1
|
Montero P, Flandes-Iparraguirre M, Musquiz S, Pérez Araluce M, Plano D, Sanmartín C, Orive G, Gavira JJ, Prosper F, Mazo MM. Cells, Materials, and Fabrication Processes for Cardiac Tissue Engineering. Front Bioeng Biotechnol 2020; 8:955. [PMID: 32850768 PMCID: PMC7431658 DOI: 10.3389/fbioe.2020.00955] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Accepted: 07/23/2020] [Indexed: 12/19/2022] Open
Abstract
Cardiovascular disease is the number one killer worldwide, with myocardial infarction (MI) responsible for approximately 1 in 6 deaths. The lack of endogenous regenerative capacity, added to the deleterious remodelling programme set into motion by myocardial necrosis, turns MI into a progressively debilitating disease, which current pharmacological therapy cannot halt. The advent of Regenerative Therapies over 2 decades ago kick-started a whole new scientific field whose aim was to prevent or even reverse the pathological processes of MI. As a highly dynamic organ, the heart displays a tight association between 3D structure and function, with the non-cellular components, mainly the cardiac extracellular matrix (ECM), playing both fundamental active and passive roles. Tissue engineering aims to reproduce this tissue architecture and function in order to fabricate replicas able to mimic or even substitute damaged organs. Recent advances in cell reprogramming and refinement of methods for additive manufacturing have played a critical role in the development of clinically relevant engineered cardiovascular tissues. This review focuses on the generation of human cardiac tissues for therapy, paying special attention to human pluripotent stem cells and their derivatives. We provide a perspective on progress in regenerative medicine from the early stages of cell therapy to the present day, as well as an overview of cellular processes, materials and fabrication strategies currently under investigation. Finally, we summarise current clinical applications and reflect on the most urgent needs and gaps to be filled for efficient translation to the clinical arena.
Collapse
Affiliation(s)
- Pilar Montero
- Regenerative Medicine Program, Cima Universidad de Navarra, Foundation for Applied Medical Research, Pamplona, Spain
| | - María Flandes-Iparraguirre
- Regenerative Medicine Program, Cima Universidad de Navarra, Foundation for Applied Medical Research, Pamplona, Spain
| | - Saioa Musquiz
- Regenerative Medicine Program, Cima Universidad de Navarra, Foundation for Applied Medical Research, Pamplona, Spain
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country – UPV/EHU, Vitoria-Gasteiz, Spain
| | - María Pérez Araluce
- Regenerative Medicine Program, Cima Universidad de Navarra, Foundation for Applied Medical Research, Pamplona, Spain
- Department of Pharmaceutical Technology and Chemistry, University of Navarra, Pamplona, Spain
| | - Daniel Plano
- Department of Pharmaceutical Technology and Chemistry, University of Navarra, Pamplona, Spain
- IdiSNA, Navarra Institute for Health Research, Pamplona, Spain
| | - Carmen Sanmartín
- Department of Pharmaceutical Technology and Chemistry, University of Navarra, Pamplona, Spain
- IdiSNA, Navarra Institute for Health Research, Pamplona, Spain
| | - Gorka Orive
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country – UPV/EHU, Vitoria-Gasteiz, Spain
- IdiSNA, Navarra Institute for Health Research, Pamplona, Spain
- University Institute for Regenerative Medicine and Oral Implantology – UIRMI (UPV/EHU – Fundación Eduardo Anitua), Vitoria-Gasteiz, Spain
- Singapore Eye Research Institute, Singapore, Singapore
| | - Juan José Gavira
- IdiSNA, Navarra Institute for Health Research, Pamplona, Spain
- Cardiology Department, Clínica Universidad de Navarra, Pamplona, Spain
| | - Felipe Prosper
- Regenerative Medicine Program, Cima Universidad de Navarra, Foundation for Applied Medical Research, Pamplona, Spain
- IdiSNA, Navarra Institute for Health Research, Pamplona, Spain
- Hematology and Cell Therapy Area, Clínica Universidad de Navarra, Pamplona, Spain
| | - Manuel M. Mazo
- Regenerative Medicine Program, Cima Universidad de Navarra, Foundation for Applied Medical Research, Pamplona, Spain
- IdiSNA, Navarra Institute for Health Research, Pamplona, Spain
- Hematology and Cell Therapy Area, Clínica Universidad de Navarra, Pamplona, Spain
| |
Collapse
|
2
|
Janssen R, Piscaer I, Wouters EFM. Inhalation therapy for repairing damaged elastin fibers and decelerating elastinolysis in chronic obstructive pulmonary disease. Expert Rev Respir Med 2018; 12:349-360. [DOI: 10.1080/17476348.2018.1460206] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Rob Janssen
- Department of Pulmonary Medicine, Canisius-Wilhelmina Hospital, Nijmegen, Netherlands
| | - Ianthe Piscaer
- Department of Respiratory Medicine, Maastricht University Medical Centre, Maastricht, Netherlands
| | - Emiel FM. Wouters
- Department of Research and Education, Center of Expertise for Chronic Organ Failure(CIRO), Horn, Netherlands
| |
Collapse
|
3
|
Lewin G, Hurtt ME. Pre- and Postnatal Lung Development: An Updated Species Comparison. Birth Defects Res 2017; 109:1519-1539. [PMID: 28876535 DOI: 10.1002/bdr2.1089] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Accepted: 06/21/2017] [Indexed: 11/10/2022]
Abstract
The purpose of this review is to give an outline of respiratory tract morphological and functional development with an emphasis on perinatal and postnatal maturational processes. In view of the rising need for qualitative and quantitative data for the development of pediatric pharmaceuticals, a comparison of the human situation to experimental animal models is made, and functional data as well as suitable models for human airway diseases and functional testing are presented. Birth Defects Research 109:1519-1539, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
| | - Mark E Hurtt
- Pfizer Global Research & Development, Groton, Connecticut
| |
Collapse
|
4
|
Gade AL, Heiaas H, Lillicrap A, Hylland K. Ecotoxicity of paint mixtures: comparison between measured and calculated toxicity. THE SCIENCE OF THE TOTAL ENVIRONMENT 2012; 435-436:526-540. [PMID: 22892347 DOI: 10.1016/j.scitotenv.2012.07.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2012] [Revised: 07/04/2012] [Accepted: 07/04/2012] [Indexed: 06/01/2023]
Abstract
The aims of the current study were to test the validity of the concentration addition (CA) and independent action (IA) calculation methods for mixture toxicity as well as the REACH guidelines for mixture exposure scenarios for paint products. Based on ecotoxicity tests of nine anticorrosive paint mixtures and the nine substances that contributed to classification of the mixtures as hazardous for the aquatic environment, neither CA nor IA was found to be appropriate calculation methods, although CA calculations were conservative for half of the mixtures tested. The REACH mixture approach, based on "lead" substances, resulted in conservative predictions for three out of five mixtures and the "lead" substance corresponded to the substance contributing the most in the CA mixture calculations for four out of six mixtures. The use of paints as a matrix for toxicity testing required adaptation of test procedures, development of sample handling and chemical analysis methods.
Collapse
|
5
|
Običan S, Scialli AR. Teratogenic exposures. AMERICAN JOURNAL OF MEDICAL GENETICS PART C-SEMINARS IN MEDICAL GENETICS 2011; 157C:150-69. [PMID: 21766437 DOI: 10.1002/ajmg.c.30310] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
A consideration of teratogenic exposures includes not only an agent (chemical, radiation, biologic) but an exposure level and timing of exposure. There are criteria by which exposures are evaluated for a causal connection with an abnormal outcome. We here review some teratogenic exposures and discuss how they were initially described and confirmed. We have limited our discussion to some of the exposures for which a connection to structural malformations has been accepted in some quarters, and we indicate some exposures for which a causal association awaits confirmation. We recommend that counselors find a reliable and updatable source of information on exposures during pregnancy.
Collapse
Affiliation(s)
- Sarah Običan
- Obstetrics and Gynecology, George Washington University School of Medicine and Health Sciences.
| | | |
Collapse
|
6
|
Li W, Zhou J, Chen L, Luo Z, Zhao Y. Lysyl oxidase, a critical intra- and extra-cellular target in the lung for cigarette smoke pathogenesis. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2011; 8:161-84. [PMID: 21318022 PMCID: PMC3037068 DOI: 10.3390/ijerph8010161] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2010] [Revised: 12/22/2010] [Accepted: 01/12/2011] [Indexed: 12/14/2022]
Abstract
Cigarette smoke (CS), a complex chemical mixture, contains more than 4,800 different compounds, including oxidants, heavy metals, and carcinogens, that individually or in combination initiate or promote pathogenesis in the lung accounting for 82% of chronic obstructive pulmonary disease (COPD) deaths and 87% of lung cancer deaths. Lysyl oxidase (LO), a Cu-dependent enzyme, oxidizes peptidyl lysine residues in collagen, elastin and histone H1, essential for stabilization of the extracellular matrix and cell nucleus. Considerable evidences have shown that LO is a tumor suppressor as exemplified by inhibiting transforming activity of ras, a proto oncogene. CS condensate (CSC), 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) and cadmium (Cd), major components of CS, down-regulate LO expression at such multiple levels as mRNA, protein and catalytic activity in lung cells in vitro and in vivo indicating LO as a critical intra- and extracellular target for CS pathogenesis in the lung. In view of multiple biological functions and regulation characteristics of the LO gene, molecular mechanisms for CS damage to lung LO and its role in emphysema and cancer pathogenesis are discussed in this review.
Collapse
Affiliation(s)
- Wande Li
- Department of Biochemistry, Boston University School of Medicine, 72 East Concord Street, Boston, MA 02118, USA; E-Mails: (J.Z.); (Z.L); (Y.Z.)
| | - Jing Zhou
- Department of Biochemistry, Boston University School of Medicine, 72 East Concord Street, Boston, MA 02118, USA; E-Mails: (J.Z.); (Z.L); (Y.Z.)
| | - Lijun Chen
- Department of Pharmacology, Zhongshan Medical College, Sun Yat-Sen University, 74 Zhongshan Road II, Guangzhou, 510089, China; E-Mail: (L.C.)
| | - Zhijun Luo
- Department of Biochemistry, Boston University School of Medicine, 72 East Concord Street, Boston, MA 02118, USA; E-Mails: (J.Z.); (Z.L); (Y.Z.)
| | - Yinzhi Zhao
- Department of Biochemistry, Boston University School of Medicine, 72 East Concord Street, Boston, MA 02118, USA; E-Mails: (J.Z.); (Z.L); (Y.Z.)
| |
Collapse
|
7
|
Uriu-Adams JY, Scherr RE, Lanoue L, Keen CL. Influence of copper on early development: prenatal and postnatal considerations. Biofactors 2010; 36:136-52. [PMID: 20232410 DOI: 10.1002/biof.85] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Copper (Cu) is an essential nutrient whose requirement is increased during pregnancy and lactation. These represent times of critical growth and development, and the fetus and neonate are particularly vulnerable to deficiencies of this nutrient. Genetic mutations that predispose the offspring to inadequate stores of Cu can be life threatening as is observed in children with Menkes disease. During the last decade, severe Cu deficiency, once thought to be a rare condition, has been reported in the literature at an increasing frequency. Secondary Cu deficiencies can be induced by a variety of ways such as excessive zinc or iron intake, certain drugs, and bariatric surgery. Premature and low birth weight infants can be born with low Cu stores. A number of mechanisms can contribute to the teratogenicity of Cu including decreased activity of select cuproenzymes, increased oxidative stress, decreased nitric oxide availability, altered iron metabolism, abnormal extracellular matrix protein crosslinking, decreased angiogenesis and altered cell signaling among others. The brain, heart, and vessels as well as tissues such as lung, skin and hair, and systems including the skeletal, immune, and blood systems, are negatively affected by suboptimal Cu during development. Additionally, persistent structural, biochemical, and functional adverse effects in the offspring are noted even when Cu supplementation is initiated after birth, supporting the concept that adequate Cu nutriture during pregnancy and lactation is critical for normal development. Although Cu-containing IUDs are an effective method for increasing intrauterine Cu concentrations and for reducing the risk of pregnancy, high amounts of dietary Cu are not thought to represent a direct developmental risk.
Collapse
Affiliation(s)
- Janet Y Uriu-Adams
- Department of Nutrition, University of California, Davis, Davis, CA 95616, USA.
| | | | | | | |
Collapse
|
8
|
The critical role of the cellular thiol homeostasis in cadmium perturbation of the lung extracellular matrix. Toxicology 2009; 267:60-9. [PMID: 19879314 DOI: 10.1016/j.tox.2009.10.021] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2009] [Revised: 10/16/2009] [Accepted: 10/19/2009] [Indexed: 11/23/2022]
Abstract
Cadmium (Cd) inhalation can result in emphysema. Cd exposure of rat lung fibroblasts (RFL6) enhanced levels of metal scavenging thiols, e.g., metallothionein (MT) and glutathione (GSH), and the heavy chain of gamma-glutamylcysteine synthetase (gamma-GCS), a key enzyme for GSH biosynthesis, concomitant with downregulation of lysyl oxidase (LO), a copper-dependent enzyme for crosslinking collagen and elastin in the extracellular matrix (ECM). Cd downregulation of LO in treated cells was closely accompanied by suppression of synthesis of collagen, a major structure component of the lung ECM. Using rats intratracheally instilled with cadmium chloride (30 microg, once a week) as an animal model, we further demonstrated that although 2-week Cd instillation induced a non-significant change in the lung LO activity and collagen synthesis, 4- and 6-week Cd instillation resulted in a steady decrease in the lung LO and collagen expression. The lung MT and total GSH levels were both upregulated upon the long-term Cd exposure. Emphysematous lesions were generated in lungs of 6-week Cd-dosed rats. Increases of cellular thiols by transfection of cells with MT-II expression vectors or treatment of cells with GSH monoethyl ester, a GSH delivery system, markedly inhibited LO mRNA levels and catalytic activities in the cell model. Thus, Cd upregulation of cellular thiols may be a critical cellular event facilitating downregulation of LO, a potential mechanism for Cd-induced emphysema.
Collapse
|
9
|
Zhao Y, Gao S, Chou IN, Toselli P, Stone P, Li W. Inhibition of the expression of lysyl oxidase and its substrates in cadmium-resistant rat fetal lung fibroblasts. Toxicol Sci 2006; 90:478-89. [PMID: 16432278 DOI: 10.1093/toxsci/kfj112] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Copper (Cu)-dependent lysyl oxidase (LO) catalyzes crosslinking of collagen and elastin stabilizing the extracellular matrix (ECM). Chronic inhalation of cadmium (Cd), a toxic metal, induces emphysema. To probe mechanisms of Cd injury to the lung, we developed Cd-resistant (CdR) cells from rat fetal lung fibroblasts (RFL6) by chronic exposure to CdCl(2) from 1 to 40 microM and further examined their expressions of LO, LO substrates, and Cu-scavenging thiols. Levels of cellular thiols, metallothionein, and glutathione in CdR cells were elevated to 13.0- and 3.2-fold of parental controls, respectively, whereas LO mRNA and protein levels were markedly reduced in these cells, with catalytic activity declining to only 16% of the parental control. A conspicuous 52 kDa species rather then the normal 50 kDa proenzyme appeared in the CdR cell extract but not in the conditioned medium, which was codistributed with the endoplasmic reticulum marker [DiOC5(3)] within the cell, implying the Cd-induced 52 kDa species as a product of an abnormal LO-processing defect in secretion. Addition of Cu into CdR cell cultures enhanced the expression of LO mRNA, protein and catalytic activities reflecting limitation of Cu bioavailability for LO in these cells. With inhibition of LO, CdR cells also displayed downregulation of collagen and elastin, substrates of LO. Restoration of collagen synthesis by exposure of CdR cells to purified LO or Cu suggests that inhibition of LO and limitation of Cu cofactor by Cd, as key phenotype changes, accelerated collagen and elastin damage, a critical event pertinent to emphysema pathogenesis.
Collapse
Affiliation(s)
- Yinzhi Zhao
- Department of Biochemistry, Boston University School of Medicine, Boston, Massachusetts 02118, USA
| | | | | | | | | | | |
Collapse
|
10
|
Koçtürk S, Oktay G, Güner G, Pekçetin C, Güre A. Effect ofD-penicillamine on rat lung elastin cross-linking during the perinatal period. Cell Biochem Funct 2006; 24:167-72. [PMID: 15657943 DOI: 10.1002/cbf.1209] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
This study was designed to clarify the effects of D-penicillamine (DPA), a drug used for treatment of various pathological events, on lung elastin formation and maturation of the newborn in the perinatal period. The investigation was conducted on 20 newborn rats bred from 40 female and six male rats. DPA doses 400 mg kg(-1) day(-1) and physiological saline were given intraperitoneally (i.p) to experimental and control groups. To assess newborn maturation, their body and lung weights were determined. Serum Cu levels were measured by atomic absorption spectroscopy and ceruloplasmin (Cp) activities were measured spectrophotometrically. Newborn lung tissue elastin, desmosine (DES) and isodesmosine (IDES) levels were measured by HPLC. The results showed that DPA treatment caused loss of skin elasticity and reduction in body and lung weight in newborns of the experimental group. The serum Cu levels and Cp activity were found to be significantly lower in both maternal and newborn of the experimental groups compared with the control group. The lung DES, IDES and elastin values of newborns in the experimental group were decreased compared with the control group. In conclusion, our results indicate that 400 mg kg(-1) day(-1) DPA, a dose that is used in the treatment of Wilson's disease, rheumatoid arthritis and cystinuria, caused the retardation of newborn maturation, a decrease in DES-IDES cross-links and levels of lung elastin of offspring in the perinatal period. Another conclusion to be drawn from this study is that even low levels of Cu depletion due to DPA administration induces a change in cross-linking in lung elastin during the perinatal period.
Collapse
Affiliation(s)
- Semra Koçtürk
- Biochemistry Department, Faculty of Medicine, Dokuz Eylul University, Turkey.
| | | | | | | | | |
Collapse
|
11
|
Wu Y, Rich C, Lincecum J, Trackman P, Kagan H, Foster J. Characterization and developmental expression of chick aortic lysyl oxidase. J Biol Chem 1992. [DOI: 10.1016/s0021-9258(18)35750-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
12
|
Abstract
Lysyl oxidase catalyzes the oxidation of peptidyl lysine to alpha-aminoadipic-delta-semialdehyde, the precursor to the covalent crosslinkages that stabilize fibers of elastin and collagen. This enzyme contains both copper and a carbonyl cofactor consistent with an o-quinone. The proposed mechanism of action is derived from available kinetic and chemical data and also can account for mechanism-based inhibition of the enzyme by specific monoamines and diamines. Recent evidence for biosynthetic precursors and for the regulation of lysyl oxidase in fibrotic and malignant diseases is discussed.
Collapse
Affiliation(s)
- H M Kagan
- Department of Biochemistry, Boston University School of Medicine, Massachusetts
| | | |
Collapse
|
13
|
Romero-Chapman N, Lee J, Tinker D, Uriu-Hare JY, Keen CL, Rucker RR. Purification, properties and influence of dietary copper on accumulation and functional activity of lysyl oxidase in rat skin. Biochem J 1991; 275 ( Pt 3):657-62. [PMID: 1674861 PMCID: PMC1150105 DOI: 10.1042/bj2750657] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Lysyl oxidase (protein-lysine 6-oxidase; EC 1.4.3.13) is a copper-containing enzyme that functions extracellularly and catalyses the oxidative deamination of peptidyl lysine. Lysyl oxidase was purified 150-175-fold from urea extracts of rat skin and uteri. Features of the enzyme were similar to those reported previously for lysyl oxidase obtained from rat aorta and bovine ligamenture. However, both approximately 40 and approximately 32 kDa polypeptide chains could be isolated from rat skin with apparent lysyl oxidase activity. Antibodies raised in chickens against the approximately 40 kDa form of lysyl oxidase detected the approximately 32 kDa form in immunoblots. Consequently it is inferred that the approximately 32 kDa form of lysyl oxidase is processed from the approximately 40 kDa form of the enzyme. The antibodies were also used to prepare anti(rat lysyl oxidase) affinity columns to facilitate the separation of lysyl oxidase from other proteins in studies to assess the extent to which lysyl oxidase serves as a reservoir for skin copper. At 16 h after an oral dose of copper, as 67Cu, about 6-8% of the total 67Cu incorporated into rat skin was found in association with lysyl oxidase. The lysyl oxidase concentration in rat skin was 2.5-7.5 nmol/g (determined by e.l.i.s.a.). Changing the copper status of rats by feeding a diet deficient in copper did not appear to influence lysyl oxidase accumulation in skin nor the percentage of incorporation of 67Cu in skin as lysyl oxidase. However, when rats were deprived of copper, the functional activity of lysyl oxidase in skin was one-third to one-half the normal values.
Collapse
Affiliation(s)
- N Romero-Chapman
- Department of Nutrition, College of Agricultural and Environmental Sciences, University of California, Davis 95616-8669
| | | | | | | | | | | |
Collapse
|
14
|
Tinker D, Romero-Chapman N, Reiser K, Hyde D, Rucker R. Elastin metabolism during recovery from impaired crosslink formation. Arch Biochem Biophys 1990; 278:326-32. [PMID: 2327789 DOI: 10.1016/0003-9861(90)90267-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Accelerated proteolysis of tropoelastin and elastin occurs in the arteries of chicks rendered nutritionally copper-deficient. The process results in part from decreased elastin crosslinking. Repletion of copper-deficient chicks with copper causes a deposition of elastin that is proteinase resistant. Resistance to proteolysis is conferred within 48 h of dietary copper repletion. Deposition of aorta elastin to near normal values occurs after 3-4 days in copper-repleted chicks. Moreover, elastolysis was enhanced when the content of dehydrolysinonorleucine in elastin was abnormally low. The chemical modification of lysyl residue in elastin by citroconylation, however, did not influence the rate of elastolysis. We have shown previously that tropoelastin messenger RNA activity and synthesis are not influenced by dietary copper deprivation (1986, Biochem. J. 236, 17-23). Rather, as demonstrated herein, the decrease in elastin content in arteries of copper-deficient birds appears to be more the result of enhanced degradation. Restoration of normal crosslinking restores deposition and imparts resistance to elastolysis. Moreover, serum appears to be a good source of elastolytic proteinases when the elastin substrate is partially or abnormally crosslinked.
Collapse
Affiliation(s)
- D Tinker
- Department of Nutrition, College of Agriculture and Environmental Sciences, University of California, Davis 95616
| | | | | | | | | |
Collapse
|
15
|
Primary structure of rat ceruloplasmin and analysis of tissue-specific gene expression during development. J Biol Chem 1990. [DOI: 10.1016/s0021-9258(19)39171-9] [Citation(s) in RCA: 93] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
16
|
Tran DD, Romero N, Tinker D, Rucker R. Dietary copper and the net accumulation of liver and lung superoxide dismutase. Nutr Res 1989. [DOI: 10.1016/s0271-5317(89)80051-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
17
|
Iredale RB, Eccleston-Joyner CA, Rucker RB, Gray SD. Ontogenic development of the elastic component of the aortic wall in spontaneously hypertensive rats. CLINICAL AND EXPERIMENTAL HYPERTENSION. PART A, THEORY AND PRACTICE 1989; 11:173-87. [PMID: 2650927 DOI: 10.3109/10641968909035335] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
In the neonatal stage of development in spontaneously hypertensive rats (SHR), previous studies have shown that arterial pressure is already significantly increased over that of normotensive WKY controls and that other hypertensive characteristics of the cardiovascular system are also in evidence. The present study describes early development of the elastic component of the aortic wall in fetal (days 17, 19, 21-22 of gestation) and neonatal (days 1, 7, 14, 21 of age) SHR and WKY, to determine whether the early pattern of elastin accumulation differs significantly in hypertensive and normotensive animals. The data indicate that in SHR there is a greater concentration of elastin in the aortic wall, a larger cross-sectional area and an increase in the number of lamellar units, both pre- and postnatally. We conclude that the differences in arterial wall structure which are associated with genetic hypertension are established early in development.
Collapse
Affiliation(s)
- R B Iredale
- Dept. of Human Physiology, University of California, Davis 95616
| | | | | | | |
Collapse
|