1
|
Strassheim D, Verin A, Batori R, Nijmeh H, Burns N, Kovacs-Kasa A, Umapathy NS, Kotamarthi J, Gokhale YS, Karoor V, Stenmark KR, Gerasimovskaya E. P2Y Purinergic Receptors, Endothelial Dysfunction, and Cardiovascular Diseases. Int J Mol Sci 2020; 21:ijms21186855. [PMID: 32962005 PMCID: PMC7555413 DOI: 10.3390/ijms21186855] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 09/11/2020] [Accepted: 09/15/2020] [Indexed: 12/13/2022] Open
Abstract
Purinergic G-protein-coupled receptors are ancient and the most abundant group of G-protein-coupled receptors (GPCRs). The wide distribution of purinergic receptors in the cardiovascular system, together with the expression of multiple receptor subtypes in endothelial cells (ECs) and other vascular cells demonstrates the physiological importance of the purinergic signaling system in the regulation of the cardiovascular system. This review discusses the contribution of purinergic P2Y receptors to endothelial dysfunction (ED) in numerous cardiovascular diseases (CVDs). Endothelial dysfunction can be defined as a shift from a “calm” or non-activated state, characterized by low permeability, anti-thrombotic, and anti-inflammatory properties, to a “activated” state, characterized by vasoconstriction and increased permeability, pro-thrombotic, and pro-inflammatory properties. This state of ED is observed in many diseases, including atherosclerosis, diabetes, hypertension, metabolic syndrome, sepsis, and pulmonary hypertension. Herein, we review the recent advances in P2Y receptor physiology and emphasize some of their unique signaling features in pulmonary endothelial cells.
Collapse
Affiliation(s)
- Derek Strassheim
- The Department of Medicine Cardiovascular and Pulmonary Research Laboratory, University of Colorado Denver, Aurora, CO 80045, USA; (D.S.); (N.B.); (V.K.); (K.R.S.)
| | - Alexander Verin
- Vascular Biology Center, Augusta University, Augusta, GA 30912, USA; (A.V.); (R.B.); (A.K.-K.)
| | - Robert Batori
- Vascular Biology Center, Augusta University, Augusta, GA 30912, USA; (A.V.); (R.B.); (A.K.-K.)
| | - Hala Nijmeh
- The Department of Pediatrics, Division of Critical Care Medicine, University of Colorado Denver, Aurora, CO 80045, USA;
| | - Nana Burns
- The Department of Medicine Cardiovascular and Pulmonary Research Laboratory, University of Colorado Denver, Aurora, CO 80045, USA; (D.S.); (N.B.); (V.K.); (K.R.S.)
| | - Anita Kovacs-Kasa
- Vascular Biology Center, Augusta University, Augusta, GA 30912, USA; (A.V.); (R.B.); (A.K.-K.)
| | | | - Janavi Kotamarthi
- The Department of BioMedical Engineering, University of Wisconsin, Madison, WI 53706, USA; (J.K.); (Y.S.G.)
| | - Yash S. Gokhale
- The Department of BioMedical Engineering, University of Wisconsin, Madison, WI 53706, USA; (J.K.); (Y.S.G.)
| | - Vijaya Karoor
- The Department of Medicine Cardiovascular and Pulmonary Research Laboratory, University of Colorado Denver, Aurora, CO 80045, USA; (D.S.); (N.B.); (V.K.); (K.R.S.)
| | - Kurt R. Stenmark
- The Department of Medicine Cardiovascular and Pulmonary Research Laboratory, University of Colorado Denver, Aurora, CO 80045, USA; (D.S.); (N.B.); (V.K.); (K.R.S.)
- The Department of Pediatrics, Division of Critical Care Medicine, University of Colorado Denver, Aurora, CO 80045, USA;
| | - Evgenia Gerasimovskaya
- The Department of Medicine Cardiovascular and Pulmonary Research Laboratory, University of Colorado Denver, Aurora, CO 80045, USA; (D.S.); (N.B.); (V.K.); (K.R.S.)
- The Department of Pediatrics, Division of Critical Care Medicine, University of Colorado Denver, Aurora, CO 80045, USA;
- Correspondence: ; Tel.: +1-303-724-5614
| |
Collapse
|
2
|
Zhang M, Ying W. NAD + Deficiency Is a Common Central Pathological Factor of a Number of Diseases and Aging: Mechanisms and Therapeutic Implications. Antioxid Redox Signal 2019; 30:890-905. [PMID: 29295624 DOI: 10.1089/ars.2017.7445] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Increasing evidence has indicated critical roles of nicotinamide adenine dinucleotide, oxidized form (NAD+) in various biological functions. NAD+ deficiency has been found in models of a number of diseases such as cerebral ischemia, myocardial ischemia, and diabetes, and in models of aging. Applications of NAD+ or other approaches that can restore NAD+ levels are highly protective in these models of diseases and aging. NAD+ produces its beneficial effects by targeting at multiple pathological pathways, including attenuating mitochondrial alterations, DNA damage, and oxidative stress, by modulating such enzymes as sirtuins, glyceraldehyde-3-phosphate dehydrogenase, and AP endonuclease. These findings have suggested great therapeutic and nutritional potential of NAD+ for diseases and senescence. Recent Advances: Approaches that can restore NAD+ levels are highly protective in the models of such diseases as glaucoma. The NAD+ deficiency in the diseases and aging results from not only poly(ADP-ribose) polymerase-1 (PARP-1) activation but also decreased nicotinamide phosphoribosyltransferase (Nampt) activity and increased CD38 activity. Significant biological effects of extracellular NAD+ have been found. Increasing evidence has suggested that NAD+ deficiency is a common central pathological factor in a number of diseases and aging. Critical Issues and Future Directions: Future studies are required for solidly establishing the concept that "NAD+ deficiency is a common central pathological factor in a number of disease and aging." It is also necessary to further investigate the mechanisms underlying the NAD+ deficiency in the diseases and aging. Preclinical and clinical studies should be conducted to determine the therapeutic potential of NAD+ for the diseases and aging.
Collapse
Affiliation(s)
- Mingchao Zhang
- 1 Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China.,2 Collaborative Innovation Center for Genetics and Development, Shanghai, China
| | - Weihai Ying
- 1 Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China.,2 Collaborative Innovation Center for Genetics and Development, Shanghai, China
| |
Collapse
|
3
|
SIRT2 and Akt mediate NAD+-induced and NADH-induced increases in the intracellular ATP levels of BV2 microglia under basal conditions. Neuroreport 2018; 29:65-70. [PMID: 29189472 DOI: 10.1097/wnr.0000000000000876] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
NAD replenishment can restore ATP levels and rescue premature aging in Cockayne syndrome mice. However, there has been no mechanistic study regarding the effects of NAD and NADH on intracellular ATP levels under basal conditions. In our current study, we used BV2 microglia to test our hypothesis that NAD and NADH can increase intracellular ATP levels under basal conditions. We found that both NAD and NADH significantly increased the intracellular ATP levels of BV2 microglia, which were attenuated by SIRT2 siRNA, the SIRT2 inhibitor AGK2, and the phosphatidylinositol 3-kinase/Akt inhibitor LY294002. Our study has also suggested that SIRT2 mediates the NAD-induced and NADH-induced increase in Akt phosphorylation in BV2 microglia. Collectively, our study has suggested that SIRT2 mediates both NAD-induced and NADH-induced increases in the intracellular ATP levels of BV2 microglia by modulating Akt phosphorylation.
Collapse
|
4
|
β-Nicotinamide Adenine Dinucleotide (β-NAD) Inhibits ATP-Dependent IL-1β Release from Human Monocytic Cells. Int J Mol Sci 2018; 19:ijms19041126. [PMID: 29642561 PMCID: PMC5979475 DOI: 10.3390/ijms19041126] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 03/29/2018] [Accepted: 04/05/2018] [Indexed: 01/05/2023] Open
Abstract
While interleukin-1β (IL-1β) is a potent pro-inflammatory cytokine essential for host defense, high systemic levels cause life-threatening inflammatory syndromes. ATP, a stimulus of IL-1β maturation, is released from damaged cells along with β-nicotinamide adenine dinucleotide (β-NAD). Here, we tested the hypothesis that β-NAD controls ATP-signaling and, hence, IL-1β release. Lipopolysaccharide-primed monocytic U937 cells and primary human mononuclear leukocytes were stimulated with 2'(3')-O-(4-benzoyl-benzoyl)ATP trieethylammonium salt (BzATP), a P2X7 receptor agonist, in the presence or absence of β-NAD. IL-1β was measured in cell culture supernatants. The roles of P2Y receptors, nicotinic acetylcholine receptors (nAChRs), and Ca2+-independent phospholipase A2 (iPLA2β, PLA2G6) were investigated using specific inhibitors and gene-silencing. Exogenous β-NAD signaled via P2Y receptors and dose-dependently (IC50 = 15 µM) suppressed the BzATP-induced IL-1β release. Signaling involved iPLA2β, release of a soluble mediator, and nAChR subunit α9. Patch-clamp experiments revealed that β-NAD inhibited BzATP-induced ion currents. In conclusion, we describe a novel triple membrane-passing signaling cascade triggered by extracellular β-NAD that suppresses ATP-induced release of IL-1β by monocytic cells. This cascade links activation of P2Y receptors to non-canonical metabotropic functions of nAChRs that inhibit P2X7 receptor function. The biomedical relevance of this mechanism might be the control of trauma-associated systemic inflammation.
Collapse
|
5
|
Janga H, Cassidy L, Wang F, Spengler D, Oestern-Fitschen S, Krause MF, Seekamp A, Tholey A, Fuchs S. Site-specific and endothelial-mediated dysfunction of the alveolar-capillary barrier in response to lipopolysaccharides. J Cell Mol Med 2017; 22:982-998. [PMID: 29210175 PMCID: PMC5783864 DOI: 10.1111/jcmm.13421] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Accepted: 09/12/2017] [Indexed: 12/16/2022] Open
Abstract
Infectious agents such as lipopolysaccharides (LPS) challenge the functional properties of the alveolar‐capillary barrier (ACB) in the lung. In this study, we analyse the site‐specific effects of LPS on the ACB and reveal the effects on the individual cell types and the ACB as a functional unit. Monocultures of H441 epithelial cells and co‐cultures of H441 with endothelial cells cultured on Transwells® were treated with LPS from the apical or basolateral compartment. Barrier properties were analysed by the transepithelial electrical resistance (TEER), by transport assays, and immunostaining and assessment of tight junctional molecules at protein level. Furthermore, pro‐inflammatory cytokines and immune‐modulatory molecules were evaluated by ELISA and semiquantitative real‐time PCR. Liquid chromatography–mass spectrometry‐based proteomics (LS‐MS) was used to identify proteins and effector molecules secreted by endothelial cells in response to LPS. In co‐cultures treated with LPS from the basolateral compartment, we noticed a significant reduction of TEER, increased permeability and induction of pro‐inflammatory cytokines. Conversely, apical treatment did not affect the barrier. No changes were noticed in H441 monoculture upon LPS treatment. However, LPS resulted in an increased expression of pro‐inflammatory cytokines such as IL‐6 in OEC and in turn induced the reduction of TEER and an increase in SP‐A expression in H441 monoculture, and H441/OEC co‐cultures after LPS treatment from basolateral compartment. LS‐MS‐based proteomics revealed factors associated with LPS‐mediated lung injury such as ICAM‐1, VCAM‐1, Angiopoietin 2, complement factors and cathepsin S, emphasizing the role of epithelial–endothelial crosstalk in the ACB in ALI/ARDS.
Collapse
Affiliation(s)
- Harshavardhan Janga
- Department of Trauma Surgery and Orthopedics, Experimental Trauma Surgery, University Medical Center Schleswig-Holstein, Kiel, Germany
| | - Liam Cassidy
- Systematic Proteomics & Bioanalytics, Institut für Experimentelle Medizin, Christian-Albrechts-Universität zu Kiel, Kiel, Germany
| | - Fanlu Wang
- Department of Trauma Surgery and Orthopedics, Experimental Trauma Surgery, University Medical Center Schleswig-Holstein, Kiel, Germany
| | - Dietmar Spengler
- Department of Pediatrics, University Medical Center Schleswig- Holstein, Kiel, Germany
| | - Stefanie Oestern-Fitschen
- Department of Trauma Surgery and Orthopedics, Experimental Trauma Surgery, University Medical Center Schleswig-Holstein, Kiel, Germany
| | - Martin F Krause
- Department of Pediatrics, University Medical Center Schleswig- Holstein, Kiel, Germany
| | - Andreas Seekamp
- Department of Trauma Surgery and Orthopedics, Experimental Trauma Surgery, University Medical Center Schleswig-Holstein, Kiel, Germany
| | - Andreas Tholey
- Systematic Proteomics & Bioanalytics, Institut für Experimentelle Medizin, Christian-Albrechts-Universität zu Kiel, Kiel, Germany
| | - Sabine Fuchs
- Department of Trauma Surgery and Orthopedics, Experimental Trauma Surgery, University Medical Center Schleswig-Holstein, Kiel, Germany
| |
Collapse
|
6
|
Guan E, Wang Y, Wang C, Zhang R, Zhao Y, Hong J. Necrostatin-1 attenuates lipopolysaccharide-induced acute lung injury in mice. Exp Lung Res 2017; 43:378-387. [PMID: 29199874 DOI: 10.1080/01902148.2017.1384083] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
AIM OF THE STUDY Receptor-interacting protein (RIP) kinase family members are involved in several biological processes. However, their role in acute lung injury (ALI) is still unclear. In the present study, we aim to determine the expression and function of RIP kinase family in ALI. MATERIALS AND METHODS In the present study, ALI was induced in BALB/c male mice by intravenously injecting lipopolysaccharide (LPS). The expression levels of the RIP kinase family in ALI mice were determined using western blotting and immunohistochemical staining. The specific RIP-1 inhibitor, necrostatin-1, was used to treat LPS-induced ALI mice, followed by survival time recording, as well as histopathological and immunohistochemical staining of lung tissues, western blotting, myeloperoxidase (MPO) assay and enzyme-linked immunosorbent assay (ELISA) of related cytokines and downstream target expression. RESULTS We found that RIP-1 expression was upregulated in the lung of ALI mice and inhibition of RIP-1 by necrostatin-1 significantly prolonged the survival time of mice, which was accompanied by less serve lung injury. Furthermore, lower expression of pro-inflammatory cytokines (interleukin [IL]-6, tumor necrosis factor [TNF]-α, IL-8, cyclooxygenase [COX]-2, monocyte chemoattractant protein [MCP]-1, and IL-1β), MPO and nuclear factor (NF)-κB activation were found in bronchoalveolar lavage fluid (BALF) and lung tissues of necrostatin-1-treated ALI mice. Necrostatin-1 also attenuated LPS-induced pro-inflammatory cytokine expression and NF-κB activation in RAW 264.7 cells. CONCLUSIONS In summary, necrostatin-1 protected against LPS-induced ALI in mice by inhibiting inflammation and pulmonary NF-κB activation. Thus, necrostatin-1 could be a novel therapeutic strategy for ALI.
Collapse
Affiliation(s)
- Enqin Guan
- a Department of Pediatrics , the Affiliated Hospital of Qingdao University , Qingdao , Shandong , China.,b Department of Pediatrics , Qingdao Municipal Hospital , Qingdao , Shandong , China
| | - Yue Wang
- b Department of Pediatrics , Qingdao Municipal Hospital , Qingdao , Shandong , China
| | - Caixia Wang
- b Department of Pediatrics , Qingdao Municipal Hospital , Qingdao , Shandong , China
| | - Ruiyun Zhang
- b Department of Pediatrics , Qingdao Municipal Hospital , Qingdao , Shandong , China
| | - Yiming Zhao
- b Department of Pediatrics , Qingdao Municipal Hospital , Qingdao , Shandong , China
| | - Jiang Hong
- a Department of Pediatrics , the Affiliated Hospital of Qingdao University , Qingdao , Shandong , China
| |
Collapse
|
7
|
Method for the Culture of Mouse Pulmonary Microvascular Endothelial Cells. SCIENTIFIC PAGES OF PULMONOLOGY 2017; 1:7-18. [PMID: 29658013 PMCID: PMC5898805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Pulmonary microvascular endothelial cells (ECs) are integral to the alveoli-capillary barrier of the lung. The EC barrier integrity is known to be disrupted in severe lung diseases such as acute respiratory distress syndrome (ARDS), pneumonia and pulmonary edema. Mice are commonly used to model these diseases, dictating an increasingly high demand for murine ECs isolation and culture. Despite the significant number of protocols for the culture of various types of murine cells, the isolation of microvascular endothelial cells remains a challenging procedure. In our manuscript we developed adetailed step-by-step refined method for isolation murine pulmonary microvascular ECs for in vitro studies. We separated cells using platelet endothelial cell adhesion molecule antibody and characterized ECs with antibodies against intercellular adhesion molecule-1, acetylated-low density lipoprotein, and vascular endothelial (VE)-cadherin. Further, we confirmed microvascular origin of these cells using Griffonia simplicifolia and Helix pomatia (negative control) staining. Barrier properties of EC monolayer were characterized by conducting electric cell-substrate impedance sensing experiments with the edemagenic agents, lipopolysaccharide and nocodazole, and known barrier-protective agents, adenosine and sphingosine-1-phosphate. The described complete protocol provided consistent and reproducible results.
Collapse
|
8
|
The protective role of MLCP-mediated ERM dephosphorylation in endotoxin-induced lung injury in vitro and in vivo. Sci Rep 2016; 6:39018. [PMID: 27976727 PMCID: PMC5157034 DOI: 10.1038/srep39018] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Accepted: 11/17/2016] [Indexed: 12/13/2022] Open
Abstract
The goal of this study was to investigate the role of MLC phosphatase (MLCP) in a LPS model of acute lung injury (ALI). We demonstrate that ectopic expression of a constitutively-active (C/A) MLCP regulatory subunit (MYPT1) attenuates the ability of LPS to increase endothelial (EC) permeability. Down-regulation of MYPT1 exacerbates LPS-induced expression of ICAM1 suggesting an anti-inflammatory role of MLCP. To determine whether MLCP contributes to LPS-induced ALI in vivo, we utilized a nanoparticle DNA delivery method to specifically target lung EC. Expression of a C/A MYPT1 reduced LPS-induced lung inflammation and vascular permeability. Further, increased expression of the CS1β (MLCP catalytic subunit) also reduced LPS-induced lung inflammation, whereas the inactive CS1β mutant increased vascular leak. We next examined the role of the cytoskeletal targets of MLCP, the ERM proteins (Ezrin/Radixin/Moesin), in mediating barrier dysfunction. LPS-induced increase in EC permeability was accompanied by PKC-mediated increase in ERM phosphorylation, which was more prominent in CS1β-depleted cells. Depletion of Moesin and Ezrin, but not Radixin attenuated LPS-induced increases in permeability. Further, delivery of a Moesin phospho-null mutant into murine lung endothelium attenuated LPS-induced lung inflammation and vascular leak suggesting that MLCP opposes LPS-induced ALI by mediating the dephosphorylation of Moesin and Ezrin.
Collapse
|
9
|
NAD+ protects against EAE by regulating CD4+ T-cell differentiation. Nat Commun 2014; 5:5101. [PMID: 25290058 PMCID: PMC4205890 DOI: 10.1038/ncomms6101] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2014] [Accepted: 08/28/2014] [Indexed: 12/22/2022] Open
Abstract
CD4(+) T cells are involved in the development of autoimmunity, including multiple sclerosis (MS). Here we show that nicotinamide adenine dinucleotide (NAD(+)) blocks experimental autoimmune encephalomyelitis (EAE), a mouse model of MS, by inducing immune homeostasis through CD4(+)IFNγ(+)IL-10(+) T cells and reverses disease progression by restoring tissue integrity via remyelination and neuroregeneration. We show that NAD(+) regulates CD4(+) T-cell differentiation through tryptophan hydroxylase-1 (Tph1), independently of well-established transcription factors. In the presence of NAD(+), the frequency of T-bet(-/-) CD4(+)IFNγ(+) T cells was twofold higher than wild-type CD4(+) T cells cultured in conventional T helper 1 polarizing conditions. Our findings unravel a new pathway orchestrating CD4(+) T-cell differentiation and demonstrate that NAD(+) may serve as a powerful therapeutic agent for the treatment of autoimmune and other diseases.
Collapse
|
10
|
Czikora I, Sridhar S, Gorshkov B, Alieva IB, Kasa A, Gonzales J, Potapenko O, Umapathy NS, Pillich H, Rick FG, Block NL, Verin AD, Chakraborty T, Matthay MA, Schally AV, Lucas R. Protective effect of Growth Hormone-Releasing Hormone agonist in bacterial toxin-induced pulmonary barrier dysfunction. Front Physiol 2014; 5:259. [PMID: 25076911 PMCID: PMC4097355 DOI: 10.3389/fphys.2014.00259] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2014] [Accepted: 06/19/2014] [Indexed: 01/17/2023] Open
Abstract
RATIONALE Antibiotic treatment of patients infected with G(-) or G(+) bacteria promotes release of the toxins lipopolysaccharide (LPS) and pneumolysin (PLY) in their lungs. Growth Hormone-releasing Hormone (GHRH) agonist JI-34 protects human lung microvascular endothelial cells (HL-MVEC), expressing splice variant 1 (SV-1) of the receptor, from PLY-induced barrier dysfunction. We investigated whether JI-34 also blunts LPS-induced hyperpermeability. Since GHRH receptor (GHRH-R) signaling can potentially stimulate both cAMP-dependent barrier-protective pathways as well as barrier-disruptive protein kinase C pathways, we studied their interaction in GHRH agonist-treated HL-MVEC, in the presence of PLY, by means of siRNA-mediated protein kinase A (PKA) depletion. METHODS Barrier function measurements were done in HL-MVEC monolayers using Electrical Cell substrate Impedance Sensing (ECIS) and VE-cadherin expression by Western blotting. Capillary leak was assessed by Evans Blue dye (EBD) incorporation. Cytokine generation in broncho-alveolar lavage fluid (BALF) was measured by multiplex analysis. PKA and PKC-α activity were assessed by Western blotting. RESULTS GHRH agonist JI-34 significantly blunts LPS-induced barrier dysfunction, at least in part by preserving VE-cadherin expression, while not affecting inflammation. In addition to activating PKA, GHRH agonist also increases PKC-α activity in PLY-treated HL-MVEC. Treatment with PLY significantly decreases resistance in control siRNA-treated HL-MVEC, but does so even more in PKA-depleted monolayers. Pretreatment with GHRH agonist blunts PLY-induced permeability in control siRNA-treated HL-MVEC, but fails to improve barrier function in PKA-depleted PLY-treated monolayers. CONCLUSIONS GHRH signaling in HL-MVEC protects from both LPS and PLY-mediated endothelial barrier dysfunction and concurrently induces a barrier-protective PKA-mediated and a barrier-disruptive PKC-α-induced pathway in the presence of PLY, the former of which dominates the latter.
Collapse
Affiliation(s)
- Istvan Czikora
- Department of Pharmacology and Toxicology, Vascular Biology Center, Georgia Regents University Augusta, GA, USA
| | - Supriya Sridhar
- Department of Pharmacology and Toxicology, Vascular Biology Center, Georgia Regents University Augusta, GA, USA
| | - Boris Gorshkov
- Department of Pharmacology and Toxicology, Vascular Biology Center, Georgia Regents University Augusta, GA, USA
| | - Irina B Alieva
- Department of Pharmacology and Toxicology, Vascular Biology Center, Georgia Regents University Augusta, GA, USA ; Department of Electron Microscopy, A.N. Belozorksy Institute, Moscow State University Moscow, Russia
| | - Anita Kasa
- Department of Pharmacology and Toxicology, Vascular Biology Center, Georgia Regents University Augusta, GA, USA
| | - Joyce Gonzales
- Department of Medicine, Division of Pulmonary Medicine, Medical College of Georgia, Georgia Regents University Augusta, GA, USA
| | - Olena Potapenko
- Department of Pharmacology and Toxicology, Vascular Biology Center, Georgia Regents University Augusta, GA, USA
| | - Nagavedi S Umapathy
- Department of Pharmacology and Toxicology, Vascular Biology Center, Georgia Regents University Augusta, GA, USA
| | - Helena Pillich
- Department of Medicine, Institute of Medical Microbiology, Justus-Liebig University Giessen Giessen, Germany
| | - Ferenc G Rick
- Endocrine, Polypeptide and Cancer Institute, Veterans Affairs Medical Center Miami, FL, USA ; Department of Urology, Herbert Wertheim College of Medicine, Florida International University Miami, FL, USA
| | - Norman L Block
- Endocrine, Polypeptide and Cancer Institute, Veterans Affairs Medical Center Miami, FL, USA ; Department of Pathology, Miller School of Medicine, University of Miami Miami, FL, USA ; Department of Medicine, Miller School of Medicine, University of Miami Miami, FL, USA ; Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami Miami, FL, USA
| | - Alexander D Verin
- Department of Pharmacology and Toxicology, Vascular Biology Center, Georgia Regents University Augusta, GA, USA
| | - Trinad Chakraborty
- Endocrine, Polypeptide and Cancer Institute, Veterans Affairs Medical Center Miami, FL, USA
| | - Michael A Matthay
- Department of Medicine and Anesthesia, Cardiovascular Research Institute, University of California San Francisco San Francisco, CA, USA
| | - Andrew V Schally
- Endocrine, Polypeptide and Cancer Institute, Veterans Affairs Medical Center Miami, FL, USA ; Department of Pathology, Miller School of Medicine, University of Miami Miami, FL, USA ; Department of Medicine, Miller School of Medicine, University of Miami Miami, FL, USA ; Sylvester Comprehensive Cancer Center, Miller School of Medicine, University of Miami Miami, FL, USA
| | - Rudolf Lucas
- Department of Pharmacology and Toxicology, Vascular Biology Center, Georgia Regents University Augusta, GA, USA ; Department of Medicine, Division of Pulmonary Medicine, Medical College of Georgia, Georgia Regents University Augusta, GA, USA ; Department of Pharmacology and Toxicology, Medical College of Georgia, Georgia Regents University Augusta, GA, USA
| |
Collapse
|
11
|
Abstract
NADPH oxidase5 (Nox5) is a novel Nox isoform which has recently been recognized as having important roles in the pathogenesis of coronary artery disease, acute myocardial infarction, fetal ventricular septal defect and cancer. The activity of Nox5 and production of reactive oxygen species is regulated by intracellular calcium levels and phosphorylation. However, the kinases that phosphorylate Nox5 remain poorly understood. Previous studies have shown that the phosphorylation of Nox5 is PKC dependent, but this contention was based on the use of pharmacological inhibitors and the isoforms of PKC involved remain unknown. Thus, the major goals of this study were to determine whether PKC can directly regulate Nox5 phosphorylation and activity, to identify which isoforms are involved in the process, and to understand the functional significance of this pathway in disease. We found that a relatively specific PKCα inhibitor, Ro-32-0432, dose-dependently inhibited PMA-induced superoxide production from Nox5. PMA-stimulated Nox5 activity was significantly reduced in cells with genetic silencing of PKCα and PKCε, enhanced by loss of PKCδ and the silencing of PKCθ expression was without effect. A constitutively active form of PKCα robustly increased basal and PMA-stimulated Nox5 activity and promoted the phosphorylation of Nox5 on Ser490, Thr494, and Ser498. In contrast, constitutively active PKCε potently inhibited both basal and PMA-dependent Nox5 activity. Co-IP and in vitro kinase assay experiments demonstrated that PKCα directly binds to Nox5 and modifies Nox5 phosphorylation and activity. Exposure of endothelial cells to high glucose significantly increased PKCα activation, and enhanced Nox5 derived superoxide in a manner that was in prevented by a PKCα inhibitor, Go 6976. In summary, our study reveals that PKCα is the primary isoform mediating the activation of Nox5 and this maybe of significance in our understanding of the vascular complications of diabetes and other diseases with increased ROS production.
Collapse
|
12
|
Gonzales JN, Gorshkov B, Varn MN, Zemskova MA, Zemskov EA, Sridhar S, Lucas R, Verin AD. Protective effect of adenosine receptors against lipopolysaccharide-induced acute lung injury. Am J Physiol Lung Cell Mol Physiol 2014; 306:L497-507. [PMID: 24414256 DOI: 10.1152/ajplung.00086.2013] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Acute lung injury and acute respiratory distress syndrome (ALI/ARDS) affect 200,000 people a year in the USA. Pulmonary vascular and specifically endothelial cell (EC) barrier compromise is a hallmark of these diseases. We have recently shown that extracellular adenosine enhances human pulmonary (EC) barrier via activation of adenosine receptors (ARs) in cell cultures. On the basis of these data, we hypothesized that activation of ARs might exert barrier-protective effects in a model of ALI/ARDS in mice. To test this hypothesis, we examined the effects of pre- and posttreatment of adenosine and 5'-N-ethylcarboxamidoadenosine (NECA), a nonselective stable AR agonist, on LPS-induced lung injury. Mice were given vehicle or LPS intratracheally followed by adenosine, NECA, or vehicle instilled via the internal jugular vein. Postexperiment cell counts, Evans Blue Dye albumin (EBDA) extravasation, levels of proteins, and inflammatory cytokines were analyzed. Harvested lungs were used for histology and myeloperoxidase studies. Mice challenged with LPS alone demonstrated an inflammatory response typical of ALI. Cell counts, EBDA extravasation, as well as levels of proteins and inflammatory cytokines were decreased in adenosine-treated mice. Histology displayed reduced infiltration of neutrophils. NECA had a similar effect on LPS-induced vascular barrier compromise. Importantly, posttreatment with adenosine or NECA recovers lung vascular barrier and reduces inflammation induced by LPS challenge. Furthermore, adenosine significantly attenuated protein degradation of A2A and A3 receptors induced by LPS. Collectively, our results demonstrate that activation of ARs protects and restores vascular barrier functions and reduces inflammation in LPS-induced ALI.
Collapse
Affiliation(s)
- Joyce N Gonzales
- Assistant Prof. of Medicine, Div. of Pulmonary and Critical Care Medicine, Georgia Regents Univ., Rm. BBR-5513, 1120 15th St., Augusta, GA 30912.
| | | | | | | | | | | | | | | |
Collapse
|