1
|
Clyde-Brockway CE, Ferreira CR, Flaherty EA, Paladino FV. Lipid profiling suggests species specificity and minimal seasonal variation in Pacific Green and Hawksbill Turtle plasma. PLoS One 2021; 16:e0253916. [PMID: 34280208 PMCID: PMC8289036 DOI: 10.1371/journal.pone.0253916] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 06/16/2021] [Indexed: 01/03/2023] Open
Abstract
In this study, we applied multiple reaction monitoring (MRM)-profiling to explore the relative ion intensity of lipid classes in plasma samples from sea turtles in order to profile lipids relevant to sea turtle physiology and investigate how dynamic ocean environments affect these profiles. We collected plasma samples from foraging green (Chelonia mydas, n = 28) and hawksbill (Eretmochelys imbricata, n = 16) turtles live captured in North Pacific Costa Rica in 2017. From these samples, we identified 623 MRMs belonging to 10 lipid classes (sphingomyelin, phosphatidylcholine, free fatty acid, cholesteryl ester, phosphatidylserine, phosphatidylinositol, phosphatidylglycerol, phosphatidylethanolamine, ceramide, and triacylglyceride) and one metabolite group (acyl-carnitine) present in sea turtle plasma. The relative ion intensities of most lipids (80%) were consistent between species, across seasons, and were not correlated to body size or estimated sex. Of the differences we observed, the most pronounced was the differences in relative ion intensity between species. We identified 123 lipids that had species-specific relative ion intensities. While some of this variability is likely due to green and hawksbill turtles consuming different food items, we found indications of a phylogenetic component as well. Of these, we identified 47 lipids that varied by season, most belonging to the structural phospholipid classes. Overall, more lipids (n = 39) had higher relative ion intensity in the upwelling (colder) season compared to the non-upwelling season (n = 8). Further, we found more variability in hawksbill turtles than green turtles. Here, we provide the framework in which to apply future lipid profiling in the assessment of health, physiology, and behavior in endangered sea turtles.
Collapse
Affiliation(s)
- Chelsea E. Clyde-Brockway
- Department of Forestry and Natural Resources, Purdue University, West Lafayette, IN, United States of America
- * E-mail:
| | - Christina R. Ferreira
- Bindley Bioscience Center, Purdue University, West Lafayette, IN, United States of America
| | - Elizabeth A. Flaherty
- Department of Forestry and Natural Resources, Purdue University, West Lafayette, IN, United States of America
| | - Frank V. Paladino
- Department of Biology, Purdue University-Fort Wayne, Fort Wayne, IN, United States of America
| |
Collapse
|
2
|
Airflow and Particle Deposition in Acinar Models with Interalveolar Septal Walls and Different Alveolar Numbers. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2018; 2018:3649391. [PMID: 30356402 PMCID: PMC6176334 DOI: 10.1155/2018/3649391] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 08/27/2018] [Indexed: 11/17/2022]
Abstract
Unique features exist in acinar units such as multiple alveoli, interalveolar septal walls, and pores of Kohn. However, the effects of such features on airflow and particle deposition remain not well quantified due to their structural complexity. This study aims to numerically investigate particle dynamics in acinar models with interalveolar septal walls and pores of Kohn. A simplified 4-alveoli model with well-defined geometries and a physiologically realistic 45-alveoli model was developed. A well-validated Lagrangian tracking model was used to simulate particle trajectories in the acinar models with rhythmically expanding and contracting wall motions. Both spatial and temporal dosimetries in the acinar models were analyzed. Results show that collateral ventilation exists among alveoli due to pressure imbalance. The size of interalveolar septal aperture significantly alters the spatial deposition pattern, while it has an insignificant effect on the total deposition rate. Surprisingly, the deposition rate in the 45-alveoli model is lower than that in the 4-alveoli model, indicating a stronger particle dispersion in more complex models. The gravity orientation angle has a decreasing effect on acinar deposition rates with an increasing number of alveoli retained in the model; such an effect is nearly negligible in the 45-alveoli model. Breath-holding increased particle deposition in the acinar region, which was most significant in the alveoli proximal to the duct. Increasing inhalation depth only slightly increases the fraction of deposited particles over particles entering the alveolar model but has a large influence on dispensing particles to the peripheral alveoli. Results of this study indicate that an empirical correlation for acinar deposition can be developed based on alveolar models with reduced complexity; however, what level of geometry complexity would be sufficient is yet to be determined.
Collapse
|
3
|
Orgeig S, Morrison JL, Daniels CB. Evolution, Development, and Function of the Pulmonary Surfactant System in Normal and Perturbed Environments. Compr Physiol 2015; 6:363-422. [PMID: 26756637 DOI: 10.1002/cphy.c150003] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Surfactant lipids and proteins form a surface active film at the air-liquid interface of internal gas exchange organs, including swim bladders and lungs. The system is uniquely positioned to meet both the physical challenges associated with a dynamically changing internal air-liquid interface, and the environmental challenges associated with the foreign pathogens and particles to which the internal surface is exposed. Lungs range from simple, transparent, bag-like units to complex, multilobed, compartmentalized structures. Despite this anatomical variability, the surfactant system is remarkably conserved. Here, we discuss the evolutionary origin of the surfactant system, which likely predates lungs. We describe the evolution of surfactant structure and function in invertebrates and vertebrates. We focus on changes in lipid and protein composition and surfactant function from its antiadhesive and innate immune to its alveolar stability and structural integrity functions. We discuss the biochemical, hormonal, autonomic, and mechanical factors that regulate normal surfactant secretion in mature animals. We present an analysis of the ontogeny of surfactant development among the vertebrates and the contribution of different regulatory mechanisms that control this development. We also discuss environmental (oxygen), hormonal and biochemical (glucocorticoids and glucose) and pollutant (maternal smoking, alcohol, and common "recreational" drugs) effects that impact surfactant development. On the adult surfactant system, we focus on environmental variables including temperature, pressure, and hypoxia that have shaped its evolution and we discuss the resultant biochemical, biophysical, and cellular adaptations. Finally, we discuss the effect of major modern gaseous and particulate pollutants on the lung and surfactant system.
Collapse
Affiliation(s)
- Sandra Orgeig
- School of Pharmacy & Medical Sciences and Sansom Institute for Health Research, University of South Australia, Adelaide, Australia
| | - Janna L Morrison
- School of Pharmacy & Medical Sciences and Sansom Institute for Health Research, University of South Australia, Adelaide, Australia
| | - Christopher B Daniels
- School of Pharmacy & Medical Sciences and Sansom Institute for Health Research, University of South Australia, Adelaide, Australia
| |
Collapse
|
4
|
Gutierrez DB, Fahlman A, Gardner M, Kleinhenz D, Piscitelli M, Raverty S, Haulena M, Zimba PV. Phosphatidylcholine composition of pulmonary surfactant from terrestrial and marine diving mammals. Respir Physiol Neurobiol 2015; 211:29-36. [PMID: 25812797 DOI: 10.1016/j.resp.2015.02.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Revised: 02/06/2015] [Accepted: 02/09/2015] [Indexed: 11/26/2022]
Abstract
Marine mammals are repeatedly exposed to elevated extra-thoracic pressure and alveolar collapse during diving and readily experience alveolar expansion upon inhalation - a unique capability as compared to terrestrial mammals. How marine mammal lungs overcome the challenges of frequent alveolar collapse and recruitment remains unknown. Recent studies indicate that pinniped lung surfactant has more anti-adhesive components compared to terrestrial mammals, which would aid in alveolar opening. However, pulmonary surfactant composition has not yet been investigated in odontocetes, whose physiology and diving behavior differ from pinnipeds. The aim of this study was to investigate the phosphatidylcholine (PC) composition of lung surfactants from various marine mammals and compare these to a terrestrial mammal. We found an increase in anti-adhesive PC species in harp seal (Pagophilus groenlandicus) and California sea lion (Zalophus californianus) compared to dog (Canus lupus familiaris), as well as an increase in the fluidizing PCs 16:0/14:0 and 16:0/16:1 in pinnipeds compared to odontocetes. The harbor porpoise (a representative of the odontocetes) did not have higher levels of fluidizing PCs compared to dog. Our preliminary results support previous findings that pinnipeds may have adapted unique surfactant compositions that allow them to dive at high pressures for extended periods without adverse effects. Future studies will need to investigate the differences in other surfactant components to fully assess the surfactant composition in odontocetes.
Collapse
Affiliation(s)
- Danielle B Gutierrez
- Department of Life Sciences, Texas A&M University - Corpus Christi, 6300 Ocean Drive, Corpus Christi, TX 78412, USA.
| | - Andreas Fahlman
- Comparative Physiology Laboratory, Department of Life Sciences, Texas A&M University - Corpus Christi, 6300 Ocean Drive, Corpus Christi, TX 78412, USA.
| | - Manuela Gardner
- Department of Life Sciences, Texas A&M University - Corpus Christi, 6300 Ocean Drive, Corpus Christi, TX 78412, USA.
| | - Danielle Kleinhenz
- Comparative Physiology Laboratory, Department of Life Sciences, Texas A&M University - Corpus Christi, 6300 Ocean Drive, Corpus Christi, TX 78412, USA.
| | - Marina Piscitelli
- Department of Zoology, The University of British Columbia, 6270 University Boulevard, Vancouver, BC V6T 1Z4, Canada.
| | - Stephen Raverty
- Ministry of Agriculture and Lands, Animal Health Center, 1767 Angus Campbell Road, Abbotsford, BC V3G 2M3, Canada; Fisheries Centre, The University of British Columbia, 2202 Main Mall, Vancouver, BC V6T 1Z4, Canada.
| | - Martin Haulena
- Vancouver Aquarium, 845 Avison Way, Vancouver, BC V6G 3E2, Canada.
| | - Paul V Zimba
- Department of Life Sciences, Texas A&M University - Corpus Christi, 6300 Ocean Drive, Corpus Christi, TX 78412, USA.
| |
Collapse
|
5
|
|
6
|
Orgeig S, Morrison JL, Daniels CB. Prenatal development of the pulmonary surfactant system and the influence of hypoxia. Respir Physiol Neurobiol 2011; 178:129-45. [DOI: 10.1016/j.resp.2011.05.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2011] [Revised: 05/19/2011] [Accepted: 05/20/2011] [Indexed: 01/10/2023]
|
7
|
Counihan J, Zani P, Fried B, Sherma J. Characterization and Quantification of the Polar Lipids in the LizardUta stansburianaby HPTLC-Densitometry. J LIQ CHROMATOGR R T 2009. [DOI: 10.1080/10826070902858327] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- J. Counihan
- a Department of Chemistry , Lafayette College , Easton, PA, USA
| | - P. Zani
- b Department of Biology , Lafayette College , Easton, PA, USA
| | - B. Fried
- b Department of Biology , Lafayette College , Easton, PA, USA
| | - J. Sherma
- a Department of Chemistry , Lafayette College , Easton, PA, USA
| |
Collapse
|
8
|
Orgeig S, Daniels CB, Johnston SD, Sullivan LC. The pattern of surfactant cholesterol during vertebrate evolution and development: does ontogeny recapitulate phylogeny? Reprod Fertil Dev 2005; 15:55-73. [PMID: 12729504 DOI: 10.1071/rd02087] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2002] [Accepted: 01/21/2003] [Indexed: 11/23/2022] Open
Abstract
Pulmonary surfactant is a complex mixture of phospholipids (PLs), neutral lipids and proteins that lines the inner surface of the lung. Here it modulates surface tension, thereby increasing lung compliance and preventing the transudation of fluid. In humans, pulmonary surfactant is comprised of approximately 80% PLs, 12% neutral lipids and 8% protein. In most eutherian (i.e. placental) mammals, cholesterol (Chol) comprises approximately 8-10% by weight or 14-20 mol% of both alveolar and lamellar body surfactant. It is regarded as an integral component of pulmonary surfactant, yet few studies have concentrated on its function or control. The lipid composition is highly conserved within the vertebrates, except that surfactant of teleost fish is dominated by cholesterol, whereas tetrapod pulmonary surfactant contains a high proportion of disaturated phospholipids (DSPs). The primitive Australian dipnoan lungfish Neoceratodus forsterii demonstrates a 'fish-type' surfactant profile, whereas the other derived dipnoans demonstrate a surfactant profile similar to that of tetrapods. Homology of the surfactant proteins within the vertebrates points to a single evolutionary origin for the system and indicates that fish surfactant is a 'protosurfactant'. Among the terrestrial tetrapods, the relative proportions of DSPs and cholesterol vary in response to lung structure, habitat and body temperature (Tb), but not in relation to phylogeny. The cholesterol content of surfactant is elevated in species with simple saccular lungs or in aquatic species or in species with low Tb. The DSP content is highest in complex lungs, particularly of aquatic species or species with high Tb. Cholesterol is controlled separately from the PL component in surfactant. For example, in heterothermic mammals (i.e. mammals that vary their body temperature), the relative amount of cholesterol increases in cold animals. The rapid changes in the Chol to PL ratio in response to various physiological stimuli suggest that these two components have different turnover rates and may be packaged and processed differently. In mammals, the pulmonary surfactant system develops towards the end of gestation and is characterized by an increase in the saturation of PLs in lung washings and the appearance of surfactant proteins in amniotic fluid. In general, the pattern of surfactant development is highly conserved among the amniotes. This conservation of process is demonstrated by an increase in the amount and saturation of the surfactant PLs in the final stages (>75%) of development. Although the ratios of surfactant components (Chol, PL and DSP) are remarkably similar at the time of hatching/birth, the relative timing of the maturation of the lipid profiles differs dramatically between species. The uniformity of composition between species, despite differences in lung morphology, birthing strategy and relationship to each other, implies that the ratios are critical for the onset of pulmonary ventilation. The differences in the timing, on the other hand, appear to relate primarily to birthing strategy and the onset of air breathing. As the amount of cholesterol relative to the phospholipids is highly elevated in immature lungs, the pattern of cholesterol during development and evolution represents an example of ontogeny recapitulating phylogeny. The fact that cholesterol is an important component of respiratory structures that are primitive, when they are not in use or developing in an embryo, demonstrates that this substance has important and exciting roles in surfactant. These roles still remain to be explored.
Collapse
Affiliation(s)
- Sandra Orgeig
- Environmental Biology, School of Earth and Environmental Sciences, University of Adelaide, Adelaide, SA 5005, Australia.
| | | | | | | |
Collapse
|
9
|
Daniels CB, Orgeig S, Sullivan LC, Ling N, Bennett MB, Schürch S, Val AL, Brauner CJ. The Origin and Evolution of the Surfactant System in Fish: Insights into the Evolution of Lungs and Swim Bladders. Physiol Biochem Zool 2004; 77:732-49. [PMID: 15547792 DOI: 10.1086/422058] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/19/2003] [Indexed: 11/03/2022]
Abstract
Several times throughout their radiation fish have evolved either lungs or swim bladders as gas-holding structures. Lungs and swim bladders have different ontogenetic origins and can be used either for buoyancy or as an accessory respiratory organ. Therefore, the presence of air-filled bladders or lungs in different groups of fishes is an example of convergent evolution. We propose that air breathing could not occur without the presence of a surfactant system and suggest that this system may have originated in epithelial cells lining the pharynx. Here we present new data on the surfactant system in swim bladders of three teleost fish (the air-breathing pirarucu Arapaima gigas and tarpon Megalops cyprinoides and the non-air-breathing New Zealand snapper Pagrus auratus). We determined the presence of surfactant using biochemical, biophysical, and morphological analyses and determined homology using immunohistochemical analysis of the surfactant proteins (SPs). We relate the presence and structure of the surfactant system to those previously described in the swim bladders of another teleost, the goldfish, and those of the air-breathing organs of the other members of the Osteichthyes, the more primitive air-breathing Actinopterygii and the Sarcopterygii. Snapper and tarpon swim bladders are lined with squamous and cuboidal epithelial cells, respectively, containing membrane-bound lamellar bodies. Phosphatidylcholine dominates the phospholipid (PL) profile of lavage material from all fish analyzed to date. The presence of the characteristic surfactant lipids in pirarucu and tarpon, lamellar bodies in tarpon and snapper, SP-B in tarpon and pirarucu lavage, and SPs (A, B, and D) in swim bladder tissue of the tarpon provide strong evidence that the surfactant system of teleosts is homologous with that of other fish and of tetrapods. This study is the first demonstration of the presence of SP-D in the air-breathing organs of nonmammalian species and SP-B in actinopterygian fishes. The extremely high cholesterol/disaturated PL and cholesterol/PL ratios of surfactant extracted from tarpon and pirarucu bladders and the poor surface activity of tarpon surfactant are characteristics of the surfactant system in other fishes. Despite the paraphyletic phylogeny of the Osteichthyes, their surfactant is uniform in composition and may represent the vertebrate protosurfactant.
Collapse
Affiliation(s)
- Christopher B Daniels
- School of Earth and Environmental Sciences, University of Adelaide, Adelaide, South Australia 5005, Australia.
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Sullivan LC, Orgeig S, Daniels CB. Control of the development of the pulmonary surfactant system in the saltwater crocodile, Crocodylus porosus. Am J Physiol Regul Integr Comp Physiol 2002; 283:R1164-76. [PMID: 12376410 DOI: 10.1152/ajpregu.00009.2002] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Pulmonary surfactant is a mixture of lipids and proteins that controls the surface tension of the fluid lining the inner lung. Its composition is conserved among the vertebrates. Here we hypothesize that the in ovo administration of glucocorticoids and thyroid hormones during late incubation will accelerate surfactant development in the saltwater crocodile, Crocodylus porosus. We also hypothesize that the increased maturation of the type II cells in response to hormone pretreatment will result in enhanced responsiveness of the cells to surfactant secretagogues. We sampled embryos at days 60, 68, and 75 of incubation and after hatching. We administered dexamethasone (Dex), 3,5,3'-triiodothyronine (T(3)), or a combination of both hormones (Dex + T(3)), 48 and 24 h before each prehatching time point. Lavage analysis indicated that the maturation of the phospholipids (PL) in the lungs of embryonic crocodiles occurs rapidly. Only T(3) and Dex + T(3) increased total PL in lavage at embryonic day 60, but Dex, T(3), and Dex + T(3) increased PL at day 75. The saturation of the PLs was increased by T(3) and Dex + T(3) at day 68. Swimming exercise did not increase the amount or alter the saturation of the surfactant PLs. Pretreatment of embryos with Dex, T(3), or Dex + T(3) changed the secretion profiles of the isolated type II cells. Dex + T(3) increased the response of the cells to agonists at days 60 and 68. Therefore, glucocorticoids and thyroid hormones regulate surfactant maturation in the crocodile.
Collapse
Affiliation(s)
- Lucy C Sullivan
- Department of Environmental Biology, University of Adelaide, Adelaide, South Australia 5005
| | | | | |
Collapse
|
11
|
Johnston SD, Starrs AP, Daniels CB, Orgeig S. Ontogeny of the pulmonary surfactant and antioxidant enzyme systems in the viviparous lizard, Tiliqua rugosa. Physiol Biochem Zool 2002; 75:260-72. [PMID: 12177829 DOI: 10.1086/341999] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/09/2002] [Indexed: 11/03/2022]
Abstract
The antioxidant enzyme (AOE) system protects the lung from oxidative damage. The pulmonary surfactant (PS) system lowers the interfacial pressure within the lung, improving lung compliance and aiding lung clearance. In mammals, the AOE and PS systems develop in tandem during the final 10%-20% of gestation. Here, we investigated the development of these systems in the viviparous skink, Tiliqua rugosa. The content of total phospholipid (PL), disaturated phospholipid (DSP), and cholesterol (Chol) increased in lung washings from foetal lizards with advancing gestational age. Similarly, the relative saturation of the PLs increased throughout gestation, with mid-stage 40 foetuses having a DSP/PL equivalent to newborns and adults. Maternal lizards had significantly less total PL, DSP, and Chol than nongravid and newborn lizards; however, the relative composition did not differ from nongravid animals. This presumably results from compression of the lungs under the bulk of the developing foetus. The Chol/PL and Chol/DSP ratios declined early in development such that mid-stage 40 embryos had comparable ratios to both newborns and adults. Thus, it appears that the PS system matures in a similar manner in skinks and in mammals. However, the composition of surfactant is complete some weeks before parturition, probably to enable improved survivorship of the precocial young in the event of premature birth. Unlike the surfactant lipids, the AOEs, catalase, superoxide dismutase, and glutathione peroxidase did not differ appreciably throughout gestation. It appears therefore that like the surfactant lipids the AOE system is in readiness for air breathing throughout the latter stages of gestation, possibly in preparation for premature birth. Unlike mammals, the PS and AOE systems develop independently from one another.
Collapse
Affiliation(s)
- Sonya D Johnston
- Department of Physiology, University of Adelaide, Adelaide, South Australia 5005, Australia
| | | | | | | |
Collapse
|
12
|
Nag K, Pao JS, Harbottle RR, Possmayer F, Petersen NO, Bagatolli LA. Segregation of saturated chain lipids in pulmonary surfactant films and bilayers. Biophys J 2002; 82:2041-51. [PMID: 11916861 PMCID: PMC1301999 DOI: 10.1016/s0006-3495(02)75552-5] [Citation(s) in RCA: 57] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The physical properties of organized system (bilayers and monolayers at the air water interface) composed of bovine lipid extract surfactant (BLES) were studied using correlated experimental techniques. 6-Dodecanoyl-2-dimethylamino-naphthalene (LAURDAN)-labeled giant unilamelar vesicles (mean diameter approximately 30 microm) composed of BLES were observed at different temperatures using two-photon fluorescence microscopy. As the temperature was decreased, dark domains (gel-like) appeared at physiological temperature (37 degrees C) on the surface of BLES giant unilamelar vesicles. The LAURDAN two-photon fluorescent images show that the gel-like domains span the lipid bilayer. Quantitative analysis of the LAURDAN generalized polarization function suggests the presence of a gel/fluid phase coexistence between 37 degrees C to 20 degrees C with low compositional and energetic differences between the coexisting phases. Interestingly, the microscopic scenario of the phase coexistence observed below 20 degrees C shows different domain's shape compared with that observed between 37 degrees C to 20 degrees C, suggesting the coexistence of two ordered but differently organized lipid phases on the bilayer. Epifluorescence microscopy studies of BLES monomolecular films doped with small amounts of fluorescent lipids showed the appearance and growth of dark domains (liquid condensed) dispersed in a fluorescent phase (liquid expanded) with shapes and sizes similar to those observed in BLES giant unilamelar vesicles. Our study suggests that bovine surfactant lipids can organize into discrete phases in monolayers or bilayers with equivalent temperature dependencies and may occur at physiological temperatures and surface pressures equivalent to those at the lung interface.
Collapse
Affiliation(s)
- Kaushik Nag
- Department of Obstetrics & Gynecology, University of Western Ontario, London, Ontario N6A 5A5, Canada
| | | | | | | | | | | |
Collapse
|
13
|
Johnston SD, Daniels CB, Cenzato D, Whitsett JA, Orgeig S. The pulmonary surfactant system matures upon pipping in the freshwater turtle Chelydra serpentina. J Exp Biol 2002; 205:415-25. [PMID: 11854378 DOI: 10.1242/jeb.205.3.415] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
SUMMARY
Pulmonary surfactant (PS), a mixture of phospholipids (PL), neutral lipids and surfactant proteins (SP), lowers surface tension within the lung, which increases lung compliance and improves the removal of fluid at birth. Here, we have examined the expression of thyroid transcription factor-1 (TTF-1) and the surfactant protein SP-B, and also the composition of pulmonary surfactant lipids in the developing lung of the turtle Chelydra serpentina. Lavage and lung tissue were collected from late embryonic, pipped and hatchling turtles. TTF-1, a regulator of gene expression of surfactant proteins and cell differentiation in mammals, was detected using immunohistochemistry in epithelia of the gas-exchange area and conducting airways during late development. Expression declined in hatchlings. SP-B was detected in subsets of cells within the respiratory epithelium at all stages sampled. The same cell types also stained for TTF-1. Turtle surfactant lipids matured toward the end of incubation. Maximal secretion of both total phospholipids and disaturated phospholipid (DSP) occurred at the time of pipping, coincident with the onset of breathing. The DSP/PL ratio increased after pipping, whereas cholesterol levels (Chol) increased prior to pipping. This resulted in a decrease in the Chol/PL and Chol/DSP ratios after pipping. Thus, TTF-1 and SP-B appear to be highly conserved within the vertebrates. Maturation of surfactant phospholipid content occurred with the commencement of pulmonary ventilation.
Collapse
Affiliation(s)
- Sonya D Johnston
- Department of Physiology, University of Adelaide, Adelaide SA 5005, Australia
| | | | | | | | | |
Collapse
|
14
|
Sullivan LC, Orgeig S, Wood PG, Daniels CB. The ontogeny of pulmonary surfactant secretion in the embryonic green sea turtle (Chelonia mydas). Physiol Biochem Zool 2001; 74:493-501. [PMID: 11436133 DOI: 10.1086/322158] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/07/2001] [Indexed: 11/03/2022]
Abstract
Pulmonary surfactant, consisting predominantly of phosphatidylcholine (PC), is secreted from Type II cells into the lungs of all air-breathing vertebrates, where it functions to reduce surface tension. In mammals, glucocorticoids and thyroid hormones contribute to the maturation of the surfactant system. It is possible that phylogeny, lung structure, and the environment may influence the development of the surfactant system. Here, we investigate the ontogeny of PC secretion from cocultured Type II cells and fibroblasts in the sea turtle, Chelonia mydas, following 58, 62, and 73 d of incubation and after hatching. The influence of glucocorticoids and thyroid hormones on PC secretion was also examined. Basal PC secretion was lowest at day 58 (3%) and reached a maximal secretion rate of 10% posthatch. Dexamethasone (Dex) alone stimulated PC secretion only at day 58. Triiodothyronine (T(3)) stimulated PC secretion in cells isolated from days 58 and 73 embryos and from hatchling turtles. A combination of Dex and T(3) stimulated PC secretion at all time points.
Collapse
Affiliation(s)
- L C Sullivan
- Department of Environmental Biology, University of Adelaide, Adelaide, South Australia 5005, Australia
| | | | | | | |
Collapse
|
15
|
Johnston SD, Daniels CB, Booth DT. Development of the pulmonary surfactant system in the green sea turtle, Chelonia mydas. RESPIRATION PHYSIOLOGY 2001; 126:75-84. [PMID: 11311312 DOI: 10.1016/s0034-5687(00)00225-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
This study describes the developmental changes in pulmonary surfactant (PS) lipids throughout incubation in the sea turtle, Chelonia mydas. Total phospholipid (PL), disaturated phospholipid (DSP) and cholesterol (Chol) harvested from lung washings increased with advancing incubation, where secretion was maximal at pipping, coincident with the onset of pulmonary ventilation. The DSP/PL ratio increased, whereas the Chol/PL and the Chol/DSP ratio declined throughout development. The phospholipids, therefore, are independently regulated from Chol and their development matches that of mammals. To explore whether hypoxia could elicit an effect on the development of the PS system, embryos were exposed to a chronic dose of 17% O2 for the final approximately 40% of incubation. Hypoxia did not affect incubation time, absolute, nor relative abundance of the surfactant lipids, demonstrating that the development of the system is robust and that embryonic development continues unabated under mild hypoxia. Hypoxia-incubated hatchlings had lighter wet lung weights than those from normoxia, inferring that mild hypoxia facilitates lung clearance in this species.
Collapse
Affiliation(s)
- S D Johnston
- Department of Physiology, University of Adelaide, SA 5005, Adelaide, Australia
| | | | | |
Collapse
|
16
|
Daniels CB, Orgeig S. The comparative biology of pulmonary surfactant: past, present and future. Comp Biochem Physiol A Mol Integr Physiol 2001; 129:9-36. [PMID: 11369531 DOI: 10.1016/s1095-6433(01)00303-8] [Citation(s) in RCA: 44] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Richard E. Pattle contributed enormously to the biology of the pulmonary surfactant system. However, Pattle can also be regarded as the founding father of comparative and evolutionary research of the surfactant system. He contributed eight seminal papers of the 167 publications we have located on this topic. In particular, Pattle produced a synthesis interpreting the evolution of the surfactant system that formed the foundation for the area. Prepared 25 years ago this synthesis spawned the three great discoveries in the comparative biology of the surfactant system: (1) that the surfactant system has been highly conserved throughout the enormous radiation of the air breathing vertebrates; (2) that temperature is the major selective condition that influences surfactant composition; (3) that acting as an anti-adhesive is one primitive and ubiquitous function of vertebrate surfactant. Here we review the literature and history of the comparative and evolutionary biology of the surfactant system and highlight the areas of comparative physiology that will contribute to our understanding of the surfactant system in the future. In our view the surfactant system is a neatly packaged system, located in a single cell and highly conserved, yet spectacularly complex. The surfactant system is one of the best systems we know to examine evolutionary processes in physiology as well as gain important insights into gas transfer by complex organisms.
Collapse
Affiliation(s)
- C B Daniels
- Department of Environmental Biology, Adelaide University, SA 5005, Adelaide, Australia.
| | | |
Collapse
|
17
|
Johnston SD, Daniels CB. Development of the pulmonary surfactant system in non-mammalian amniotes. Comp Biochem Physiol A Mol Integr Physiol 2001; 129:49-63. [PMID: 11369533 DOI: 10.1016/s1095-6433(01)00305-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Pulmonary surfactant (PS) is a complex mixture of phospholipids, neutral lipids and proteins that lines the inner surface of the lung. Here, it modulates surface tension thereby increasing lung compliance and preventing the transudation of fluid. In mammals, the PS system develops towards the end of gestation, characterized by an increase in the saturation of phospholipids in lung washings and the appearance of surfactant proteins in amniotic fluid. Birth, the transition from in utero to the external environment, is a rapid process. At this time, the PS system is important in opening and clearing the lung of fluid in order to initiate pulmonary ventilation. In oviparous vertebrates, escape from an egg can be a long and exhausting process. The young commence pulmonary ventilation and hatching by 'pipping' through the eggshell, where they remain for some time, presumably clearing their lungs. This paper relates changes in the development of the pulmonary surfactant system within the non-mammalian amniotes in response to birth strategy, lung morphology and phylogeny in order to determine the conservatism of this developmental process. Total phospholipid (PL), disaturated phospholipid (DSP) and cholesterol (Chol) were quantified from lung washings of embryonic and hatchling chickens, bearded dragons (oviparous), sleepy lizards (viviparous), snapping turtles and green sea turtles throughout the final stages of incubation and gestation. In all cases, the pattern of development of the pulmonary surfactant lipids was consistent with that of mammals. PL and DSP increased throughout the latter stages of development and Chol was differentially regulated from the PLs. Maximal secretion of both PL and DSP occurred at 'pipping' in oviparous reptiles, coincident with the onset of airbreathing. Similarly, the amount of DSP relative to total PL was maximal immediately after the initiation of airbreathing in chickens. The relative timing of the appearance of the lipids differed between groups. In the oviparous lizard, surfactant lipids were released over a relatively shorter time than that of the sleepy lizard, turtles, birds and mammals. Thus, despite temporal differences and vastly different lung morphologies, birth strategies and phylogenies, the overall development and maturation of the PS system is highly conserved amongst the amniotes.
Collapse
Affiliation(s)
- S D Johnston
- Department of Physiology, University of Adelaide, SA 5005, Adelaide, Australia
| | | |
Collapse
|
18
|
Johnston SD, Orgeig S, Lopatko OV, Daniels CB. Development of the pulmonary surfactant system in two oviparous vertebrates. Am J Physiol Regul Integr Comp Physiol 2000; 278:R486-93. [PMID: 10666151 DOI: 10.1152/ajpregu.2000.278.2.r486] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In birds and oviparous reptiles, hatching is often a lengthy and exhausting process, which commences with pipping followed by lung clearance and pulmonary ventilation. We examined the composition of pulmonary surfactant in the developing lungs of the chicken, Gallus gallus, and of the bearded dragon, Pogona vitticeps. Lung tissue was collected from chicken embryos at days 14, 16, 18 (prepipped), and 20 (postpipped) of incubation and from 1 day and 3 wk posthatch and adult animals. In chickens, surfactant protein A mRNA was detected using Northern blot analysis in lung tissue at all stages sampled, appearing relatively earlier in development compared with placental mammals. Chickens were lavaged at days 16, 18, and 20 of incubation and 1 day posthatch, whereas bearded dragons were lavaged at day 55, days 57-60 (postpipped), and days 58-61 (posthatched). In both species, total phospholipid (PL) from the lavage increased throughout incubation. Disaturated PL (DSP) was not measurable before 16 days of incubation in the chick embryo nor before 55 days in bearded dragons. However, the percentage of DSP/PL increased markedly throughout late development in both species. Because cholesterol (Chol) remained unchanged, the Chol/PL and Chol/DSP ratios decreased in both species. Thus the Chol and PL components are differentially regulated. The lizard surfactant system develops and matures over a relatively shorter time than that of birds and mammals. This probably reflects the highly precocial nature of hatchling reptiles.
Collapse
Affiliation(s)
- S D Johnston
- Department of Physiology, University of Adelaide, Adelaide SA 5005, Australia
| | | | | | | |
Collapse
|
19
|
Daniels CB, Wood PG, Loptako OV, Codd JR, Johnston SD, Orgeig S. Surfactant in the gas mantle of the snail Helix aspersa. Physiol Biochem Zool 1999; 72:691-8. [PMID: 10603332 DOI: 10.1086/316712] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Surfactant occurs in cyclically inflating and deflating, gas-holding structures of vertebrates to reduce the surface tension of the inner fluid lining, thereby preventing collapse and decreasing the work of inflation. Here we determined the presence of surfactant in material lavaged from the airspace in the gas mantle of the pulmonate snail Helix aspersa. Surfactant is characterized by the presence of disaturated phospholipid (DSP), especially disaturated phosphatidylcholine (PC), lavaged from the airspace, by the presence of lamellated osmiophilic bodies (LBs) in the airspaces and epithelial tissue, and by the ability of the lavage to reduce surface tension of fluid in a surface balance. Lavage had a DSP/phospholipid (PL) ratio of 0.085, compared to 0.011 in membranes, with the major PL being PC (45.3%). Cholesterol, the primary fluidizer for pulmonary surfactant, was similar in lavage and in lipids extracted from cell homogenates (cholesterol/PL: 0.04 and 0. 03, respectively). LBs were found in the tissues and airspaces. The surface activity of the lavage material is defined as the ability to reduce surface tension under compression to values much lower than that of water. In addition, surface-active lipids will vary surface tension, increasing it upon inspiration as the surface area expands. By these criteria, the surface activity of lavaged material was poor and most similar to that shown by pulmonary lavage of fish and toads. Snail surfactant displays structures, a biochemical PL profile, and biophysical properties similar to surfactant obtained from primitive fish, teleost swim bladders, the lung of the Dipnoan Neoceratodus forsteri, and the amphibian Bufo marinus. However, the cholesterol/PL and cholesterol/DSP ratios are more similar to the amphibian B. marinus than to the fish, and this similarity may indicate a crucial physicochemical relationship for these lipids.
Collapse
Affiliation(s)
- C B Daniels
- Department of Environmental Biology, University of Adelaide, Adelaide, South Australia 5005, Australia.
| | | | | | | | | | | |
Collapse
|
20
|
Veldhuizen R, Nag K, Orgeig S, Possmayer F. The role of lipids in pulmonary surfactant. BIOCHIMICA ET BIOPHYSICA ACTA 1998; 1408:90-108. [PMID: 9813256 DOI: 10.1016/s0925-4439(98)00061-1] [Citation(s) in RCA: 525] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Pulmonary surfactant is composed of approx. 90% lipids and 10% protein. This review article focusses on the lipid components of surfactant. The first sections will describe the lipid composition of mammalian surfactant and the techniques that have been utilized to study the involvement of these lipids in reducing the surface tension at an air-liquid interface, the main function of pulmonary surfactant. Subsequently, the roles of specific lipids in surfactant will be discussed. For the two main surfactant phospholipids, phosphatidylcholine and phosphatidylglycerol, specific contributions to the overall surface tension reducing properties of surfactant have been indicated. In contrast, the role of the minor phospholipid components and the neutral lipid fraction of surfactant is less clear and requires further study. Recent technical advances, such as fluorescent microscopic techniques, hold great potential for expanding our knowledge of how surfactant lipids, including some of the minor components, function. Interesting information regarding surfactant lipids has also been obtained in studies evaluating the surfactant system in non-mammalian species. In certain non-mammalian species (and at least one marsupial), surfactant lipid composition, most notably disaturated phosphatidylcholine and cholesterol, changes drastically under different conditions such as an alteration in body temperature. The impact of these changes on surfactant function provide insight into the function of these lipids, not only in non-mammalian lungs but also in the surfactant from mammalian species.
Collapse
Affiliation(s)
- R Veldhuizen
- Lawson Research Institute and Departments of Medicine and Physiology, University of Western Ontario, St. Joseph's Health Centre, London, ON N6A 4V2, Canada
| | | | | | | |
Collapse
|
21
|
Daniels CB, Lopatko OV, Orgeig S. Evolution of surface activity related functions of vertebrate pulmonary surfactant. Clin Exp Pharmacol Physiol 1998; 25:716-21. [PMID: 9750962 DOI: 10.1111/j.1440-1681.1998.tb02283.x] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
1. Pulmonary surfactant is a mixture of lipids and proteins that lines the air-liquid interface of the lungs of all vertebrates. In mammals, it functions to reduce and vary surface tension, which helps to decrease the work of breathing, provide alveolar stability and prevent alveolar oedema. The present review examines the evolution and relative importance of these surface activity related functions in the lungs of vertebrates. 2. The surface activity of surfactant from fish, amphibians, birds and most reptiles is generally very low, correlating with a low body temperature and a low disaturated phosholipid content of their surfactant. In contrast, the surfactant of those reptiles with a higher preferred body temperature, as well as that of birds and mammals, has a much higher surface activity. 3. The two main functions of surfactant in mammals are to provide alveolar stability and to increase compliance of the relatively stiff bronchoalveolar lung. As the respiratory units of most non-mammalian vertebrates are up to 1000-fold larger and up to 100-fold more compliant, surfactant is not required for these functions. 4. In non-mammals, surfactant appears to act as an anti-glue preventing the adhesion of respiratory surfaces that may occur when the lungs collapse (e.g. during diving, swallowing of prey or on expiration). Surfactant also controls lung fluid balance. These functions can be fulfilled by a surfactant with relatively low surface activity and may represent the primitive functions of surface active material in vertebrate lungs.
Collapse
Affiliation(s)
- C B Daniels
- Department of Physiology, University of Adelaide, South Australia, Australia.
| | | | | |
Collapse
|
22
|
|