1
|
Nickerson R, Thornton CS, Johnston B, Lee AHY, Cheng Z. Pseudomonas aeruginosa in chronic lung disease: untangling the dysregulated host immune response. Front Immunol 2024; 15:1405376. [PMID: 39015565 PMCID: PMC11250099 DOI: 10.3389/fimmu.2024.1405376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 06/14/2024] [Indexed: 07/18/2024] Open
Abstract
Pseudomonas aeruginosa is a highly adaptable opportunistic pathogen capable of exploiting barriers and immune defects to cause chronic lung infections in conditions such as cystic fibrosis. In these contexts, host immune responses are ineffective at clearing persistent bacterial infection, instead driving a cycle of inflammatory lung damage. This review outlines key components of the host immune response to chronic P. aeruginosa infection within the lung, beginning with initial pathogen recognition, followed by a robust yet maladaptive innate immune response, and an ineffective adaptive immune response that propagates lung damage while permitting bacterial persistence. Untangling the interplay between host immunity and chronic P. aeruginosa infection will allow for the development and refinement of strategies to modulate immune-associated lung damage and potentiate the immune system to combat chronic infection more effectively.
Collapse
Affiliation(s)
- Rhea Nickerson
- Department of Microbiology and Immunology, Faculty of Medicine, Dalhousie University, Halifax, NS, Canada
| | - Christina S. Thornton
- Department of Medicine, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
- Department of Microbiology, Immunology and Infectious Diseases, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Brent Johnston
- Department of Microbiology and Immunology, Faculty of Medicine, Dalhousie University, Halifax, NS, Canada
| | - Amy H. Y. Lee
- Department of Molecular Biology and Biochemistry, Faculty of Science, Simon Fraser University, Burnaby, BC, Canada
| | - Zhenyu Cheng
- Department of Microbiology and Immunology, Faculty of Medicine, Dalhousie University, Halifax, NS, Canada
| |
Collapse
|
2
|
Rusakiewicz S, Tyekucheva S, Tissot-Renaud S, Chaba K, Imbimbo M, Benedetti F, Kammler R, Hornfeld J, Munzone E, Gianni L, Thurlimann B, Láng I, Pruneri G, Gray KP, Regan MR, Loi S, Colleoni M, Viale G, Kandalaft L, Coukos G, Curigliano G. Multiplexed high-throughput immune cell imaging in patients with high-risk triple negative early breast cancer: Analysis from the International Breast Cancer Study Group (IBCSG) Trial 22-00. Eur J Cancer 2024; 200:113535. [PMID: 38309015 DOI: 10.1016/j.ejca.2024.113535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 12/29/2023] [Accepted: 01/04/2024] [Indexed: 02/05/2024]
Abstract
BACKGROUND Triple-negative breast cancer (TNBC) is the most aggressive breast cancer (BC) subtype, with dismal prognosis and limited option in advanced settings, yet stromal tumor infiltrating lymphocytes (sTILs) in this subtype has a predictive role. PATIENTS AND METHODS The International Breast Cancer Study Group (IBCSG) Trial 22-00 is a randomized phase III clinical trial testing the efficacy of low-dose metronomic oral Cyclophosphamide-Methotrexate (CM) maintenance following standard adjuvant chemotherapy treatment for early-stage hormone receptor-negative breast cancer patients. A case-cohort sampling was used. We characterized immune cells infiltrates in patients with TNBC by 6 plex immunofluorescence (IF) staining for CD4, FOXP3, CD3, cytokeratine and CD8 RESULTS: We confirmed that high immune CD3+ T cells as well as stromal and intra-epithelial Tregs (CD4+Foxp3+ T cells) infiltrates were associated with a better Distant Recurrence-Free Interval (DRFI), especially in LN+ patient, regardless of the treatment. More importantly, we showed that the spatial distribution of immune cells at baseline is crucial, as CM maintenance was detrimental for T cells excluded LN+ TNBC patients. CONCLUSIONS immune spatial classification on immune cells infiltrates seems crucial and could help patients' selection in clinical trial and greatly improve responses to specific therapies.
Collapse
Affiliation(s)
- S Rusakiewicz
- Department of Oncology, Lausanne University Hospital (CHUV), Lausanne, Switzerland; Center of Experimental Therapeutics, Department of Oncology, University Hospital of Lausanne, 1011 Lausanne, Switzerland; Ludwig Institute for Cancer Research, University of Lausanne, 1011 Lausanne, Switzerland
| | - S Tyekucheva
- International Breast Cancer Study Group Statistical Center, Department of Data Science, Dana-Farber Cancer Institute, Boston, MA, USA; Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - S Tissot-Renaud
- Department of Oncology, Lausanne University Hospital (CHUV), Lausanne, Switzerland; Center of Experimental Therapeutics, Department of Oncology, University Hospital of Lausanne, 1011 Lausanne, Switzerland; Ludwig Institute for Cancer Research, University of Lausanne, 1011 Lausanne, Switzerland
| | - K Chaba
- Department of Oncology, Lausanne University Hospital (CHUV), Lausanne, Switzerland; Center of Experimental Therapeutics, Department of Oncology, University Hospital of Lausanne, 1011 Lausanne, Switzerland; Ludwig Institute for Cancer Research, University of Lausanne, 1011 Lausanne, Switzerland
| | - M Imbimbo
- Department of Oncology, Lausanne University Hospital (CHUV), Lausanne, Switzerland
| | - F Benedetti
- Department of Oncology, Lausanne University Hospital (CHUV), Lausanne, Switzerland; Center of Experimental Therapeutics, Department of Oncology, University Hospital of Lausanne, 1011 Lausanne, Switzerland; Ludwig Institute for Cancer Research, University of Lausanne, 1011 Lausanne, Switzerland
| | - R Kammler
- Translational Research Coordination, International Breast Cancer Study Group, a division of ETOP IBCSG Partners Foundation, Bern, Switzerland
| | - J Hornfeld
- Department of Oncology, Lausanne University Hospital (CHUV), Lausanne, Switzerland; Center of Experimental Therapeutics, Department of Oncology, University Hospital of Lausanne, 1011 Lausanne, Switzerland; Ludwig Institute for Cancer Research, University of Lausanne, 1011 Lausanne, Switzerland
| | - E Munzone
- Division of Medical Senology, IEO, European Institute of Oncology, IRCCS, Milan, Italy
| | - L Gianni
- Department of Medical Oncology, Ospedale Infermi, AUSL Della Romagna, Rimini, Italy
| | - B Thurlimann
- Kantonsspital St. Gallen, St Gallen, Switzerland; Swiss Group for Clinical Cancer Research (SAKK), Bern, Switzerland
| | - I Láng
- Clinexpert-research, Budapest, Hungary
| | - G Pruneri
- Department of Advanced Diagnostics, Fondazione IRCCS Istituto Nazionale dei Tumori, Milano, Italy; University of Milan, School of Medicine, Milan, Italy
| | - K P Gray
- Division of General Pediatrics, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA; Biostatistics and Research Design Core, Institutional Centers of Clinical and Translational Research, Boston Children's Hospital, Boston, MA, USA
| | - M R Regan
- International Breast Cancer Study Group Statistical Center, Division of Biostatistics, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - S Loi
- Peter MacCallum Cancer Centre, Melbourne, VIC, Australia; Sir Peter MacCallum Cancer Department of Oncology, University of Melbourne, Melbourne, VIC, Australia; International Breast Cancer Study Group, a division of ETOP IBCSG Partners Foundation, Bern, Switzerland
| | - M Colleoni
- Division of Medical Senology, IEO, European Institute of Oncology, IRCCS, Milan, Italy; Department of Pathology and Laboratory Medicine, IEO, European Institute of Oncology, IRCCS, Milan, Italy
| | - G Viale
- Division of Medical Senology, IEO, European Institute of Oncology, IRCCS, Milan, Italy; Department of Pathology and Laboratory Medicine, IEO, European Institute of Oncology, IRCCS, Milan, Italy; European Institute of Oncology, IRCCS, Milan, Italy
| | - L Kandalaft
- Department of Oncology, Lausanne University Hospital (CHUV), Lausanne, Switzerland; Center of Experimental Therapeutics, Department of Oncology, University Hospital of Lausanne, 1011 Lausanne, Switzerland; Ludwig Institute for Cancer Research, University of Lausanne, 1011 Lausanne, Switzerland
| | - G Coukos
- Department of Oncology, Lausanne University Hospital (CHUV), Lausanne, Switzerland; Center of Experimental Therapeutics, Department of Oncology, University Hospital of Lausanne, 1011 Lausanne, Switzerland; Ludwig Institute for Cancer Research, University of Lausanne, 1011 Lausanne, Switzerland
| | - Giuseppe Curigliano
- European Institute of Oncology, IRCCS, Milan, Italy; Department of Oncology and Hemato-Oncology, University of Milano, Milan, Italy.
| |
Collapse
|
3
|
Westhölter D, Raspe J, Uebner H, Pipping J, Schmitz M, Straßburg S, Sutharsan S, Welsner M, Taube C, Reuter S. Regulatory T cell enhancement in adults with cystic fibrosis receiving Elexacaftor/Tezacaftor/Ivacaftor therapy. Front Immunol 2023; 14:1107437. [PMID: 36875141 PMCID: PMC9978140 DOI: 10.3389/fimmu.2023.1107437] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 01/31/2023] [Indexed: 02/18/2023] Open
Abstract
Introduction Cystic fibrosis (CF), especially CF lung disease, is characterized by chronic infection, immune dysfunction including impairment of regulatory T cells (Tregs) and an exaggerated inflammatory response. CF transmembrane conductance regulator (CFTR) modulators have shown to improve clinical outcomes in people with CF (PwCF) with a wide range of CFTR mutations. However, it remains unclear whether CFTR modulator therapy also affects CF-associated inflammation. We aimed to examine the effect of elexacaftor/tezacaftor/ivacaftor therapy on lymphocyte subsets and systemic cytokines in PwCF. Methods Peripheral blood mononuclear cells and plasma were collected before and at three and six months after the initiation of elexacaftor/tezacaftor/ivacaftor therapy; lymphocyte subsets and systemic cytokines were determined using flow cytometry. Results Elexacaftor/tezacaftor/ivacaftor treatment was initiated in 77 PwCF and improved percent predicted FEV1 by 12.5 points (p<0.001) at 3 months. During elexacaftor/tezacaftor/ivacaftor therapy, percentages of Tregs were enhanced (+18.7%, p<0.001), with an increased proportion of Tregs expressing CD39 as a marker of stability (+14.4%, p<0.001). Treg enhancement was more pronounced in PwCF clearing Pseudomonas aeruginosa infection. Only minor, non-significant shifts were observed among Th1-, Th2- and Th17-expressing effector T helper cells. These results were stable at 3- and 6-month follow-up. Cytokine measurements showed a significant decrease in interleukin-6 levels during treatment with elexacaftor/tezacaftor/ivacaftor (-50.2%, p<0.001). Conclusion Treatment with elexacaftor/tezacaftor/ivacaftor was associated with an increased percentage of Tregs, especially in PwCF clearing Pseudomonas aeruginosa infection. Targeting Treg homeostasis is a therapeutic option for PwCF with persistent Treg impairment.
Collapse
Affiliation(s)
- Dirk Westhölter
- Department of Pulmonary Medicine, University Hospital Essen- Ruhrlandklinik, Essen, Germany
| | - Jonas Raspe
- Department of Pulmonary Medicine, University Hospital Essen- Ruhrlandklinik, Essen, Germany
| | - Hendrik Uebner
- Department of Pulmonary Medicine, University Hospital Essen- Ruhrlandklinik, Essen, Germany
| | - Johannes Pipping
- Department of Pulmonary Medicine, University Hospital Essen- Ruhrlandklinik, Essen, Germany
| | - Mona Schmitz
- Department of Pulmonary Medicine, University Hospital Essen- Ruhrlandklinik, Essen, Germany
| | - Svenja Straßburg
- Adult Cystic Fibrosis Center, Department of Pulmonary Medicine, University Hospital Essen- Ruhrlandklinik, Essen, Germany
| | - Sivagurunathan Sutharsan
- Adult Cystic Fibrosis Center, Department of Pulmonary Medicine, University Hospital Essen- Ruhrlandklinik, Essen, Germany
| | - Matthias Welsner
- Adult Cystic Fibrosis Center, Department of Pulmonary Medicine, University Hospital Essen- Ruhrlandklinik, Essen, Germany
| | - Christian Taube
- Department of Pulmonary Medicine, University Hospital Essen- Ruhrlandklinik, Essen, Germany
| | - Sebastian Reuter
- Department of Pulmonary Medicine, University Hospital Essen- Ruhrlandklinik, Essen, Germany
| |
Collapse
|
4
|
Westhölter D, Beckert H, Straßburg S, Welsner M, Sutharsan S, Taube C, Reuter S. Pseudomonas aeruginosa infection, but not mono or dual-combination CFTR modulator therapy affects circulating regulatory T cells in an adult population with cystic fibrosis. J Cyst Fibros 2021; 20:1072-1079. [PMID: 34030985 DOI: 10.1016/j.jcf.2021.05.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 03/20/2021] [Accepted: 05/01/2021] [Indexed: 10/21/2022]
Abstract
BACKGROUND Chronic infection and an exaggerated inflammatory response are key drivers of the pathogenesis of cystic fibrosis (CF), especially CF lung disease. An imbalance of pro- and anti-inflammatory mediators, including dysregulated Th2/Th17 cells and impairment of regulatory T cells (Tregs), maintain CF inflammation. CF transmembrane conductance regulator (CFTR) modulator therapy might influence these immune cell abnormalities. METHODS Peripheral blood mononuclear cells and serum samples were collected from 108 patients with CF (PWCF) and 40 patients with non-CF bronchiectasis. Samples were analysed for peripheral blood lymphocytes subsets (Tregs; Th1-, Th1/17-, Th17- and Th2-effector cells) and systemic T helper cell-associated cytokines (interleukin [IL]-5, IL-13, IL-2, IL-6, IL-9, IL-10, IL-17A, IL-17F, IL-4, IL-22, interferon-γ, tumour necrosis factor-α) using flow cytometry. RESULTS 51% of PWCF received CFTR modulators (ivacaftor, ivacaftor/ lumacaftor or tezacaftor/ ivacaftor). There were no differences in proportions of analysed T cell subsets or cytokines between PWCF who were versus were not receiving CFTR modulators. Additional analysis revealed lower percentages of Tregs in PWCF and chronic pulmonary Pseudomonas aeruginosa infection; this difference was also present in PWCF treated with CFTR modulators. Patients with non-CF bronchiectasis tended to have higher percentages of Th2- and Th17-cells and higher levels of peripheral cytokines versus PWCF. CONCLUSIONS Chronic P. aeruginosa lung infection appears to impair Tregs in PWCF (independent of CFTR modulator therapy) but not those with non-CF bronchiectasis. Moreover, our data showed no statistically significant differences in major subsets of peripheral lymphocytes and cytokines among PWCF who were versus were not receiving CFTR modulators.
Collapse
Affiliation(s)
- Dirk Westhölter
- Department of Pulmonary Medicine, University Hospital Essen- Ruhrlandklinik, Essen, Germany.
| | - Hendrik Beckert
- Department of Pulmonary Medicine, University Hospital Essen- Ruhrlandklinik, Essen, Germany
| | - Svenja Straßburg
- Department of Pulmonary Medicine, University Hospital Essen- Ruhrlandklinik, Essen, Germany; Adult Cystic Fibrosis Center, Department of Pulmonary Medicine, University Hospital Essen - Ruhrlandklinik, Essen, Germany
| | - Matthias Welsner
- Department of Pulmonary Medicine, University Hospital Essen- Ruhrlandklinik, Essen, Germany; Adult Cystic Fibrosis Center, Department of Pulmonary Medicine, University Hospital Essen - Ruhrlandklinik, Essen, Germany
| | - Sivagurunathan Sutharsan
- Department of Pulmonary Medicine, University Hospital Essen- Ruhrlandklinik, Essen, Germany; Adult Cystic Fibrosis Center, Department of Pulmonary Medicine, University Hospital Essen - Ruhrlandklinik, Essen, Germany
| | - Christian Taube
- Department of Pulmonary Medicine, University Hospital Essen- Ruhrlandklinik, Essen, Germany
| | - Sebastian Reuter
- Department of Pulmonary Medicine, University Hospital Essen- Ruhrlandklinik, Essen, Germany
| |
Collapse
|
5
|
Chatterjee P, Sass G, Swietnicki W, Stevens DA. Review of Potential Pseudomonas Weaponry, Relevant to the Pseudomonas-Aspergillus Interplay, for the Mycology Community. J Fungi (Basel) 2020; 6:jof6020081. [PMID: 32517271 PMCID: PMC7345761 DOI: 10.3390/jof6020081] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 06/03/2020] [Accepted: 06/03/2020] [Indexed: 12/15/2022] Open
Abstract
Pseudomonas aeruginosa is one of the most prominent opportunistic bacteria in airways of cystic fibrosis patients and in immunocompromised patients. These bacteria share the same polymicrobial niche with other microbes, such as the opportunistic fungus Aspergillus fumigatus. Their inter-kingdom interactions and diverse exchange of secreted metabolites are responsible for how they both fare in competition for ecological niches. The outcomes of their contests likely determine persistent damage and degeneration of lung function. With a myriad of virulence factors and metabolites of promising antifungal activity, P. aeruginosa products or their derivatives may prove useful in prophylaxis and therapy against A. fumigatus. Quorum sensing underlies the primary virulence strategy of P. aeruginosa, which serves as cell–cell communication and ultimately leads to the production of multiple virulence factors. Understanding the quorum-sensing-related pathogenic mechanisms of P. aeruginosa is a first step for understanding intermicrobial competition. In this review, we provide a basic overview of some of the central virulence factors of P. aeruginosa that are regulated by quorum-sensing response pathways and briefly discuss the hitherto known antifungal properties of these virulence factors. This review also addresses the role of the bacterial secretion machinery regarding virulence factor secretion and maintenance of cell–cell communication.
Collapse
Affiliation(s)
- Paulami Chatterjee
- California Institute for Medical Research, San Jose, CA 95128, USA; (P.C.); (G.S.)
| | - Gabriele Sass
- California Institute for Medical Research, San Jose, CA 95128, USA; (P.C.); (G.S.)
| | - Wieslaw Swietnicki
- Department of Immunology of Infectious Diseases, Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, 50-114 Wroclaw, Poland;
| | - David A. Stevens
- California Institute for Medical Research, San Jose, CA 95128, USA; (P.C.); (G.S.)
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
- Correspondence: ; Tel.: +1-408-998-4554
| |
Collapse
|
6
|
Zhao Y, Dai X, Ji J, Cheng P. Bronchial lavage under fiberoptic bronchoscopy in the treatment of severe pulmonary infection. Pak J Med Sci 2020; 36:396-401. [PMID: 32292441 PMCID: PMC7150421 DOI: 10.12669/pjms.36.3.1539] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Objective: To investigate the clinical efficacy of bronchial lavage under fiberoptic bronchoscopy in the treatment of severe pulmonary infection. Methods: One hundred forty eight patients with severe pulmonary infection who were admitted to our hospital from October 2016 to December 2017 were included in this study. According to the random number table method, they were divided into a control group and an observation group with 79 patients each. The control group was given conventional treatment, while the observation group was given bronchoalveolar lavage with fiberoptic bronchoscopy on the basis of the treatment in the control group. The clinical efficacy of the two groups was compared, the duration of mechanical ventilation, antibiotic use and symptoms improvement of the two groups were recorded, and the respiratory mechanics parameters, serum procalcitonin (PCT) and transforming growth factor β (TGF-β) level were measured before and after treatment. Results: The duration of mechanical ventilation, antibiotic use, respiratory failure correction, body temperature decline and white blood cell recovery in the observation group were significantly shorter than those in the control group (P<0.05). The total efficacy of the observation group was significantly higher than that of the control group (92.4% vs. 74.7%). The respiratory mechanics parameters of the two groups after treatment were higher than those before treatment (P<0.05) and the increase of the observation group was more obvious than that of the control group (P<0.05). The serum PCT and TGF-β levels of the two groups after treatment were lower than those before treatment (P<0.05), and the decrease level in the observation group was more obvious (P<0.05). Conclusion: Bronchial lavage under fiberoptic bronchoscopy can improve the clinical efficacy, accelerate the improvement of clinical symptoms and respiratory mechanics parameters, significantly reduce the PCT and TGF-β levels, and promote the rapid recovery of patients in the treatment of severe pulmonary infection.
Collapse
Affiliation(s)
- Yuqin Zhao
- Yuqin Zhao, Emergency Intensive Care Unit, Binzhou People's Hospital, Shandong 256610, China
| | - Xuemei Dai
- Xuemei Dai, Health Management Center, Binzhou People's Hospital, Shandong 256610, China
| | - Jinzhi Ji
- Jinzhi Ji, Health Management Center, Binzhou People's Hospital, Shandong 256610, China
| | - Ping Cheng
- Ping Cheng, Emergency Intensive Care Unit, Binzhou People's Hospital, Shandong 256610, China
| |
Collapse
|
7
|
Weaver AJ, Brandenburg KS, Smith BW, Leung KP. Comparative Analysis of the Host Response in a Rat Model of Deep-Partial and Full-Thickness Burn Wounds With Pseudomonas aeruginosa Infection. Front Cell Infect Microbiol 2020; 9:466. [PMID: 31998665 PMCID: PMC6967395 DOI: 10.3389/fcimb.2019.00466] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Accepted: 12/17/2019] [Indexed: 12/12/2022] Open
Abstract
Burn wound injury affects soldiers and civilians alike, often resulting in a dynamic, but un-orchestrated, host response that can lead to infection, scarring, and potentially death. To mitigate these factors, it is important to have a clinically relevant model of burn wound infection that can be utilized for advancing burn wound treatments. Our previous reports have demonstrated the ability of Pseudomonas aeruginosa to generate a biofilm infection within a modified Walker-Mason rat burn model of deep-partial (DPT) and full-thickness (FT) burn wounds (10% total body surface area) in male Sprague-Dawley rats (350–450 g). Here, we further define this model with respect to the host response when challenged with P. aeruginosa infection between the two burn types. Following burn injury and immediate surface exposure to P. aeruginosa, inflammation at the local and systemic levels were monitored for an 11 days period. Compared to burn-only groups, infection with P. aeruginosa further promoted local inflammation in both DPT and FT burn wounds, which was evident by enhanced cellular influx (including neutrophils and monocytes), increased levels of several pro-inflammatory cytokines (IL-1β, IL-6, GRO/KC, andMIP-1α), and reduced IL-10. Systemically, only minor changes were seen in circulating white blood cells and cytokines; however, increases in high mobility group box-1 (HMGB-1) and hyaluronan, as well as decreases in fibronectin were noted particularly in FT burns. Compared to the burn-only group, P. aeruginosa infection resulted in sustained and/or higher levels of HMGB-1 and hyaluronan. Combined with our previous work that defined the burn depth and development of P. aeruginosa biofilms within the wound, this study further establishes this model by defining the host response to the burn and biofilm-infection. Furthermore, this characterization shows several similarities to what is clinically seen and establishes this model for future use in the development and testing of novel therapeutics for burn wound treatment at home and on the battlefield.
Collapse
Affiliation(s)
- Alan J Weaver
- Department of Dental and Craniofacial Trauma Research, United States Army Institute of Surgical Research, JBSA Fort Sam Houston, San Antonio, TX, United States
| | - Kenneth S Brandenburg
- Department of Dental and Craniofacial Trauma Research, United States Army Institute of Surgical Research, JBSA Fort Sam Houston, San Antonio, TX, United States
| | - Brian W Smith
- Research Support Division, United States Army Institute of Surgical Research, JBSA Fort Sam Houston, San Antonio, TX, United States
| | - Kai P Leung
- Department of Dental and Craniofacial Trauma Research, United States Army Institute of Surgical Research, JBSA Fort Sam Houston, San Antonio, TX, United States
| |
Collapse
|
8
|
Immunomodulatory Effects of Lactobacillus plantarum on Inflammatory Response Induced by Klebsiella pneumoniae. Infect Immun 2019; 87:IAI.00570-19. [PMID: 31481408 DOI: 10.1128/iai.00570-19] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 08/13/2019] [Indexed: 12/14/2022] Open
Abstract
Some respiratory infections have been associated with dysbiosis of the intestinal microbiota. The underlying mechanism is incompletely understood, but cross talk between the intestinal microbiota and local immune cells could influence the immune response at distal mucosal sites. This has led to the concept of enhancing respiratory defenses by modulating the intestinal microbiota with exogenous supplementation of beneficial strains. In this study, we examined the effect of Lactobacillus plantarum CIRM653 on the inflammatory response induced by the pathogen Klebsiella pneumoniae Oral administration of L. plantarum CIRM653 to mice subsequently infected by K. pneumoniae via the nasal route (i) reduced the pulmonary inflammation response, with decreased numbers of lung innate immune cells (macrophages and neutrophils) and cytokines (mouse keratinocyte-derived chemokine [KC], interleukin-6 [IL-6], and tumor necrosis factor alpha [TNF-α]) in the bronchoalveolar fluid, and (ii) induced an immunosuppressive Treg response in lungs. In vitro coincubation of L. plantarum CIRM653 and K. pneumoniae with human dendritic cells and peripheral blood mononuclear cells resulted in decreased Th1 (IL-12p70 and interferon gamma [IFN-γ]) and Th17 (IL-23 and IL-17) and increased Treg (IL-10) cytokine levels compared to those observed for K. pneumoniae-infected cells. Neither K. pneumoniae nor L. plantarum CIRM653 had any effect on cytokine production by intestinal epithelial cells in vitro, but the induction of the NF-κB pathway and IL-8 and IL-6 production by K. pneumoniae in airway epithelial cells was significantly reduced when the pathogen was coincubated with L. plantarum CIRM653. The remote IL-10-mediated modulation of the K. pneumoniae inflammatory response by L. plantarum CIRM653 supports the concept of immunomodulation by beneficial bacteria through the gut-lung axis.
Collapse
|
9
|
Xie C, Wen Y, Zhao Y, Zeng S, Guo Q, Liang Q, Chen L, Liu Y, Qiu F, Yang L, Lu J. Clinical Features of Patients with Bronchiectasis with Comorbid Chronic Obstructive Pulmonary Disease in China. Med Sci Monit 2019; 25:6805-6811. [PMID: 31503552 PMCID: PMC6752100 DOI: 10.12659/msm.917034] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Background The prevalence of bronchiectasis with comorbid chronic obstructive pulmonary disease (COPD) is rising, which causes extremely high risk of exacerbation and mortality. We aimed to evaluate the differences in clinicopathological manifestations, immune function, and inflammation in bronchiectasis patients with comorbid COPD vs. patients who only have COPD. Material/Methods Clinicopathological characteristics, including common potentially pathogenic microorganisms, lung function, immune function, and inflammation were assessed in bronchiectasis patients with comorbid COPD and in patients who only had COPD. Results Compared to patients who only had COPD, patients with bronchiectasis with comorbid COPD had a higher positive rate of sputum bacteria (45.27% vs. 28.03%, P<0.01). Among them, Pseudomonas aeruginosa (P. aeruginosa) accounted for 25.19% in COPD (4.37%) (P<0.01). Likewise, patients with bronchiectasis with comorbid COPD had worse lung function, worse COPD assessment test scores, and worse Modified Medical Research Council scores. Moreover, compared with COPD only cases, patients with bronchiectasis with comorbid COPD had higher levels of white blood cells (WBC), neutrophils, C-reactive protein (CRP), and procalcitonin (PCT) (all P<0.05). Interestingly, the expression levels of Treg in patients with bronchiectasis with comorbid COPD were lower than in patients with COPD only (P<0.05). Th17 and Th17/Treg levels were higher (P<0.05). Furthermore, remarkable increased level of IL17 and IL-6 and decreased level of IL-10 and TGF-β were observed in the bronchiectasis combined COPD than in pure COPD (All P<0.05). Conclusions Our findings suggest that P. aeruginosa is the main pathogen of bacterial infection in bronchiectasis patients with comorbid COPD. These patients have more serious clinical manifestations and immune imbalance, which should be considered when providing clinical treatment.
Collapse
Affiliation(s)
- Chenli Xie
- Fifth People's Hospital of Dongguan, Dongguan, Guangdong, China (mainland)
| | - Yongtao Wen
- Fifth People's Hospital of Dongguan, Dongguan, Guangdong, China (mainland)
| | - Yiju Zhao
- Fifth People's Hospital of Dongguan, Dongguan, Guangdong, China (mainland)
| | - Sufen Zeng
- Fifth People's Hospital of Dongguan, Dongguan, Guangdong, China (mainland)
| | - Qingling Guo
- Fifth People's Hospital of Dongguan, Dongguan, Guangdong, China (mainland)
| | - Qiuting Liang
- Fifth People's Hospital of Dongguan, Dongguan, Guangdong, China (mainland)
| | - Lichong Chen
- Fifth People's Hospital of Dongguan, Dongguan, Guangdong, China (mainland)
| | - Yuanbin Liu
- Fifth People's Hospital of Dongguan, Dongguan, Guangdong, China (mainland)
| | - Fuman Qiu
- State Key Lab of Respiratory Disease, The Institute for Chemical Carcinogenesis, Collaborative Innovation Center for Environmental Toxicity, Guangzhou Medical University, Guangzhou, Guangdong, China (mainland)
| | - Lei Yang
- State Key Lab of Respiratory Disease, The Institute for Chemical Carcinogenesis, Collaborative Innovation Center for Environmental Toxicity, Guangzhou Medical University, Guangzhou, Guangdong, China (mainland)
| | - Jiachun Lu
- State Key Lab of Respiratory Disease, The Institute for Chemical Carcinogenesis, Collaborative Innovation Center for Environmental Toxicity, Guangzhou Medical University, Guangzhou, Guangdong, China (mainland)
| |
Collapse
|
10
|
Chen W, Lian J, Ye JJ, Mo QF, Qin J, Hong GL, Chen LW, Zhi SC, Zhao GJ, Lu ZQ. Ethyl pyruvate reverses development of Pseudomonas aeruginosa pneumonia during sepsis-induced immunosuppression. Int Immunopharmacol 2017; 52:61-69. [PMID: 28863323 DOI: 10.1016/j.intimp.2017.08.024] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Revised: 08/08/2017] [Accepted: 08/25/2017] [Indexed: 11/16/2022]
Abstract
Sepsis is characterized by an innate immune response and the following immune dysfunction which can increase the emergence of secondary infections. Ethyl pyruvate (EP) has multiple immunoregulation functions in several serious illnesses, such as burn injury, severe sepsis and acute respiratory syndrome. However, little data was shown the effect of EP administration on immunosuppression post-CLP and the following secondary infection. The cecal ligation and puncture (CLP) followed by the induction of Pseudomonas aeruginosa (PA) was used as a clinically relevant two-hit model of sepsis. We assessed the survival rate, lung damage and lung bacterial clearance in vehicle or EP treatment group to demonstrate the lung response to Pseudomonas aeruginosa of septic mice. Then cytokines including lung IL-6, IL-1β, IL-10 and plasma HMGB1, apoptosis of splenic immune cells and Foxp3 level on regulatory T cells (Tregs) were studied to demonstrate the mechanisms of EP administration on two-hit mice. We found that the susceptibility of septic mice to Secondary Pseudomonas aeruginosa pneumonia could be down-regulated by ethyl pyruvate treatment and the protective effects of EP may via decreasing lung IL-10 and plasma HMGB1 expression, inhibiting the function of Tregs and relieving the apoptosis of splenic immune cells. The "immune paralysis" post-sepsis still remains a rigorous challenge for curing sepsis, our study may aid in the development of new therapeutic strategies to this problem.
Collapse
Affiliation(s)
- Wei Chen
- Emergency Department, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China; Wenzhou Key Laboratory of Emergency, Critical care, and Disaster Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China; Emergency Department, The People's Hospital of Yueqing City, Yueqing 325600, China
| | - Jie Lian
- Emergency Department, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China; Wenzhou Key Laboratory of Emergency, Critical care, and Disaster Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Jing-Jing Ye
- Emergency Department, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China; Wenzhou Key Laboratory of Emergency, Critical care, and Disaster Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Qing-Fei Mo
- Emergency Department, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China; Wenzhou Key Laboratory of Emergency, Critical care, and Disaster Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Jie Qin
- Emergency Department, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China; Wenzhou Key Laboratory of Emergency, Critical care, and Disaster Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Guang-Liang Hong
- Emergency Department, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China; Wenzhou Key Laboratory of Emergency, Critical care, and Disaster Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Long-Wang Chen
- Emergency Department, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China; Wenzhou Key Laboratory of Emergency, Critical care, and Disaster Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Shao-Ce Zhi
- Emergency Department, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China; Wenzhou Key Laboratory of Emergency, Critical care, and Disaster Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Guang-Ju Zhao
- Emergency Department, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China; Wenzhou Key Laboratory of Emergency, Critical care, and Disaster Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China.
| | - Zhong-Qiu Lu
- Emergency Department, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China; Wenzhou Key Laboratory of Emergency, Critical care, and Disaster Medicine, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China; College of Nursing, Wenzhou Medical University, Wenzhou 325000, China.
| |
Collapse
|
11
|
Regulatory T cell activity in immunosuppresive mice model of pseudomonas aeruginosa pneumonia. ACTA ACUST UNITED AC 2017; 37:505-509. [PMID: 28786066 DOI: 10.1007/s11596-017-1764-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Revised: 05/30/2017] [Indexed: 02/08/2023]
Abstract
Pseudomonas aeruginosa (PA) pneumonia is a refractory, even lethal complication in immunosuppressive individuals and immune disturbances may promote the pathological process. We aimed to investigate the regulatory T (Treg) cell activity in an immunosuppressive mice model of PA pneumonia by estimating levels of main transcription factor and the main effector of Treg cells, i.e., Forkhead box protein 3 (FOXP3) and interleukine-10 (IL-10). Seventy-two BALB/c mice were divided into four groups randomly: control (A), PA pneumonia (B), immunosuppression (C) and immunosuppression with PA pneumonia (D). Mice were sacrificed at 4, 8 and 24 h after establishing experimental models. The pathological changes of lung tissue were graded, and the FOXP3 mRNA and serum IL-10 levels were detected. Histological analysis of lung tissues showed there were no significantly pathological changes in groups A and C, but significantly pathological changes were found in groups B and D, especially in group D at 8 h (P<0.05). The expression levels of FOXP3 mRNA in groups A and C showed no significant changes at the three time points, which were significantly lower than those in groups B and D (P<0.05). FOXP3 mRNA levels were lowest at 4 h, and there was significant difference between groups B and D (P<0.05). The serum levels of IL-10 in groups A and C were almost normal at the three time points, but decreased significantly in groups B and D (P<0.05). The serum levels of IL-10 decreased to the lowest at 8 h, especially in group D (P<0.05). The results indicate that PA pneumonia in immunosuppressive individuals worsens rapidly, which may be associated with Treg cells function disturbance. And Treg cells may be promising as adjuvant therapeutics for PA pneumonia in immunosuppressive individuals.
Collapse
|
12
|
Song C, Li H, Zhang Y, Yu J. Effects of Pseudomonas aeruginosa and Streptococcus mitis mixed infection on TLR4-mediated immune response in acute pneumonia mouse model. BMC Microbiol 2017; 17:82. [PMID: 28376744 PMCID: PMC5381141 DOI: 10.1186/s12866-017-0999-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Accepted: 04/01/2017] [Indexed: 02/06/2023] Open
Abstract
Background Our previous research on the diversity of microbiota in the endotracheal tubes (ETTs) of neonates in the neonatal intensive care unit found that Pseudomonas aeruginosa (P. aeruginosa) and Streptococcus mitis (S. mitis) were the dominant bacteria on the ETT surface and the existence of S. mitis could promote biofilm formation and pathogenicity of P. aeruginosa. Toll-like receptor 4 (TLR4), which has been widely detected on the surface of airway epithelial cells, is the important component of the innate immune system. Therefore, we hypothesized that the co-existence of these two bacteria might impact the host immune system through TLR4 signaling. Results S. mitis rarely caused inflammation, whereas P. aeruginosa caused the most severe inflammation accompanied by increases in the number of inflammatory cells, interleukin (IL)-6 and tumor necrosis factor (TNF)-α expression, and total cell counts in BALF (p < 0.05). In the PAO1 + S. mitis group, moderate inflammation, reduced IL-6 and TNF-α protein levels, and decreased total cell counts were observed. Additionally, levels of these indicators were decreased lower in TLR4-deficient mice than in wild-type mice (p < 0.05). Conclusions Our results demonstrated that infection with S. mitis together with P. aeruginosa could alleviate lung inflammation in acute lung infection mouse models possibly via the TLR4 signaling pathway.
Collapse
Affiliation(s)
- Chao Song
- Department of Neonatology, Children's Hospital of Chongqing Medical University, Chongqing, China.,Ministry of Education Key Laboratory of Child Development and Disorders - Chongqing Key Laboratory of Pediatrics, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing, China
| | - Hongdong Li
- Department of Neonatology, Children's Hospital of Chongqing Medical University, Chongqing, China.,Ministry of Education Key Laboratory of Child Development and Disorders - Chongqing Key Laboratory of Pediatrics, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing, China
| | - Yunhui Zhang
- Department of Neonatology, Children's Hospital of Chongqing Medical University, Chongqing, China.,Ministry of Education Key Laboratory of Child Development and Disorders - Chongqing Key Laboratory of Pediatrics, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing, China
| | - Jialin Yu
- Department of Neonatology, Children's Hospital of Chongqing Medical University, Chongqing, China. .,Ministry of Education Key Laboratory of Child Development and Disorders - Chongqing Key Laboratory of Pediatrics, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing, China.
| |
Collapse
|
13
|
Lin CK, Kazmierczak BI. Inflammation: A Double-Edged Sword in the Response to Pseudomonas aeruginosa Infection. J Innate Immun 2017; 9:250-261. [PMID: 28222444 DOI: 10.1159/000455857] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Accepted: 01/05/2017] [Indexed: 12/22/2022] Open
Abstract
The Gram-negative opportunistic pathogen Pseudomonas aeruginosa exploits failures of barrier defense and innate immunity to cause acute infections at a range of anatomic sites. We review the defense mechanisms that normally protect against P. aeruginosa pulmonary infection, as well as the bacterial products and activities that trigger their activation. Innate immune recognition of P. aeruginosa is critical for pathogen clearance; nonetheless, inflammation is also associated with pathogen persistence and poor host outcomes. We describe P. aeruginosa adaptations that improve this pathogen's fitness in the inflamed airway, and briefly discuss strategies to manipulate inflammation to benefit the host. Such adjunct therapies may become increasingly important in the treatment of acute and chronic infections caused by this multi-drug-resistant pathogen.
Collapse
|
14
|
Effects of Quorum Sensing Systems on Regulatory T Cells in Catheter-Related Pseudomonas aeruginosa Biofilm Infection Rat Models. Mediators Inflamm 2016; 2016:4012912. [PMID: 27069314 PMCID: PMC4812362 DOI: 10.1155/2016/4012912] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Accepted: 02/23/2016] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Quorum sensing (QS) systems play an important role in modulating biofilm formation. Recent studies have found that the QS molecules had complex effects on the host immune systems. In addition, regulatory T cells (Tregs), known as important negative regulators in the immune system, have been found upregulated in multiple chronic infections. Therefore, the QS systems were hypothesized to be involved in modulating Tregs in biofilm-associated infections. Object. To explore the effects of QS systems on Tregs in catheter-related Pseudomonas aeruginosa biofilm infection rat models. METHOD Catheter-related Pseudomonas aeruginosa biofilm infection rat models were established; the bacterial clearance rates, total cell counts in bronchoalveolar lavage (BAL) fluid, pathological changes of lungs, and the levels of Foxp3, TGF-β1, and IL-10 in PAO1 strain group were examined and compared with the QS-mutant ΔlasRΔrhlR and ΔlasIΔrhlI groups. RESULTS In PAO1 group, the bacterial clearance rates were lower, total cell counts were higher, pathological changes were severer, and the levels of Foxp3, TGF-β1, and IL-10 were significantly higher compared with QS-mutant groups (p < 0.05). No significant difference was observed between the two QS-mutant groups (p > 0.05). CONCLUSION QS systems can trigger host immune system, accompanied with the upregulation of Tregs.
Collapse
|
15
|
Wang Z, Xiang Q, Yang T, Li L, Yang J, Li H, He Y, Zhang Y, Lu Q, Yu J. Autoinducer-2 of Streptococcus mitis as a Target Molecule to Inhibit Pathogenic Multi-Species Biofilm Formation In Vitro and in an Endotracheal Intubation Rat Model. Front Microbiol 2016; 7:88. [PMID: 26903968 PMCID: PMC4744849 DOI: 10.3389/fmicb.2016.00088] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Accepted: 01/18/2016] [Indexed: 11/13/2022] Open
Abstract
Streptococcus mitis (S. mitis) and Pseudomonas aeruginosa (P. aeruginosa) are typically found in the upper respiratory tract of infants. We previously found that P. aeruginosa and S. mitis were two of the most common bacteria in biofilms on newborns' endotracheal tubes (ETTs) and in their sputa and that S. mitis was able to produce autoinducer-2 (AI-2), whereas P. aeruginosa was not. Recently, we also found that exogenous AI-2 and S. mitis could influence the behaviors of P. aeruginosa. We hypothesized that S. mitis contributes to this interspecies interaction and that inhibition of AI-2 could result in inhibition of these effects. To test this hypothesis, we selected PAO1 as a representative model strain of P. aeruginosa and evaluated the effect of S. mitis as well as an AI-2 analog (D-ribose) on mono- and co-culture biofilms in both in vitro and in vivo models. In this context, S. mitis promoted PAO1 biofilm formation and pathogenicity. Dual-species (PAO1 and S. mitis) biofilms exhibited higher expression of quorum sensing genes than single-species (PAO1) biofilms did. Additionally, ETTs covered in dual-species biofilms increased the mortality rate and aggravated lung infection compared with ETTs covered in mono-species biofilms in an endotracheal intubation rat model, all of which was inhibited by D-ribose. Our results demonstrated that S. mitis AI-2 plays an important role in interspecies interactions with PAO1 and may be a target for inhibition of biofilm formation and infection in ventilator-associated pneumonia.
Collapse
Affiliation(s)
- Zhengli Wang
- Department of Neonatology, Children's Hospital of Chongqing Medical UniversityChongqing, China; Ministry of Education Key Laboratory of Child Development and Disorders - Chongqing Key Laboratory of Pediatrics - China International Science and Technology Cooperation Base of Child Development and Critical DisordersChongqing, China
| | - Qingqing Xiang
- Department of Neonatology, Children's Hospital of Chongqing Medical UniversityChongqing, China; Ministry of Education Key Laboratory of Child Development and Disorders - Chongqing Key Laboratory of Pediatrics - China International Science and Technology Cooperation Base of Child Development and Critical DisordersChongqing, China
| | - Ting Yang
- Ministry of Education Key Laboratory of Child Development and Disorders - Chongqing Key Laboratory of Pediatrics - China International Science and Technology Cooperation Base of Child Development and Critical Disorders Chongqing, China
| | - Luquan Li
- Department of Neonatology, Children's Hospital of Chongqing Medical UniversityChongqing, China; Ministry of Education Key Laboratory of Child Development and Disorders - Chongqing Key Laboratory of Pediatrics - China International Science and Technology Cooperation Base of Child Development and Critical DisordersChongqing, China
| | - Jingli Yang
- Department of Neonatology, Children's Hospital of Chongqing Medical UniversityChongqing, China; Ministry of Education Key Laboratory of Child Development and Disorders - Chongqing Key Laboratory of Pediatrics - China International Science and Technology Cooperation Base of Child Development and Critical DisordersChongqing, China
| | - Hongong Li
- Department of Neonatology, Children's Hospital of Chongqing Medical UniversityChongqing, China; Ministry of Education Key Laboratory of Child Development and Disorders - Chongqing Key Laboratory of Pediatrics - China International Science and Technology Cooperation Base of Child Development and Critical DisordersChongqing, China
| | - Yu He
- Department of Neonatology, Children's Hospital of Chongqing Medical UniversityChongqing, China; Ministry of Education Key Laboratory of Child Development and Disorders - Chongqing Key Laboratory of Pediatrics - China International Science and Technology Cooperation Base of Child Development and Critical DisordersChongqing, China
| | - Yunhui Zhang
- Department of Neonatology, Children's Hospital of Chongqing Medical UniversityChongqing, China; Ministry of Education Key Laboratory of Child Development and Disorders - Chongqing Key Laboratory of Pediatrics - China International Science and Technology Cooperation Base of Child Development and Critical DisordersChongqing, China
| | - Qi Lu
- Department of Neonatology, Children's Hospital of Chongqing Medical UniversityChongqing, China; Ministry of Education Key Laboratory of Child Development and Disorders - Chongqing Key Laboratory of Pediatrics - China International Science and Technology Cooperation Base of Child Development and Critical DisordersChongqing, China
| | - Jialin Yu
- Department of Neonatology, Children's Hospital of Chongqing Medical UniversityChongqing, China; Ministry of Education Key Laboratory of Child Development and Disorders - Chongqing Key Laboratory of Pediatrics - China International Science and Technology Cooperation Base of Child Development and Critical DisordersChongqing, China
| |
Collapse
|