1
|
Sato H, Kato A, Adachi H, Takahashi K, Arai H, Ito M, Namba F, Takahashi T. High oxygen exposure's impact on newborn mice: Temporal changes observed via micro-computed tomography. Exp Lung Res 2024; 50:127-135. [PMID: 38973401 DOI: 10.1080/01902148.2024.2375099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 06/26/2024] [Indexed: 07/09/2024]
Abstract
INTRODUCTION Bronchopulmonary dysplasia (BPD) impacts life expectancy and long-term quality of life. Currently, BPD mouse models exposed to high oxygen are frequently used, but to reevaluate their relevance to human BPD, we attempted an assessment using micro-computed tomography (µCT). METHODS Newborn wildtype male mice underwent either 21% or 95% oxygen exposure for 4 days, followed until 8 wk. Weekly µCT scans and lung histological evaluations were performed independently. RESULTS Neonatal hyperoxia for 4 days hindered lung development, causing alveolar expansion and simplification. Histologically, during the first postnatal week, the exposed group showed a longer mean linear intercept, enlarged alveolar area, and a decrease in alveolar number, diminishing by week 4. Weekly µCT scans supported these findings, revealing initially lower lung density in newborn mice, increasing with age. However, the high-oxygen group displayed higher lung density initially. This difference diminished over time, with no significant contrast to controls at 3 wk. Although no significant difference in total lung volume was observed at week 1, the high-oxygen group exhibited a decrease by week 2, persisting until 8 wk. CONCLUSION This study highlights µCT-detected changes in mice exposed to high oxygen. BPD mouse models might follow a different recovery trajectory than humans, suggesting the need for further optimization.
Collapse
Affiliation(s)
- Himeko Sato
- Department of Pediatrics, Akita University Graduate School of Medicine, Akita City, Japan
| | - Akie Kato
- Department of Pediatrics, Akita University Graduate School of Medicine, Akita City, Japan
| | - Hiroyuki Adachi
- Department of Pediatrics, Akita University Graduate School of Medicine, Akita City, Japan
| | - Kiichi Takahashi
- Department of Neonatology, Akita Red Cross Hospital, Akita City, Japan
| | - Hirokazu Arai
- Department of Neonatology, Akita Red Cross Hospital, Akita City, Japan
| | - Masato Ito
- Department of Pediatrics, Akita University Graduate School of Medicine, Akita City, Japan
| | - Fumihiko Namba
- Department of Pediatrics, Saitama Medical Center, Saitama Medical University, Kawagoe City, Japan
| | - Tsutomu Takahashi
- Department of Pediatrics, Akita University Graduate School of Medicine, Akita City, Japan
| |
Collapse
|
2
|
Hagan JL. Estimation of the causal effect of sex on neonatal intensive care unit outcomes among very low birth weight infants. J Perinatol 2024; 44:844-850. [PMID: 38710836 DOI: 10.1038/s41372-024-01989-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 04/23/2024] [Accepted: 04/25/2024] [Indexed: 05/08/2024]
Abstract
OBJECTIVE Estimate the causal effect of sex on outcomes in the neonatal intensive care unit (NICU) among very low birth weight (VLBW) infants. STUDY DESIGN Retrospective cohort study using Vermont Oxford Network data to compare NICU outcomes for VLBW males versus females. Odds ratios (OR) for outcomes that differed significantly by sex were computed using standard unweighted analysis and inverse probability weighted (IPW) analysis to correct for selection bias. RESULTS Using standard analysis, males were significantly more likely to die before discharge and experience six other adverse outcomes. From IPW analysis, male sex caused a 56% increase in the odds of death before discharge (OR = 1.56, 95% confidence interval: 1.18-1.94). Standard unweighted results were significantly biased towards increased risk of adverse outcomes for males (p = 0.005) compared to IPW results for which three outcomes were no longer significantly associated with male sex. CONCLUSION Standard statistical methods generally overestimate the casual effect of sex among VLBW infants.
Collapse
Affiliation(s)
- Joseph L Hagan
- Baylor College of Medicine, Department of Pediatrics, Section of Neonatology, Houston, TX, USA.
| |
Collapse
|
3
|
Grimm SL, Dong X, Zhang Y, Carisey AF, Arnold AP, Moorthy B, Coarfa C, Lingappan K. Effect of sex chromosomes versus hormones in neonatal lung injury. JCI Insight 2021; 6:e146863. [PMID: 34061778 PMCID: PMC8410054 DOI: 10.1172/jci.insight.146863] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 05/27/2021] [Indexed: 12/20/2022] Open
Abstract
The main mechanisms underlying sexually dimorphic outcomes in neonatal lung injury are unknown. We tested the hypothesis that hormone- or sex chromosome–mediated mechanisms interact with hyperoxia exposure to impact injury and repair in the neonatal lung. To distinguish sex differences caused by gonadal hormones versus sex chromosome complement (XX versus XY), we used the Four Core Genotypes (FCG) mice and exposed them to hyperoxia (95% FiO2, P1–P4: saccular stage) or room air. This model generates XX and XY mice that each have either testes (with Sry, XXM, or XYM) or ovaries (without Sry, XXF, or XYF). Lung alveolarization and vascular development were more severely impacted in XYM and XYF compared with XXF and XXM mice. Cell cycle–related pathways were enriched in the gonadal or chromosomal females, while muscle-related pathways were enriched in the gonadal males, and immune-response–related pathways were enriched in chromosomal males. Female gene signatures showed a negative correlation with human patients who developed bronchopulmonary dysplasia (BPD) or needed oxygen therapy at 28 days. These results demonstrate that chromosomal sex — and not gonadal sex — impacted the response to neonatal hyperoxia exposure. The female sex chromosomal complement was protective and could mediate sex-specific differences in the neonatal lung injury.
Collapse
Affiliation(s)
- Sandra L Grimm
- Molecular and Cellular Biology Department.,Center for Precision Environmental Health, and
| | - Xiaoyu Dong
- Department of Pediatrics, Texas Children's Hospital, Baylor College of Medicine, Houston, Texas, USA
| | - Yuhao Zhang
- Department of Pediatrics, Texas Children's Hospital, Baylor College of Medicine, Houston, Texas, USA
| | - Alexandre F Carisey
- Department of Pediatrics, Texas Children's Hospital, Baylor College of Medicine, Houston, Texas, USA
| | - Arthur P Arnold
- Integrative Biology and Physiology, University of California, Los Angeles, California, USA
| | - Bhagavatula Moorthy
- Department of Pediatrics, Texas Children's Hospital, Baylor College of Medicine, Houston, Texas, USA
| | - Cristian Coarfa
- Molecular and Cellular Biology Department.,Center for Precision Environmental Health, and.,Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, Texas, USA
| | - Krithika Lingappan
- Department of Pediatrics, Texas Children's Hospital, Baylor College of Medicine, Houston, Texas, USA
| |
Collapse
|
4
|
Namba F. An experimental animal model of bronchopulmonary dysplasia: Secondary publication. Pediatr Int 2021; 63:504-509. [PMID: 33465831 DOI: 10.1111/ped.14612] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 01/06/2021] [Accepted: 01/15/2021] [Indexed: 12/19/2022]
Abstract
Bronchopulmonary dysplasia (BPD) is a serious complication of preterm delivery and low birthweight infants. The incidence of BPD has not decreased, and there is no effective treatment for the disease. Since the survival rate of premature infants has increased, it has become difficult to obtain pathological tissue samples from BPD death cases. There is also no in vitro experimental system for complex three-dimensional structures, such as alveolarization and pulmonary angiogenesis; thus, the use of animal models is necessary to elucidate the pathology of BPD and develop new treatments. To date, BPD animal models were being developed by exposing immature animal lungs to various stimuli. In the present review, I summarize BPD animal models that use (i) highly concentrated oxygen, (ii) mechanical ventilation, and (iii) infection/inflammation. In addition, with mesenchymal stromal cell (MSC) therapy for BPD as an example, I will discuss the expectations for new treatments that would be applied from animal models to humans.
Collapse
Affiliation(s)
- Fumihiko Namba
- Department of Pediatrics, Saitama Medical Center, Saitama Medical University, Kawagoe, Japan
| |
Collapse
|
5
|
Gong J, Feng Z, Peterson AL, Carr JF, Vang A, Braza J, Choudhary G, Dennery PA, Yao H. Endothelial to mesenchymal transition during neonatal hyperoxia-induced pulmonary hypertension. J Pathol 2020; 252:411-422. [PMID: 32815166 DOI: 10.1002/path.5534] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 08/04/2020] [Accepted: 08/11/2020] [Indexed: 12/19/2022]
Abstract
Bronchopulmonary dysplasia (BPD), a chronic lung disease in premature infants, results from mechanical ventilation and hyperoxia, amongst other factors. Although most BPD survivors can be weaned from supplemental oxygen, many show evidence of cardiovascular sequelae in adulthood, including pulmonary hypertension and pulmonary vascular remodeling. Endothelial-mesenchymal transition (EndoMT) plays an important role in mediating vascular remodeling in idiopathic pulmonary arterial hypertension. Whether hyperoxic exposure, a known mediator of BPD in rodent models, causes EndoMT resulting in vascular remodeling and pulmonary hypertension remains unclear. We hypothesized that neonatal hyperoxic exposure causes EndoMT, leading to the development of pulmonary hypertension in adulthood. To test this hypothesis, newborn mice were exposed to hyperoxia and then allowed to recover in room air until adulthood. Neonatal hyperoxic exposure gradually caused pulmonary vascular and right ventricle remodeling as well as pulmonary hypertension. Male mice were more susceptible to developing pulmonary hypertension compared to female mice, when exposed to hyperoxia as newborns. Hyperoxic exposure induced EndoMT in mouse lungs as well as in cultured lung microvascular endothelial cells (LMVECs) isolated from neonatal mice and human fetal donors. This was augmented in cultured LMVECs from male donors compared to those from female donors. Using primary mouse LMVECs, hyperoxic exposure increased phosphorylation of both Smad2 and Smad3, but reduced Smad7 protein levels. Treatment with a selective TGF-β inhibitor SB431542 blocked hyperoxia-induced EndoMT in vitro. Altogether, we show that neonatal hyperoxic exposure caused vascular remodeling and pulmonary hypertension in adulthood. This was associated with increased EndoMT. These novel observations provide mechanisms underlying hyperoxia-induced vascular remodeling and potential approaches to prevent BPD-associated pulmonary hypertension by targeting EndoMT. © 2020 The Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Jiannan Gong
- Department of Molecular Biology, Cell Biology & Biochemistry, Division of Biology and Medicine, Brown University, Providence, RI, USA.,Department of Respiratory and Critical Care Medicine, Second Hospital of Shanxi Medical University, Shanxi Medical University, Taiyuan, PR China
| | - Zihang Feng
- Department of Molecular Biology, Cell Biology & Biochemistry, Division of Biology and Medicine, Brown University, Providence, RI, USA
| | - Abigail L Peterson
- Department of Molecular Biology, Cell Biology & Biochemistry, Division of Biology and Medicine, Brown University, Providence, RI, USA
| | - Jennifer F Carr
- Department of Molecular Biology, Cell Biology & Biochemistry, Division of Biology and Medicine, Brown University, Providence, RI, USA
| | - Alexander Vang
- Vascular Research Laboratory, Providence VA Medical Center, Providence, RI, USA
| | - Julie Braza
- Vascular Research Laboratory, Providence VA Medical Center, Providence, RI, USA
| | - Gaurav Choudhary
- Vascular Research Laboratory, Providence VA Medical Center, Providence, RI, USA.,Department of Medicine, Warren Alpert Medical School of Brown University, Providence, RI, USA
| | - Phyllis A Dennery
- Department of Molecular Biology, Cell Biology & Biochemistry, Division of Biology and Medicine, Brown University, Providence, RI, USA.,Department of Pediatrics, Warren Alpert Medical School of Brown University, Providence, RI, USA
| | - Hongwei Yao
- Department of Molecular Biology, Cell Biology & Biochemistry, Division of Biology and Medicine, Brown University, Providence, RI, USA
| |
Collapse
|
6
|
Ubags NDJ, Alejandre Alcazar MA, Kallapur SG, Knapp S, Lanone S, Lloyd CM, Morty RE, Pattaroni C, Reynaert NL, Rottier RJ, Smits HH, de Steenhuijsen Piters WAA, Strickland DH, Collins JJP. Early origins of lung disease: towards an interdisciplinary approach. Eur Respir Rev 2020; 29:29/157/200191. [PMID: 33004528 DOI: 10.1183/16000617.0191-2020] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Accepted: 08/18/2020] [Indexed: 12/27/2022] Open
Abstract
The prenatal and perinatal environments can have profound effects on the development of chronic inflammatory diseases. However, mechanistic insight into how the early-life microenvironment can impact upon development of the lung and immune system and consequent initiation and progression of respiratory diseases is still emerging. Recent studies investigating the developmental origins of lung diseases have started to delineate the effects of early-life changes in the lung, environmental exposures and immune maturation on the development of childhood and adult lung diseases. While the influencing factors have been described and studied in mostly animal models, it remains challenging to pinpoint exactly which factors and at which time point are detrimental in lung development leading to respiratory disease later in life. To advance our understanding of early origins of chronic lung disease and to allow for proper dissemination and application of this knowledge, we propose four major focus areas: 1) policy and education; 2) clinical assessment; 3) basic and translational research; and 4) infrastructure and tools, and discuss future directions for advancement. This review is a follow-up of the discussions at the European Respiratory Society Research Seminar "Early origins of lung disease: towards an interdisciplinary approach" (Lisbon, Portugal, November 2019).
Collapse
Affiliation(s)
- Niki D J Ubags
- Faculty of Biology and Medicine, University of Lausanne, Service de Pneumologie, CHUV, Lausanne, Switzerland.,Authors are listed alphabetically except for N.D.J. Ubags and J.J.P. Collins
| | - Miguel A Alejandre Alcazar
- Dept of Paediatrics and Adolescent Medicine, Faculty of Medicine and University Hospital Cologne, Translational Experimental Paediatrics, Experimental Pulmonology, University of Cologne, Cologne, Germany.,Centre of Molecular Medicine Cologne (CMMC), Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany.,Institute for Lung Health, University of Giessen and Marburg Lung Centre (UGMLC), Member of the German Centre for Lung Research (DZL), Giessen, Germany
| | - Suhas G Kallapur
- Neonatal-Perinatal Medicine, Dept of Pediatrics, David Geffen School of Medicine, UCLA Mattel Children's Hospital, Los Angeles, CA, USA
| | - Sylvia Knapp
- Dept of Medicine I/Research Laboratory of Infection Biology, Medical University of Vienna, Vienna, Austria.,CeMM, Research Centre for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Sophie Lanone
- Univ Paris Est Creteil, INSERM, IMRB, Creteil, France
| | - Clare M Lloyd
- Inflammation, Repair and Development, National Heart & Lung Institute, Imperial College London, London, UK
| | - Rory E Morty
- Dept of Lung Development and Remodelling, Max Planck Institute for Heart and Lung Research, Bad Nauheim, Germany.,Dept of Internal Medicine (Pulmonology), University of Giessen and Marburg Lung Centre, Member of the German Centre for Lung Research, Giessen, Germany
| | - Céline Pattaroni
- Dept of Immunology and Pathology, Monash University, Melbourne, Australia
| | - Niki L Reynaert
- Dept of Respiratory Medicine and School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Robbert J Rottier
- Dept of Paediatric Surgery, Sophia Children's Hospital, Erasmus University Medical Centre, Rotterdam, The Netherlands
| | - Hermelijn H Smits
- Dept of Parasitology, Leiden University Medical Centre, Leiden, The Netherlands
| | - Wouter A A de Steenhuijsen Piters
- Dept of Paediatric Immunology and Infectious Diseases, Wilhelmina Children's Hospital/University Medical Centre Utrecht, Utrecht, The Netherlands.,National Institute for Public Health and the Environment, Bilthoven, The Netherlands
| | | | - Jennifer J P Collins
- Dept of Paediatric Surgery, Sophia Children's Hospital, Erasmus University Medical Centre, Rotterdam, The Netherlands .,Authors are listed alphabetically except for N.D.J. Ubags and J.J.P. Collins
| |
Collapse
|
7
|
Difference in pyruvic acid metabolism between neonatal and adult mouse lungs exposed to hyperoxia. PLoS One 2020; 15:e0238604. [PMID: 32881962 PMCID: PMC7470327 DOI: 10.1371/journal.pone.0238604] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Accepted: 08/19/2020] [Indexed: 11/19/2022] Open
Abstract
Objective Neonatal lungs are more tolerant to hyperoxic injury than are adult lungs. This study investigated differences in the response to hyperoxic exposure between neonatal and adult mouse lungs using metabolomics analysis with capillary electrophoresis time-of-flight mass spectrometry (CE- TOFMS). Methods Neonatal and adult mice were exposed to 21% or 95% O2 for four days. Subsequently, lung tissue samples were collected and analyzed by CE-TOFMS. Pyruvate dehydrogenase (PDH) enzyme activity was determined using a microplate assay kit. PDH kinase (Pdk) 1, Pdk2, Pdk3, and Pdk4 mRNA expression levels were determined using quantitative reverse transcription-polymerase chain reaction. Pdk4 protein expression was quantified by Western blotting and Pdk4 protein localization was evaluated by immunohistochemistry. Results Levels of 3-phosphoglyceric acid, 2-phosphoglyceric acid, phosphoenolpyruvic acid, and lactic acid were significantly elevated in the lungs of hyperoxia-exposed versus normoxia-exposed adult mice, whereas no significant differences were observed with hyperoxia exposure in neonatal mice. PDH activity was reduced in the lungs of adult mice only. Pdk4 mRNA expression levels after hyperoxic exposure were significantly elevated in adult mice compared with that in neonatal mice. Conversely, gene expression levels of Pdk1, Pdk2, and Pdk3 did not differ after hyperoxic exposure in either neonatal or adult mice. Pdk4 protein levels were also significantly increased in adult mouse lungs exposed to hyperoxia and were localized mainly to the epithelium of terminal bronchiole. Conclusions Specific metabolites associated with glycolysis and gluconeogenesis were altered after hyperoxia exposure in the lungs of adult mice, but not in neonates, which was likely a result of reduced PDH activity due to Pdk4 mRNA upregulation under hyperoxia.
Collapse
|
8
|
Attenuation of Hyperoxic Lung Injury in Newborn Thioredoxin-1-Overexpressing Mice through the Suppression of Proinflammatory Cytokine mRNA Expression. Biomedicines 2020; 8:biomedicines8030066. [PMID: 32244938 PMCID: PMC7148529 DOI: 10.3390/biomedicines8030066] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 03/13/2020] [Accepted: 03/18/2020] [Indexed: 12/26/2022] Open
Abstract
The role of thioredoxin-1 (TRX), a small redox-active protein with antioxidant effects, during hyperoxic lung injury in newborns remains undetermined. We investigated TRX impact on hyperoxic lung injury in newborn TRX transgenic (TRX-Tg) and wildtype (WT) mice exposed to 21% or 95% O2 for four days, after which some mice were allowed to recover in room air for up to 14 days. Lung morphology was assessed by hematoxylin/eosin and elastin staining, as well as immunostaining for macrophages. The gene expression levels of proinflammatory cytokines were evaluated using quantitative real-time polymerase chain reaction. During recovery from hyperoxia, TRX-Tg mice exhibited an improved mean linear intercept length and increased number of secondary septa in lungs compared with the WT mice. Neonatal hyperoxia enhanced the mRNA expression levels of proinflammatory cytokines in the lungs of both TRX-Tg and WT mice. However, interleukin-6, monocyte chemoattractant protein-1, and chemokine (C-X-C motif) ligand 2 mRNA expression levels were reduced in the lungs of TRX-Tg mice compared with the WT mice during recovery from hyperoxia. Furthermore, TRX-Tg mice exhibited reduced macrophage infiltration in lungs during recovery. These results suggest that in newborn mice TRX ameliorates hyperoxic lung injury during recovery likely through the suppression of proinflammatory cytokines.
Collapse
|
9
|
Garfinkle J, Yoon EW, Alvaro R, Nwaesei C, Claveau M, Lee SK, Shah PS. Trends in sex-specific differences in outcomes in extreme preterms: progress or natural barriers? Arch Dis Child Fetal Neonatal Ed 2020; 105:158-163. [PMID: 31186268 DOI: 10.1136/archdischild-2018-316399] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 04/29/2019] [Accepted: 05/14/2019] [Indexed: 01/26/2023]
Abstract
OBJECTIVE To examine the differences and trends of outcomes of preterm boys and girls born at <29 weeks' gestation. DESIGN A retrospective cohort study. SETTING Data collected by the Canadian Neonatal Network. PATIENTS Neonates born at <29 weeks' gestation between January 2007 and December 2016. MAIN OUTCOME MEASURES We examined rate differences in mortality, major morbidities (bronchopulmonary dysplasia, severe brain injury, retinopathy of prematurity, necrotising enterocolitis and late-onset sepsis) and care practices (antenatal steroids, magnesium sulfate, maternal antibiotics, ventilation and surfactant administration) between boys and girls and evaluated trends in these rate differences over the study period. Our primary outcome was a composite of mortality and any one of the five morbidities. RESULTS Our study included 8219 boys and 6934 girls with median gestational age of 26 (IQR 25-28) weeks. The composite of death or major morbidity was more common in boys (adjusted risk ratio 1.07, 95% CI 1.05 to 1.10) and remained higher in boys over the study period. The gap between boys and girls for mortality, however, decreased over time: the slope for boys was -0.043 (95% CI -0.071 to -0.015) and for girls was -0.012 (95% CI -0.045 to 0.020) (p=0.04). All other morbidities remained higher in boys. Care practices changed at similar rates between the sexes. CONCLUSION The difference between the mortality rates for boys and girls decreased over the study period but the difference between rates of the major morbidities was unchanged. More research is needed to understand biological differences and outcome disparities.
Collapse
Affiliation(s)
- Jarred Garfinkle
- Department of Pediatrics, University of Toronto, Toronto, Canada
| | - Eugene W Yoon
- Maternal-Infant Care Research Centre, Mount Sinai Hospital, Toronto, Ontario, Canada
| | - Ruben Alvaro
- Department of Pediatrics and Child Health, University of Manitoba, Winnepeg, Manitoba, Canada
| | - Chuks Nwaesei
- Department of Pediatrics, Windsor Regional Hospital, Windsor, Ontario, Canada
| | - Martine Claveau
- Department of Pediatrics, McGill University, Toronto, Ontario, Canada
| | - Shoo K Lee
- Department of Pediatrics, University of Toronto, Toronto, Canada.,Maternal-Infant Care Research Centre, Mount Sinai Hospital, Toronto, Ontario, Canada.,Department of Pediatrics, Mount Sinai Hospital, Toronto, Ontario, Canada.,Department of Obstetrics and Gynecology, University of Toronto, Toronto, Ontario, Canada.,Dalla Lana School of Public Health, University of Toronto, Toronto, Ontario, Canada
| | - Prakesh S Shah
- Department of Pediatrics, University of Toronto, Toronto, Canada.,Maternal-Infant Care Research Centre, Mount Sinai Hospital, Toronto, Ontario, Canada.,Department of Pediatrics, Mount Sinai Hospital, Toronto, Ontario, Canada.,Institute of Health Policy, Management and Evaluation, University of Toronto, Toronto, Ontario, Canada
| | | |
Collapse
|
10
|
Kindermann A, Binder L, Baier J, Gündel B, Simm A, Haase R, Bartling B. Severe but not moderate hyperoxia of newborn mice causes an emphysematous lung phenotype in adulthood without persisting oxidative stress and inflammation. BMC Pulm Med 2019; 19:245. [PMID: 31842840 PMCID: PMC6915952 DOI: 10.1186/s12890-019-0993-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Accepted: 11/14/2019] [Indexed: 12/25/2022] Open
Abstract
Background Preterm newborns typically require supplemental oxygen but hyperoxic conditions also damage the premature lung. Oxygen-induced lung damages are mainly studied in newborn mouse models using oxygen concentrations above 75% and looking at short-term effects. Therefore, we aimed at the investigation of long-term effects and their dependency on different oxygen concentrations. Methods Newborn mice were exposed to moderate vs. severe hyperoxic air conditions (50 vs. 75% O2) for 14 days followed by a longer period of normoxic conditions. Lung-related parameters were collected at an age of 60 or 120 days. Results Severe hyperoxia caused lower alveolar density, enlargement of parenchymal air spaces and fragmented elastic fibers as well as higher lung compliance with peak airflow limitations and higher sensitivity to ventilation-mediated damages in later life. However, these long-term lung structural and functional changes did not restrict the voluntary physical activity. Also, they were not accompanied by ongoing inflammatory processes, increased formation of reactive oxygen species (ROS) or altered expressions of antioxidant enzymes (superoxide dismutases, catalase) and lung elasticity-relevant proteins (elastin, pro-surfactant proteins) in adulthood. In contrast to severe hyperoxia, moderate hyperoxia was less lung damaging but also not free of long-term effects (higher lung compliance without peak airflow limitations, increased ROS formation). Conclusions Severe but not moderate neonatal hyperoxia causes emphysematous lungs without persisting oxidative stress and inflammation in adulthood. As the existing fragmentation of the elastic fibers seems to play a pivotal role, it indicates the usefulness of elastin-protecting compounds in the reduction of long-term oxygen-related lung damages.
Collapse
Affiliation(s)
- Anke Kindermann
- Department of Cardiac Surgery, Middle German Heart Center, University Hospital Halle (Saale), Martin Luther University Halle-Wittenberg, Ernst-Grube-Str. 40, 06120, Halle (Saale), Germany
| | - Leonore Binder
- Department of Cardiac Surgery, Middle German Heart Center, University Hospital Halle (Saale), Martin Luther University Halle-Wittenberg, Ernst-Grube-Str. 40, 06120, Halle (Saale), Germany
| | - Jan Baier
- Department of Neonatology and Pediatric Intensive Care, Clinic for Child and Adolescent Medicine, University Hospital Halle (Saale), Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Beate Gündel
- Department of Cardiac Surgery, Middle German Heart Center, University Hospital Halle (Saale), Martin Luther University Halle-Wittenberg, Ernst-Grube-Str. 40, 06120, Halle (Saale), Germany
| | - Andreas Simm
- Department of Cardiac Surgery, Middle German Heart Center, University Hospital Halle (Saale), Martin Luther University Halle-Wittenberg, Ernst-Grube-Str. 40, 06120, Halle (Saale), Germany
| | - Roland Haase
- Department of Neonatology and Pediatric Intensive Care, Clinic for Child and Adolescent Medicine, University Hospital Halle (Saale), Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Babett Bartling
- Department of Cardiac Surgery, Middle German Heart Center, University Hospital Halle (Saale), Martin Luther University Halle-Wittenberg, Ernst-Grube-Str. 40, 06120, Halle (Saale), Germany.
| |
Collapse
|
11
|
Respiratory Phenotypes for Preterm Infants, Children, and Adults: Bronchopulmonary Dysplasia and More. Ann Am Thorac Soc 2019; 15:530-538. [PMID: 29328889 DOI: 10.1513/annalsats.201709-756fr] [Citation(s) in RCA: 85] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Ongoing advancements in neonatal care since the late 1980s have led to increased numbers of premature infants surviving well beyond the neonatal period. As a result of increased survival, many individuals born preterm manifest chronic respiratory symptoms throughout infancy, childhood, and adult life. The archetypical respiratory disease of prematurity, bronchopulmonary dysplasia, is the second most common chronic pediatric respiratory disease after asthma. However, there are several commonly held misconceptions. These misconceptions include that bronchopulmonary dysplasia is rare, that bronchopulmonary dysplasia resolves within the first few years of life, and that bronchopulmonary dysplasia does not impact respiratory health in adult life. This focused review describes a spectrum of respiratory conditions that individuals born prematurely may experience throughout their lifespan. Specifically, this review provides quantitative estimates of the number of individuals with alveolar, airway, and vascular phenotypes associated with bronchopulmonary dysplasia, as well as non-bronchopulmonary dysplasia respiratory phenotypes such as airway malacia, obstructive sleep apnea, and control of breathing issues. Furthermore, this review illustrates what is known about the potential for progression and/or lack of resolution of these respiratory phenotypes in childhood and adult life. Recognizing the spectrum of respiratory phenotypes associated with individuals born preterm and providing comprehensive and personalized care to these individuals may help to modulate adverse respiratory outcomes in later life.
Collapse
|
12
|
Leary S, Das P, Ponnalagu D, Singh H, Bhandari V. Genetic Strain and Sex Differences in a Hyperoxia-Induced Mouse Model of Varying Severity of Bronchopulmonary Dysplasia. THE AMERICAN JOURNAL OF PATHOLOGY 2019; 189:999-1014. [PMID: 30794808 DOI: 10.1016/j.ajpath.2019.01.014] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 12/21/2018] [Accepted: 01/24/2019] [Indexed: 01/11/2023]
Abstract
Bronchopulmonary dysplasia (BPD) is a disease prevalent in preterm babies with a need for supplemental oxygen, resulting in impaired lung development and dysregulated vascularization. Epidemiologic studies have shown that males are more prone to BPD and have a delayed recovery compared with females, for reasons unknown. Herein, we tried to recapitulate mild, moderate, and severe BPD, using two different strains of mice, in males and females: CD1 (outbred) and C57BL/6 (inbred). Aside from higher body weight in the CD1 strain, there were no other gross morphologic differences with respect to alveolar development between the two strains. With respect to lung morphology after oxygen exposure, females had less injury with better preservation of alveolar chord length and decreased alveolar protein leak and inflammatory cells in the bronchoalveolar lavage fluid. In addition, housekeeping genes, which are routinely used as loading controls, were expressed differently in males and females. In the BPD mouse model, gonadotropin-releasing hormone was increased in females compared with males. Specific miRNAs (miR-146 and miR-34a) were expressed differently in the sexes. In the severe BPD mouse model, administering miR-146 mimic to males attenuated lung damage, whereas administering miR-146 inhibitor to females increased pulmonary injury.
Collapse
Affiliation(s)
- Sean Leary
- Department of Pediatrics, Drexel University College of Medicine, Philadelphia, Pennsylvania
| | - Pragnya Das
- Department of Pediatrics, Drexel University College of Medicine, Philadelphia, Pennsylvania
| | - Devasena Ponnalagu
- Department of Pharmacology, Physiology and Medicine, Drexel University College of Medicine, Philadelphia, Pennsylvania
| | - Harpreet Singh
- Department of Pharmacology, Physiology and Medicine, Drexel University College of Medicine, Philadelphia, Pennsylvania
| | - Vineet Bhandari
- Department of Pediatrics, Drexel University College of Medicine, Philadelphia, Pennsylvania; Division of Neonatology, St. Christopher's Hospital for Children, Philadelphia, Pennsylvania.
| |
Collapse
|
13
|
Morris-Schaffer K, Sobolewski M, Allen JL, Marvin E, Yee M, Arora M, O'Reilly MA, Cory-Slechta DA. Effect of neonatal hyperoxia followed by concentrated ambient ultrafine particle exposure on cumulative learning in C57Bl/6J mice. Neurotoxicology 2018; 67:234-244. [PMID: 29920326 DOI: 10.1016/j.neuro.2018.06.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Revised: 06/11/2018] [Accepted: 06/12/2018] [Indexed: 01/01/2023]
Abstract
Hyperoxia during treatment for prematurity may enhance susceptibility to other risk factors for adverse brain development, such as air pollution exposure, as both of these risk factors have been linked to a variety of adverse neurodevelopmental outcomes. This study investigated the combined effects of neonatal hyperoxia followed by inhalation of concentrated ambient ultrafine particles (CAPS, <100 nm in aerodynamic diameter) on learning. C57BL/6 J mice were birthed into 60% oxygen until postnatal day (PND) 4 and subsequently exposed to filtered air or to CAPS using the Harvard University Concentrated Ambient Particle System (HUCAPS) from PND 4-7 and 10-13. Behavior was assessed on a fixed interval (FI) schedule of reinforcement in which reward is available only after a fixed interval of time elapses, as well as expected reductions in behavior during an extinction procedure when reward was withheld. Both produce highly comparable behavioral performance across species. Performance measures included rate of responding, response accuracy, and temporal control (quarter life). Exposure to hyperoxia or CAPS resulted in lower mean quarter life values, an effect that was further enhanced in males by combined exposure, findings consistent with delayed learning of the FI schedule. Females also initially exhibited greater reductions in quarter life values following the combined exposure to hyperoxia and CAPS and delayed reductions in response rates during extinction. Combined hyperoxia and CAPS produced greater learning deficits than either risk factor alone, consistent with enhanced neurodevelopmental toxicity, findings that could reflect a convergence of both insults on common neurobiological systems. The basis for sex differences in outcome warrants further research. This study highlights the potential for heightened risk of adverse neurodevelopment outcomes in individuals born preterm in regions with higher levels of ultrafine particle (UFP) air pollution, in accord with the multiplicity of risk factors extant in the human environment.
Collapse
Affiliation(s)
- Keith Morris-Schaffer
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester NY 14642, United States
| | - Marissa Sobolewski
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester NY 14642, United States
| | - Joshua L Allen
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester NY 14642, United States
| | - Elena Marvin
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester NY 14642, United States
| | - Min Yee
- Department of Pediatrics, University of Rochester Medical Center, Rochester NY, 14642, United States
| | - Manish Arora
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY 10029, United States
| | - Michael A O'Reilly
- Department of Pediatrics, University of Rochester Medical Center, Rochester NY, 14642, United States
| | - Deborah A Cory-Slechta
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester NY 14642, United States.
| |
Collapse
|
14
|
Hogmalm A, Bry M, Bry K. Pulmonary IL-1β expression in early life causes permanent changes in lung structure and function in adulthood. Am J Physiol Lung Cell Mol Physiol 2018; 314:L936-L945. [DOI: 10.1152/ajplung.00256.2017] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Chorioamnionitis, mechanical ventilation, oxygen therapy, and postnatal infection promote inflammation in the newborn lung. The long-term consequences of pulmonary inflammation during infancy have not been well characterized. The aim of this study was to examine the impact of inflammation during the late saccular to alveolar stages of lung development on lung structure and function in adulthood. To induce IL-1β expression in the pulmonary epithelium of mice with a tetracycline-inducible human IL-1β transgene, doxycycline was administered via intraperitoneal injections to bitransgenic pups and their littermate controls on postnatal days (PN) 0, 0.5, and 1. Lung structure, inflammation, and airway reactivity were studied in adulthood. IL-1β production in early life resulted in increased numbers of macrophages and neutrophils on PN21, but inflammation subsided by PN42. Permanent changes in alveolar structure, i.e., larger alveoli and thicker alveolar walls, were present from PN21 to PN84. Lack of alveolar septation thus persisted after IL-1β production and inflammation had ceased. Early IL-1β production caused goblet cell hyperplasia, enhanced calcium-activated chloride channel 3 (CLCA3) protein expression, and increased airway reactivity in response to methacholine on PN42. Lymphoid follicles were present adjacent to small airways in the lungs of adult bitransgenic mice, and levels of the B cell chemoattractant CXC-motif ligand (CXCL) 13 were elevated in the lungs of bitransgenic mice compared with controls. In conclusion, IL-1β-induced pulmonary inflammation in early life causes a chronic lung disease in adulthood.
Collapse
Affiliation(s)
- Anna Hogmalm
- Department of Pediatrics, Institution of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Maija Bry
- The Queen Silvia Children’s Hospital, Gothenburg, Sweden
| | - Kristina Bry
- Department of Pediatrics, Institution of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- The Queen Silvia Children’s Hospital, Gothenburg, Sweden
| |
Collapse
|