Activity in Lung Tumor Promotion is Toll-Like Receptor 4-Dependent. ACTA ACUST UNITED AC 2013; 5. [PMID: 25035812 PMCID: PMC4098145 DOI: 10.4172/2155-9929.1000160] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
TLR4 protects against lung tumor promotion and pulmonary inflammation in mice. Connexin 43 (Cx43), a gap junction gene, was increased in Tlr4 wildtype compared to Tlr4-mutant mice in response to promotion, which suggests gap junctional intercellular communication (GJIC) may be compromised. We hypothesized that the early tumor microenvironment, represented by Bronchoalveolar Lavage Fluid (BALF) from Butylated hydroxytoluene (BHT; promoter)-treated mice, would produce TLR4-dependent changes in pulmonary epithelium, including dysregulation of GJIC in the Tlr4-mutant (BALBLps-d) compared to the Tlr4-sufficient (BALB; wildtype) mice. BHT (4 weekly doses) was injected ip followed by BALF collection at 24 h. BALF total protein and total macrophages were significantly elevated in BHT-treated BALBLps-d over BALB mice, similar to previous findings. BALF was then utilized in an ex vivo manner to treat C10 cells, a murine alveolar type II cell line, followed by the scrape-load dye transfer assay (GJIC), Cx43 immunostaining, and quantitative RT-PCR (Mcp-1, monocyte chemotactic protein 1). GJIC was markedly reduced in C10 cells treated with BHT-treated BALBLps-d BALF for 4 and 24 h compared to BALB and control BALF from the respective mice (p < 0.05). Mcp-1, a chemokine, was also significantly increased in the BHT-treated BALBLps-d BALF compared to the BALB mice, and Cx43 protein expression in the cell membrane altered. These novel findings suggest signaling from the BALF milieu is involved in GJIC dysregulation associated with promotion and links gap junctions to pulmonary TLR4 protection in a novel ex vivo model that could assist in future potential tumor promoter screening.
Collapse
Affiliation(s)
- Thomas Hill
- Department of Environmental and Occupational Health, Colorado School of Public Health, University of Colorado, Aurora, Colorado, USA
| | - Ross S Osgood
- Department of Environmental and Occupational Health, Colorado School of Public Health, University of Colorado, Aurora, Colorado, USA
| | - Kalpana Velmurugan
- Department of Environmental and Occupational Health, Colorado School of Public Health, University of Colorado, Aurora, Colorado, USA
| | - Carla-Maria Alexander
- Department of Environmental and Occupational Health, Colorado School of Public Health, University of Colorado, Aurora, Colorado, USA
| | - Brad L Upham
- Department of Pediatrics and Human Development, Michigan State University, Lansing, USA
| | - Alison K Bauer
- Department of Environmental and Occupational Health, Colorado School of Public Health, University of Colorado, Aurora, Colorado, USA
| |
Collapse
|
6
|
Fritz JM, Dwyer-Nield LD, Malkinson AM. Stimulation of neoplastic mouse lung cell proliferation by alveolar macrophage-derived, insulin-like growth factor-1 can be blocked by inhibiting MEK and PI3K activation. Mol Cancer 2011; 10:76. [PMID: 21699731 PMCID: PMC3135566 DOI: 10.1186/1476-4598-10-76] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2010] [Accepted: 06/24/2011] [Indexed: 11/30/2022] Open
Abstract
Background Worldwide, lung cancer kills more people than breast, colon and prostate cancer combined. Alterations in macrophage number and function during lung tumorigenesis suggest that these immune effector cells stimulate lung cancer growth. Evidence from cancer models in other tissues suggests that cancer cells actively recruit growth factor-producing macrophages through a reciprocal signaling pathway. While the levels of lung macrophages increase during tumor progression in mouse models of lung cancer, and high pulmonary macrophage content correlates with a poor prognosis in human non-small cell lung cancer, the specific role of alveolar macrophages in lung tumorigenesis is not clear. Methods After culturing either an immortalized lung macrophage cell line or primary murine alveolar macrophages from naïve and lung-tumor bearing mice with primary tumor isolates and immortalized cell lines, the effects on epithelial proliferation and cellular kinase activation were determined. Insulin-like growth factor-1 (IGF-1) was quantified by ELISA, and macrophage conditioned media IGF-1 levels manipulated by IL-4 treatment, immuno-depletion and siRNA transfection. Results Primary macrophages from both naïve and lung-tumor bearing mice stimulated epithelial cell proliferation. The lungs of tumor-bearing mice contained 3.5-times more IGF-1 than naïve littermates, and media conditioned by freshly isolated tumor-educated macrophages contained more IGF-1 than media conditioned by naïve macrophages; IL-4 stimulated IGF-1 production by both macrophage subsets. The ability of macrophage conditioned media to stimulate neoplastic proliferation correlated with media IGF-1 levels, and recombinant IGF-1 alone was sufficient to induce epithelial proliferation in all cell lines evaluated. Macrophage-conditioned media and IGF-1 stimulated lung tumor cell growth in an additive manner, while EGF had no effect. Macrophage-derived factors increased p-Erk1/2, p-Akt and cyclin D1 levels in neoplastic cells, and the combined inhibition of both MEK and PI3K ablated macrophage-mediated increases in epithelial growth. Conclusions Macrophages produce IGF-1 which directly stimulates neoplastic proliferation through Erk and Akt activation. This observation suggests that combining macrophage ablation therapy with IGF-1R, MEK and/or PI3K inhibition could improve therapeutic response in human lung cancer. Exploring macrophage-based intervention could be a fruitful avenue for future research.
Collapse
Affiliation(s)
- Jason M Fritz
- Department of Pharmaceutical Sciences, Skagg School of Pharmacy and Pharmaceutical Sciences, University of Colorado Anschutz Medical Campus, 12850 E, Montview Blvd, C-238 V20-4460, Aurora, CO 80045, USA
| | | | | |
Collapse
|
7
|
Cheng G, Zhai Y, Chen K, Zhou J, Han G, Zhu R, Ming L, Song P, Wang J. Sinusoidal electromagnetic field stimulates rat osteoblast differentiation and maturation via activation of NO-cGMP-PKG pathway. Nitric Oxide 2011; 25:316-25. [PMID: 21664476 DOI: 10.1016/j.niox.2011.05.009] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2010] [Revised: 04/27/2011] [Accepted: 05/26/2011] [Indexed: 01/17/2023]
Abstract
Nitric oxide (NO) is an important intracellular and intercellular messenger, critically affecting bone metabolism. The purpose of this research is to investigate whether the effect of sinusoidal electromagnetic field (SEMF) on the differentiation and maturation of osteoblasts is mediated by the NO-cGMP-PKG signal pathway. We examined the impact of SEMF on nitric oxide synthase (NOS) activity, and found that L-NAME, nitric oxide synthase's inhibitor, prevents SEMF-mediated increase in NOS activity and NO levels. We showed that an inhibitor of soluble guanylyl cyclase (ODQ) blocks the increase in cGMP levels triggered by exposure to SEMF. The inhibitor PDE5, which hydrolyzes 3',5'-cyclic-GMP to 5'-GMP, prevents the SEMF's stimulation of PKG activity. We also blocked the NO-cGMP-PKG pathway to determine whether the maturation and mineralization of osteoblasts, stimulated by SEMF, would be inhibited. This was evaluated by measuring alkaline phosphatase (ALP) activity, osterix gene expression and mineralized bone modulus. After treatment with SEMF, the NOS activity increases in comparison with the control group (P<0.01), reaching the highest level after 0.5h. Osterix gene expression, ALP activity and mineralized bone nodules in the SEMF experimental group also increase significantly. However, these effects are partially blocked in the L-NAME treated cultures. Surprisingly, all the osteogenic markers in the SEMF+L-NAME group were slightly higher than in the control culture, but lower than in the cells exposed to SEMF only. We conclude that the NO-cGMP-PKG signal pathway is activated by SEMF treatment, the stimulatory effect of SEMF on the differentiation and mineralization of osteoblasts is attenuated when the pathway is blocked.
Collapse
Affiliation(s)
- Guozheng Cheng
- Institute of Orthopaedics, Lanzhou General Hospital, Lanzhou Command, Gansu, China
| | | | | | | | | | | | | | | | | |
Collapse
|