1
|
Yang Q, Yasvoina M, Olvera-Barrios A, Mendes J, Zhu M, Egan C, Tufail A, Fruttiger M. Deciphering the Connection Between Microvascular Damage and Neurodegeneration in Early Diabetic Retinopathy. Diabetes 2024; 73:1883-1894. [PMID: 38968415 PMCID: PMC11493762 DOI: 10.2337/db24-0107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 06/19/2024] [Indexed: 07/07/2024]
Abstract
Diabetic retinopathy (DR), a common diabetes complication leading to vision loss, presents early clinical signs linked to retinal vasculature damage, affecting the neural retina at advanced stages. However, vascular changes and potential effects on neural cells before clinical diagnosis of DR are less well understood. To study the earliest stages of DR, we performed histological phenotyping and quantitative analysis on postmortem retinas from 10 donors with diabetes and without signs of DR (e.g., microaneurysms, hemorrhages), plus three control eyes and one donor eye with DR. We focused on capillary loss in the deeper vascular plexus (DVP) and superficial vascular plexus (SVP), and on neural retina effects. The eye with advanced DR had profound vascular and neural damage, whereas those of the 10 randomly selected donors with diabetes appeared superficially normal. The SVP was indistinguishable from those of the control eyes. In contrast, more than half of the retinas from donors with diabetes had capillary dropout in the DVP and increased capillary diameter. However, we could not detect any localized neural cell loss in the vicinity of dropout capillaries. Instead, we observed a subtle pan-retinal loss of inner nuclear layer cells in all diabetes cases (P < 0.05), independent of microvascular damage. In conclusion, our findings demonstrate a novel histological biomarker for early-stage diabetes-related damage in the human postmortem retina; the biomarker is common in people with diabetes before clinical DR diagnosis. Furthermore, the mismatch between capillary dropout and neural loss leads us to question the notion of microvascular loss directly causing neurodegeneration at the earliest stages of DR, so diabetes may affect the two readouts independently. ARTICLE HIGHLIGHTS
Collapse
Affiliation(s)
- Qian Yang
- Institute of Ophthalmology, University College London, London, U.K
| | - Marina Yasvoina
- Institute of Ophthalmology, University College London, London, U.K
- Department of Neuroimaging, Institute of Psychiatry, Psychology & Neuroscience, King’s College London, London, U.K
| | - Abraham Olvera-Barrios
- Institute of Ophthalmology, University College London, London, U.K
- Moorfields Eye Hospital NHS Foundation Trust, London, U.K
| | - Joel Mendes
- Institute of Ophthalmology, University College London, London, U.K
| | - Meidong Zhu
- New South Wales Tissue Bank, New South Wales Organ and Tissue Donation Service, Sydney, and Sydney Eye Hospital, Sydney, New South Wales, Australia
- Save Sight Institute, University of Sydney, Sydney, New South Wales, Australia
| | - Cathy Egan
- Institute of Ophthalmology, University College London, London, U.K
- Moorfields Eye Hospital NHS Foundation Trust, London, U.K
| | - Adnan Tufail
- Institute of Ophthalmology, University College London, London, U.K
- Moorfields Eye Hospital NHS Foundation Trust, London, U.K
| | - Marcus Fruttiger
- Institute of Ophthalmology, University College London, London, U.K
| |
Collapse
|
2
|
McCall MA. Pig Models in Retinal Research and Retinal Disease. Cold Spring Harb Perspect Med 2024; 14:a041296. [PMID: 37553210 PMCID: PMC10982707 DOI: 10.1101/cshperspect.a041296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2023]
Abstract
The pig has been used as a large animal model in biomedical research for many years and its use continues to increase because induced mutations phenocopy several inherited human diseases. In addition, they are continuous breeders, can be propagated by artificial insemination, have large litter sizes (on the order of mice), and can be genetically manipulated using all of the techniques that are currently available in mice. The pioneering work of Petters and colleagues set the stage for the use of the pig as a model of inherited retinal disease. In the last 10 years, the pig has become a model of choice where specific disease-causing mutations that are not phenocopied in rodents need to be studied and therapeutic approaches explored. The pig is not only used for retinal eye disease but also for the study of the cornea and lens. This review attempts to show how broad the use of the pig has become and how it has contributed to the assessment of treatments for eye disease. In the last 10 years, there have been several reviews that included the use of the pig in biomedical research (see body of the review) that included information about retinal disease. None directly discuss the use of the pig as an animal model for retinal diseases, including inherited diseases, where a single genetic mutation has been identified or for multifactorial diseases such as glaucoma and diabetic retinopathy. Although the pig is used to explore diseases of the cornea and lens, this review focuses on how and why the pig, as a large animal model, is useful for research in neural retinal disease and its treatment.
Collapse
Affiliation(s)
- Maureen A McCall
- Departments of Ophthalmology & Visual Sciences and Anatomical Sciences & Neurobiology, University of Louisville, Louisville, Kentucky 40202, USA
| |
Collapse
|
3
|
Zhao Y, Niu M, Jia Y, Yuan J, Xiang L, Dai X, Wang G, Chen H. Establishment of type 2 diabetes mellitus models using streptozotocin after 3 months high-fat diet in Bama minipigs. Anim Biotechnol 2023; 34:2295-2312. [PMID: 35749713 DOI: 10.1080/10495398.2022.2088548] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
In the past twenty years, the number of adults with diabetes has tripled. Most studies have been conducted using rodent models of type 2 diabetes mellitus (T2DM), and the developed drugs have low clinical conversion efficiency. Therefore, it is urgent to establish a more human-like large animal model to explore T2DM pathogenesis and formulate new disease prevention and control strategies. This study was designed to establish and validate a T2DM model using minipigs fed a high-fat or high-cholesterol/high-fat diet and injected with low-dose streptozotocin (STZ). We examined the influence of the STZ injection timing with a diet high in fat (HFD) compared with one high in cholesterol and fat (HCFD) on the atherosclerotic lesions accelerated by T2DM. Male Bama minipigs (n = 24) were randomly divided into five groups. The control group was fed a normal diet for 9 months. The STZ + HFD and STZ + HCFD groups were infused with 90 mg/kg STZ and then fed a high-fat diet or high-cholesterol and high-fat diet for 9 months, respectively. The HFD + STZ and HCFD + STZ groups were fed a high-fat diet or a high-cholesterol and high-fat diet, respectively, for 9 months (after 3 months, these pigs were injected intravenously with 90 mg/kg STZ). During the induction period, animal body weight, BMI, and serum GLU, INS, TG, TC, HDL-C, LDL-C, FFA, ALT, AST, CRE, and BUN were detected monthly intervals. IVGTT and insulin release tests were performed at 3-month intervals. At the end of the test, the coronary artery and abdominal aorta were examined by computed tomography and pathological observations, and the thickness of the basement membrane of the capillary of the retina and kidney glomerulus was measured under a transmission electron microscope. The serum glucose concentrations were normal in all groups except the HFD + STZ and HCFD + STZ groups. Animals fed an HFD for 9 months did not develop apparent atherosclerotic lesions, but atherosclerotic lesions were seen in the animals fed an HCFD. Hyperglycemia accelerated the formation of atherosclerotic lesions on the intimal surface of the abdominal aorta. Low-dose STZ after 3 months of HFD or HCFD successfully established a T2DM model in minipigs. The HFD did not induce apparent atherosclerotic lesions, but these were seen with the HCFD. Hyperglycemia accelerated atherosclerosis in the minipigs.
Collapse
Affiliation(s)
- Yuqiong Zhao
- Laboratory Animal Center, Chinese PLA General Hospital, Beijing, China
| | - Miaomiao Niu
- Laboratory Animal Center, Chinese PLA General Hospital, Beijing, China
| | - Yunxiao Jia
- Laboratory Animal Center, Chinese PLA General Hospital, Beijing, China
| | - Jifang Yuan
- Laboratory Animal Center, Chinese PLA General Hospital, Beijing, China
| | - Lei Xiang
- Laboratory Animal Center, Chinese PLA General Hospital, Beijing, China
| | - Xin Dai
- Laboratory Animal Center, Chinese PLA General Hospital, Beijing, China
| | - Guisheng Wang
- Radiology Department of No. 3 Clinical Center, Chinese PLA General Hospital, Beijing, China
| | - Hua Chen
- Laboratory Animal Center, Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
4
|
Sadikan MZ, Abdul Nasir NA, Lambuk L, Mohamud R, Reshidan NH, Low E, Singar SA, Mohmad Sabere AS, Iezhitsa I, Agarwal R. Diabetic retinopathy: a comprehensive update on in vivo, in vitro and ex vivo experimental models. BMC Ophthalmol 2023; 23:421. [PMID: 37858128 PMCID: PMC10588156 DOI: 10.1186/s12886-023-03155-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 09/26/2023] [Indexed: 10/21/2023] Open
Abstract
Diabetic retinopathy (DR), one of the leading causes of visual impairment and blindness worldwide, is one of the major microvascular complications in diabetes mellitus (DM). Globally, DR prevalence among DM patients is 25%, and 6% have vision-threatening problems among them. With the higher incidence of DM globally, more DR cases are expected to be seen in the future. In order to comprehend the pathophysiological mechanism of DR in humans and discover potential novel substances for the treatment of DR, investigations are typically conducted using various experimental models. Among the experimental models, in vivo models have contributed significantly to understanding DR pathogenesis. There are several types of in vivo models for DR research, which include chemical-induced, surgical-induced, diet-induced, and genetic models. Similarly, for the in vitro models, there are several cell types that are utilised in DR research, such as retinal endothelial cells, Müller cells, and glial cells. With the advancement of DR research, it is essential to have a comprehensive update on the various experimental models utilised to mimic DR environment. This review provides the update on the in vitro, in vivo, and ex vivo models used in DR research, focusing on their features, advantages, and limitations.
Collapse
Affiliation(s)
- Muhammad Zulfiqah Sadikan
- Department of Pharmacology, Faculty of Medicine, Manipal University College Malaysia (MUCM), Bukit Baru, 75150, Melaka, Malaysia
| | - Nurul Alimah Abdul Nasir
- Centre for Neuroscience Research (NeuRon), Faculty of Medicine, Universiti Teknologi MARA, 47000, Sungai Buloh, Selangor, Malaysia.
| | - Lidawani Lambuk
- Department of Immunology, School of Medical Sciences, Universiti Sains Malaysia, 16150, Kubang Kerian, Kelantan, Malaysia
| | - Rohimah Mohamud
- Department of Immunology, School of Medical Sciences, Universiti Sains Malaysia, 16150, Kubang Kerian, Kelantan, Malaysia
| | - Nur Hidayah Reshidan
- School of Biology, Faculty of Applied Sciences, Universiti Teknologi MARA, 40450, Shah Alam, Selangor, Malaysia
| | - Evon Low
- Ageing Biology Centre, Newcastle University, NE1 7RU, Newcastle upon Tyne, UK
| | - Saiful Anuar Singar
- Department of Nutrition and Integrative Physiology, College of Health and Human Sciences, Florida State University, 32306, Tallahassee, FL, USA
| | - Awis Sukarni Mohmad Sabere
- Kulliyyah of Pharmacy, International Islamic University Malaysia, Jalan Sultan Ahmad Shah, Bandar Indera Mahkota, 25200, Kuantan, Pahang, Malaysia
| | - Igor Iezhitsa
- School of Medicine, International Medical University, 57000, Bukit Jalil, Kuala Lumpur, Malaysia
- Department of Pharmacology and Bioinformatics, Volgograd State Medical University, Pavshikh Bortsov sq. 1, 400131 , Volgograd, Russian Federation
| | - Renu Agarwal
- School of Medicine, International Medical University, 57000, Bukit Jalil, Kuala Lumpur, Malaysia
| |
Collapse
|
5
|
Ren HW, Yu W, Wang YN, Zhang XY, Song SQ, Gong SY, Meng LY, Gan C, Liu BJ, Gong Q. Effects of autophagy inhibitor 3-methyladenine on a diabetic mice model. Int J Ophthalmol 2023; 16:1456-1464. [PMID: 37724274 PMCID: PMC10475630 DOI: 10.18240/ijo.2023.09.12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 06/21/2023] [Indexed: 09/20/2023] Open
Abstract
AIM To investigate the role of autophagy inhibitor 3-methyladenine (3-MA) on a diabetic mice model (DM) and the potential mechanism. METHODS Male C57BL/6J mice were randomly divided into a normal control group (NC group) and an DM group. DM were induced by multiple low-dose intraperitoneal injection of streptozotocin (STZ) 60 mg/kg·d for 5 consecutive days. DM mice were randomly subdivided into untreated group (DM group), 3-MA (10 mg/kg·d by gavage) treated group (DM+3-MA group) and chloroquine (CQ; 50 mg/kg by intraperitoneal injection) treated group (DM+CQ group). The fasting blood glucose (FBG) levels were recorded every week. At the end of experiment, retinal samples were collected. The expression levels of pro-apoptotic proteins cleaved caspase-3, cleaved poly ADP-ribose polymerase 1 (PARP1) and Bax, anti-apoptotic protein Bcl-2, fibrosis-associated proteins Fibronectin and type 1 collagen α1 chain (COL1A1), vascular endothelial growth factor (VEGF), inflammatory factors interleukin (IL)-1β and tumor necrosis factor (TNF)-α, as well as autophagy related proteins LC3, Beclin-1 and P62 were determined by Western blotting. The oxidative stress indicators 8-hydroxydeoxyguanosine (8-OHdG) and malondialdehyde (MDA) were detected by commercial kits. RESULTS Both 3-MA and CQ had short-term hypoglycemic effect on FBG and reduced the expression of VEGF and inflammatory factors IL-1β and TNF-α in DM mice. 3-MA also significantly alleviated oxidative stress indicators 8-OHdG and MDA, decreased the expression of fibrosis-related proteins Fibronectin and COL1A1, pro-apoptotic proteins cleaved caspase-3, cleaved PARP1, as well as the ratio of Bax/Bcl-2. CQ had no significant impact on the oxidative stress indicators, fibrosis, and apoptosis related proteins. The results of Western blotting for autophagy related proteins showed that the ratio of LC3 II/LC3 I and the expression of Beclin-1 in the retina of DM mice were decreased by 3-MA treatment, and the expression of P62 was further increased by CQ treatment. CONCLUSION 3-MA has anti-apoptotic and anti-fibrotic effects on the retina of DM mice, and can attenuate retinal oxidative stress, VEGF expression and the production of inflammatory factors in the retina of DM mice. The underlying mechanism of the above effects of 3-MA may be related to its inhibition of early autophagy and hypoglycemic effect.
Collapse
Affiliation(s)
- Hai-Wen Ren
- Health Science Center, Yangtze University, Jingzhou 434023, Hubei Province, China
- Department of Clinical Laboratory, Bishan Hospital of Chongqing Medical University, Chongqing 402760, China
| | - Wen Yu
- Health Science Center, Yangtze University, Jingzhou 434023, Hubei Province, China
| | - Ya-Nan Wang
- Health Science Center, Yangtze University, Jingzhou 434023, Hubei Province, China
| | - Xin-Yi Zhang
- Health Science Center, Yangtze University, Jingzhou 434023, Hubei Province, China
| | - Shun-Qiong Song
- Health Science Center, Yangtze University, Jingzhou 434023, Hubei Province, China
| | - Shu-Yu Gong
- Health Science Center, Yangtze University, Jingzhou 434023, Hubei Province, China
| | - Ling-Yao Meng
- Health Science Center, Yangtze University, Jingzhou 434023, Hubei Province, China
| | - Chen Gan
- Health Science Center, Yangtze University, Jingzhou 434023, Hubei Province, China
| | - Ben-Ju Liu
- Department of Human Anatomy, Medical School of Yangtze University, Jingzhou 434023, Hubei Province, China
| | - Quan Gong
- Clinical Molecular Immunology Center, Medical School of Yangtze University, Jingzhou 434023, Hubei Province, China
- Department of Immunology, Medical School of Yangtze University, Jingzhou 434023, Hubei Province, China
| |
Collapse
|
6
|
Resnikoff HA, Miller CG, Schwarzbauer JE. Implications of fibrotic extracellular matrix in diabetic retinopathy. Exp Biol Med (Maywood) 2022; 247:1093-1102. [PMID: 35410521 PMCID: PMC9335512 DOI: 10.1177/15353702221087175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Fibrosis is an accumulation of extracellular matrix (ECM) proteins and fibers in a disordered fashion, which compromises cell and tissue functions. High glucose-induced fibrosis, a major pathophysiological change of diabetic retinopathy (DR), severely affects vision by compromising the retinal vasculature and ultimately disrupting retinal tissue organization. The retina is a highly vascularized, stratified tissue with multiple cell types organized into distinct layers. Chronically high blood glucose stimulates certain retinal cells to increase production and assembly of ECM proteins resulting in excess ECM deposition primarily in the capillary walls on the basal side of the endothelium. This subendothelial fibrosis of the capillaries is the earliest histological change in the diabetic retina and has been linked to the vascular dysfunction that underlies DR. Proteins that are not normally abundant in the capillary basement membrane (BM) matrix, such as the ECM protein fibronectin, are assembled in significant quantities, disrupting the architecture of the BM and altering its properties. Cell culture models have identified multiple mechanisms through which elevated glucose can stimulate fibronectin matrix assembly, including intracellular signaling pathways, alternative splicing, and non-enzymatic glycation of the ECM. The fibrotic subendothelial matrix alters cell adhesion and supports further accumulation of other ECM proteins leading to disruption of endothelial cell-cell junctions. We review evidence supporting the notion that these molecular changes in the ECM contribute to the pathogenesis of DR, including vascular leakage, loss of endothelial cells and pericytes, changes in blood flow, and neovascularization. We propose that the accumulation of ECM, especially fibronectin matrix, first around the vasculature and later in extravascular locations, plays a critical role in DR and vision loss. Strategies for DR prevention and treatment should consider the ECM a potential therapeutic target.
Collapse
Affiliation(s)
- Henry A Resnikoff
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544-1014, USA
| | - Charles G Miller
- Department of Ophthalmology, Scheie Eye Institute, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jean E Schwarzbauer
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544-1014, USA,Jean E Schwarzbauer.
| |
Collapse
|
7
|
Effect of the ethyl acetate extract of Sophora flavescens Aiton on diabetic retinopathy based on untargeted retinal metabolomics. J Chromatogr B Analyt Technol Biomed Life Sci 2022; 1198:123233. [DOI: 10.1016/j.jchromb.2022.123233] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Revised: 02/15/2022] [Accepted: 03/26/2022] [Indexed: 12/22/2022]
|
8
|
Animal models of diabetic microvascular complications: Relevance to clinical features. Biomed Pharmacother 2021; 145:112305. [PMID: 34872802 DOI: 10.1016/j.biopha.2021.112305] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Revised: 09/29/2021] [Accepted: 10/05/2021] [Indexed: 02/06/2023] Open
Abstract
Diabetes has become more common in recent years worldwide, and this growth is projected to continue in the future. The primary concern with diabetes is developing various complications, which significantly contribute to the disease's mortality and morbidity. Over time, the condition progresses from the pre-diabetic to the diabetic stage and then to the development of complications. Years and enormous resources are required to evaluate pharmacological interventions to prevent or delay the progression of disease or complications in humans. Appropriate screening models are required to gain a better understanding of both pathogenesis and potential therapeutic agents. Different species of animals are used to evaluate the pharmacological potentials and study the pathogenesis of the disease. Animal models are essential for research because they represent most of the structural, functional, and biochemical characteristics of human diseases. An ideal screening model should mimic the pathogenesis of the disease with identifiable characteristics. A thorough understanding of animal models is required for the experimental design to select an appropriate model. Each animal model has certain advantages and limitations. The present manuscript describes the animal models and their diagnostic characteristics to evaluate microvascular diabetic complications.
Collapse
|
9
|
Bódi N, Mezei D, Chakraborty P, Szalai Z, Barta BP, Balázs J, Rázga Z, Hermesz E, Bagyánszki M. Diabetes-related intestinal region-specific thickening of ganglionic basement membrane and regionally decreased matrix metalloproteinase 9 expression in myenteric ganglia. World J Diabetes 2021; 12:658-672. [PMID: 33995853 PMCID: PMC8107976 DOI: 10.4239/wjd.v12.i5.658] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 03/10/2021] [Accepted: 04/22/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND The importance of the neuronal microenvironment has been recently highlighted in gut region-specific diabetic enteric neuropathy. Regionally distinct thickening of endothelial basement membrane (BM) of intestinal capillaries supplying the myenteric ganglia coincide with neuronal damage in different intestinal segments. Accelerated synthesis of matrix molecules and reduced degradation of matrix components may also contribute to the imbalance of extracellular matrix dynamics resulting in BM thickening. Among the matrix degrading proteinases, matrix metalloproteinase 9 (MMP9) and its tissue inhibitor (TIMP1) are essential in regulating extracellular matrix remodelling.
AIM To evaluate the intestinal segment-specific effects of diabetes and insulin replacement on ganglionic BM thickness, MMP9 and TIMP1 expression.
METHODS Ten weeks after the onset of hyperglycaemia gut segments were taken from the duodenum and ileum of streptozotocin-induced diabetic, insulin-treated diabetic and sex- and age-matched control rats. The thickness of BM surrounding myenteric ganglia was measured by electron microscopic morphometry. Whole-mount preparations of myenteric plexus were prepared from the different gut regions for MMP9/TIMP1 double-labelling fluorescent immunohistochemistry. Post-embedding immunogold electron microscopy was applied on ultrathin sections to evaluate the MMP9 and TIMP1 expression in myenteric ganglia and their microenvironment from different gut segments and conditions. The MMP9 and TIMP1 messenger ribonucleic acid (mRNA) level was measured by quantitative polymerase chain reaction.
RESULTS Ten weeks after the onset of hyperglycaemia, the ganglionic BM was significantly thickened in the diabetic ileum, while it remained intact in the duodenum. The immediate insulin treatment prevented the diabetes-related thickening of the BM surrounding the ileal myenteric ganglia. Quantification of particle density showed an increasing tendency for MMP9 and a decreasing tendency for TIMP1 from the proximal to the distal small intestine under control conditions. In the diabetic ileum, the number of MMP9-indicating gold particles decreased in myenteric ganglia, endothelial cells of capillaries and intestinal smooth muscle cells, however, it remained unchanged in all duodenal compartments. The MMP9/TIMP1 ratio was also decreased in ileal ganglia only. However, a marked segment-specific induction was revealed in MMP9 and TIMP1 at the mRNA levels.
CONCLUSION These findings support that the regional decrease in MMP9 expression in myenteric ganglia and their microenvironment may contribute to extracellular matrix accumulation, resulting in a region-specific thickening of ganglionic BM.
Collapse
Affiliation(s)
- Nikolett Bódi
- Department of Physiology, Anatomy and Neuroscience, Faculty of Science and Informatics, University of Szeged, Szeged 6726, Hungary
| | - Diána Mezei
- Department of Physiology, Anatomy and Neuroscience, Faculty of Science and Informatics, University of Szeged, Szeged 6726, Hungary
| | - Payal Chakraborty
- Department of Biochemistry and Molecular Biology, Faculty of Science and Informatics, University of Szeged, Szeged 6726, Hungary
| | - Zita Szalai
- Department of Physiology, Anatomy and Neuroscience, Faculty of Science and Informatics, University of Szeged, Szeged 6726, Hungary
| | - Bence Pál Barta
- Department of Physiology, Anatomy and Neuroscience, Faculty of Science and Informatics, University of Szeged, Szeged 6726, Hungary
| | - János Balázs
- Department of Physiology, Anatomy and Neuroscience, Faculty of Science and Informatics, University of Szeged, Szeged 6726, Hungary
| | - Zsolt Rázga
- Department of Pathology, Faculty of Medicine, University of Szeged, Szeged 6720, Hungary
| | - Edit Hermesz
- Department of Biochemistry and Molecular Biology, Faculty of Science and Informatics, University of Szeged, Szeged 6726, Hungary
| | - Mária Bagyánszki
- Department of Physiology, Anatomy and Neuroscience, Faculty of Science and Informatics, University of Szeged, Szeged 6726, Hungary
| |
Collapse
|
10
|
Roy S, Kim D. Retinal capillary basement membrane thickening: Role in the pathogenesis of diabetic retinopathy. Prog Retin Eye Res 2020; 82:100903. [PMID: 32950677 DOI: 10.1016/j.preteyeres.2020.100903] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 09/08/2020] [Accepted: 09/15/2020] [Indexed: 02/07/2023]
Abstract
Vascular basement membrane (BM) thickening has been hailed over half a century as the most prominent histological lesion in diabetic microangiopathy, and represents an early ultrastructural change in diabetic retinopathy (DR). Although vascular complications of DR have been clinically well established, specific cellular and molecular mechanisms underlying dysfunction of small vessels are not well understood. In DR, small vessels develop insidiously as BM thickening occurs. Studies examining high resolution imaging data have established BM thickening as one of the foremost structural abnormalities of retinal capillaries. This fundamental structural change develops, at least in part, from excess accumulation of BM components. Although BM thickening is closely associated with the development of DR, its contributory role in the pathogenesis of DR is coming to light recently. DR develops over several years before clinical manifestations appear, and it is during this clinically silent period that hyperglycemia induces excess synthesis of BM components, contributes to vascular BM thickening, and promotes structural and functional lesions including cell death and vascular leakage in the diabetic retina. Studies using animal models show promising results in preventing BM thickening with subsequent beneficial effects. Several gene regulatory approaches are being developed to prevent excess synthesis of vascular BM components in an effort to reduce BM thickening. This review highlights current understanding of capillary BM thickening development, role of BM thickening in retinal vascular lesions, and strategies for preventing vascular BM thickening as a potential therapeutic strategy in alleviating characteristic lesions associated with DR.
Collapse
Affiliation(s)
- Sayon Roy
- Boston University School of Medicine, Boston, MA, USA.
| | - Dongjoon Kim
- Boston University School of Medicine, Boston, MA, USA
| |
Collapse
|
11
|
Niu M, Liu Y, Xiang L, Zhao Y, Yuan J, Jia Y, Dai X, Chen H. Long-term case study of a Wuzhishan miniature pig with diabetes. Animal Model Exp Med 2020; 3:22-31. [PMID: 32318656 PMCID: PMC7167240 DOI: 10.1002/ame2.12098] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 11/28/2019] [Accepted: 12/11/2019] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Miniature pigs are attractive animal models for exploring diabetes because they are similar to humans in terms of physiological structure and metabolism. However, little is known about the complications of diabetes in pigs. METHODS In this study, a 28-month observation of a Wuzhishan miniature pig with streptozotocin (STZ)-induced (120 mg/kg) diabetes was conducted, to investigate diabetes-related complications and the possibility of self-recovery in miniature pigs. Blood glucose, serum and urinary biochemistry was measured, and histopathologic examinations of eyes, kidney and pancreas were made. RESULTS During the observation, diabetic complications of eyes and kidney were observed. The eye complications included bilateral cataracts in the 15th month and degeneration of inner retina and microaneurysm in the 28th month. Kidney complications included glomerular mesangial expansion, focal segmental glomerular sclerosis, and renal tubular epithelial degeneration, but no proteinuria was observed. By 28 months after the application of STZ, with no treatment given, blood glucose had recovered and the number of pancreatic islet beta-cells had increased significantly. CONCLUSIONS We showed that the STZ-induced diabetes model in miniature pigs could accurately mimic the pathological changes of human diabetes, and that pancreatic islet beta-cell regeneration did occur in an adult miniature pig, providing a new means for exploring diabetic complications and pancreatic islet beta-cell regeneration.
Collapse
Affiliation(s)
- Miaomiao Niu
- Laboratory Animal CenterChinese PLA General HospitalBeijingPR China
| | - Yaqian Liu
- Laboratory Animal CenterChinese PLA General HospitalBeijingPR China
| | - Lei Xiang
- Laboratory Animal CenterChinese PLA General HospitalBeijingPR China
| | - Yuqiong Zhao
- Laboratory Animal CenterChinese PLA General HospitalBeijingPR China
| | - Jifang Yuan
- Laboratory Animal CenterChinese PLA General HospitalBeijingPR China
| | - Yunxiao Jia
- Laboratory Animal CenterChinese PLA General HospitalBeijingPR China
| | - Xin Dai
- Laboratory Animal CenterChinese PLA General HospitalBeijingPR China
| | - Hua Chen
- Laboratory Animal CenterChinese PLA General HospitalBeijingPR China
- State Key Laboratory of Kidney DiseasesChinese PLA General HospitalBeijingPR China
| |
Collapse
|
12
|
Mitochondrial Structural Changes in the Pathogenesis of Diabetic Retinopathy. J Clin Med 2019; 8:jcm8091363. [PMID: 31480638 PMCID: PMC6780143 DOI: 10.3390/jcm8091363] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 08/27/2019] [Accepted: 08/29/2019] [Indexed: 12/24/2022] Open
Abstract
At the core of proper mitochondrial functionality is the maintenance of its structure and morphology. Physical changes in mitochondrial structure alter metabolic pathways inside mitochondria, affect mitochondrial turnover, disturb mitochondrial dynamics, and promote mitochondrial fragmentation, ultimately triggering apoptosis. In high glucose condition, increased mitochondrial fragmentation contributes to apoptotic death in retinal vascular and Müller cells. Although alterations in mitochondrial morphology have been detected in several diabetic tissues, it remains to be established in the vascular cells of the diabetic retina. From a mechanistic standpoint, our current work supports the notion that increased expression of fission genes and decreased expression of fusion genes are involved in promoting excessive mitochondrial fragmentation. While mechanistic insights are only beginning to reveal how high glucose alters mitochondrial morphology, the consequences are clearly seen as release of cytochrome c from fragmented mitochondria triggers apoptosis. Current findings raise the prospect of targeting excessive mitochondrial fragmentation as a potential therapeutic strategy for treatment of diabetic retinopathy. While biochemical and epigenetic changes have been reported to be associated with mitochondrial dysfunction, this review focuses on alterations in mitochondrial morphology, and their impact on mitochondrial function and pathogenesis of diabetic retinopathy.
Collapse
|
13
|
Liu Y, Wang C, Su G. Cellular Signaling in Müller Glia: Progenitor Cells for Regenerative and Neuroprotective Responses in Pharmacological Models of Retinal Degeneration. J Ophthalmol 2019; 2019:5743109. [PMID: 31016037 PMCID: PMC6444254 DOI: 10.1155/2019/5743109] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 02/28/2019] [Indexed: 12/13/2022] Open
Abstract
Retinal degenerative diseases are a leading cause of visual impairment or blindness. There are many therapies for delaying the progression of vision loss but no curative strategies currently. Stimulating intrinsic neuronal regeneration is a potential approach to therapy in retinal degenerative diseases. In contrast to stem cells, as embryonic/pluripotent stem cell-derived retinal progenitor cell or mesenchymal stem cells, Müller glia provided an endogenous cellular source for regenerative therapy in the retina. Müller glia are a major component of the retina and considerable evidence suggested these cells can be induced to produce the lost neurons in several species. Understanding the specific characteristic of Müller glia to generate lost neurons will inspire an attractive and alternative therapeutic strategy for treating visual impairment with regenerative research. This review briefly provides the different signal transduction mechanisms which are underlying Müller cell-mediated neuroprotection and neuron regeneration and discusses recent advances about regeneration from Müller glia-derived progenitors.
Collapse
Affiliation(s)
- Yang Liu
- Eye Center, The Second Hospital of Jilin University, 218 Ziqiang Street, Changchun, Jilin 130021, China
| | - Chenguang Wang
- Eye Center, The Second Hospital of Jilin University, 218 Ziqiang Street, Changchun, Jilin 130021, China
| | - Guanfang Su
- Eye Center, The Second Hospital of Jilin University, 218 Ziqiang Street, Changchun, Jilin 130021, China
| |
Collapse
|
14
|
Lim RR, Grant DG, Olver TD, Padilla J, Czajkowski AM, Schnurbusch TR, Mohan RR, Hainsworth DP, Walters EM, Chaurasia SS. Young Ossabaw Pigs Fed a Western Diet Exhibit Early Signs of Diabetic Retinopathy. Invest Ophthalmol Vis Sci 2019; 59:2325-2338. [PMID: 29847637 PMCID: PMC5937800 DOI: 10.1167/iovs.17-23616] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Purpose Recent clinical data suggest an increasing prevalence of obesity and type 2 diabetes in adolescents, placing them at high risk of developing diabetic retinopathy during adult working years. The present study was designed to characterize the early retinal and microvascular alterations in young Ossabaw pigs fed a Western diet, described as a model of metabolic syndrome genetically predisposed to type 2 diabetes. Methods Four-month-old Ossabaw miniature pigs were divided into two groups, lean and diet-induced obesity. Obese pigs were fed a Western diet with high-fat/high-fructose corn syrup/high-choleric content for 10 weeks. Blood and retina were collected for biochemical profiling, trypsin digest, flatmounts, Fluoro-Jade C staining, electron microscopy, quantitative PCR, immunohistochemistry, and Western blots. Results Young Ossabaw pigs had elevated fasting blood glucose after feeding on a Western diet for 10 weeks. Their retina showed disrupted cellular architecture across neural layers, with numerous large vacuoles seen in cell bodies of the inner nuclear layer. Microvessels in the obese animals exhibited thickened basement membrane, along with pericyte ghosts and acellular capillaries. The pericyte to endothelial ratio decreased significantly. Retina flatmounts from obese pigs displayed reduced capillary density, numerous terminal capillary loops, and string vessels, which stained collagen IV but not isolectin IB4. Quantitative PCR and Western blots showed significantly high levels of basement membrane proteins collagen IV and fibronectin in obese pigs. Conclusions This is the first study to describe the ultrastructural neuronal and vascular changes in the retina of young Ossabaw pigs fed a Western diet, simulating early signs of diabetic retinopathy pathogenesis.
Collapse
Affiliation(s)
- Rayne R Lim
- Ocular Immunology and Angiogenesis Lab, Department of Veterinary Medicine & Surgery, University of Missouri, Columbia, Missouri, United States.,Department of Biomedical Sciences, University of Missouri, Columbia, Missouri, United States.,Harry S. Truman Memorial Veteran Hospital, Columbia, Missouri, United States
| | - DeAna G Grant
- Electron Microscopy Core, University of Missouri, Columbia, Missouri, United States
| | - T Dylan Olver
- Department of Biomedical Sciences, University of Missouri, Columbia, Missouri, United States
| | - Jaume Padilla
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, Missouri, United States.,Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri, United States.,Child Health, University of Missouri, Columbia, Missouri, United States
| | - Alana M Czajkowski
- National Swine Resource and Research Center, University of Missouri, Columbia, Missouri, United States
| | - Teagan R Schnurbusch
- National Swine Resource and Research Center, University of Missouri, Columbia, Missouri, United States
| | - Rajiv R Mohan
- Ocular Immunology and Angiogenesis Lab, Department of Veterinary Medicine & Surgery, University of Missouri, Columbia, Missouri, United States.,Department of Biomedical Sciences, University of Missouri, Columbia, Missouri, United States.,Harry S. Truman Memorial Veteran Hospital, Columbia, Missouri, United States.,Mason Eye Institute, University of Missouri, Columbia, Missouri, United States
| | - Dean P Hainsworth
- Mason Eye Institute, University of Missouri, Columbia, Missouri, United States
| | - Eric M Walters
- National Swine Resource and Research Center, University of Missouri, Columbia, Missouri, United States
| | - Shyam S Chaurasia
- Ocular Immunology and Angiogenesis Lab, Department of Veterinary Medicine & Surgery, University of Missouri, Columbia, Missouri, United States.,Department of Biomedical Sciences, University of Missouri, Columbia, Missouri, United States.,Harry S. Truman Memorial Veteran Hospital, Columbia, Missouri, United States
| |
Collapse
|
15
|
Joy SS, Siddiqui K. Molecular and Pathophysiological Mechanisms of Diabetic Retinopathy in Relation to Adhesion Molecules. Curr Diabetes Rev 2019; 15:363-371. [PMID: 30332969 DOI: 10.2174/1573399814666181017103844] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2018] [Revised: 08/11/2018] [Accepted: 10/11/2018] [Indexed: 01/13/2023]
Abstract
Diabetic Retinopathy (DR) is considered as a most common microvascular complication of diabetes affected by one in three people who are suffered for diabetes. Several pathophysiological mechanisms and adhesion molecules may play an etiologic role in the development of diabetes and its complications. The adhesion molecules located on both leucocytes and endothelial cells and considered as important molecules which can assessed the endothelial function. The functions of adhesion molecules involved in the cellular margination, slow rolling and transmigration of leukocytes. Hyperglycemia and its immediate biochemical sequelae or the low-grade inflammation directly alter endothelial function or influence endothelial cell functioning indirectly by induce oxidative stress and activates leukocytosis and leukocyte-endothelial cell interactions by the increased expression of adhesion molecules, growth factors, inflammatory factors, chemokines etc. and results DR. This review summarized the several pathophysiological mechanisms and role of adhesion molecules in disruption of homeostasis of vasculature by leukocytes in the development of diabetic retinopathy.
Collapse
Affiliation(s)
- Salini Scaria Joy
- Strategic Center for Diabetes Research, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Khalid Siddiqui
- Strategic Center for Diabetes Research, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
16
|
Abstract
PURPOSE OF REVIEW Diabetic retinopathy (DR) is one of the most common complications associated with chronic hyperglycemia seen in patients with diabetes mellitus. While many facets of DR are still not fully understood, animal studies have contributed significantly to understanding the etiology and progression of human DR. This review provides a comprehensive discussion of the induced and genetic DR models in different species and the advantages and disadvantages of each model. RECENT FINDINGS Rodents are the most commonly used models, though dogs develop the most similar morphological retinal lesions as those seen in humans, and pigs and zebrafish have similar vasculature and retinal structures to humans. Nonhuman primates can also develop diabetes mellitus spontaneously or have focal lesions induced to simulate retinal neovascular disease observed in individuals with DR. DR results in vascular changes and dysfunction of the neural, glial, and pancreatic β cells. Currently, no model completely recapitulates the full pathophysiology of neuronal and vascular changes that occur at each stage of diabetic retinopathy; however, each model recapitulates many of the disease phenotypes.
Collapse
Affiliation(s)
- Ana Maria Olivares
- Schepens Eye Research Institute, Massachusetts Eye and Ear Infirmary, Department of Ophthalmology, Harvard Medical School, 20 Staniford Street, Boston, MA 02114 USA
| | - Kristen Althoff
- Schepens Eye Research Institute, Massachusetts Eye and Ear Infirmary, Department of Ophthalmology, Harvard Medical School, 20 Staniford Street, Boston, MA 02114 USA
| | - Gloria Fanghua Chen
- Schepens Eye Research Institute, Massachusetts Eye and Ear Infirmary, Department of Ophthalmology, Harvard Medical School, 20 Staniford Street, Boston, MA 02114 USA
| | - Siqi Wu
- Schepens Eye Research Institute, Massachusetts Eye and Ear Infirmary, Department of Ophthalmology, Harvard Medical School, 20 Staniford Street, Boston, MA 02114 USA
| | | | | | - Neena Haider
- Schepens Eye Research Institute, Massachusetts Eye and Ear Infirmary, Department of Ophthalmology, Harvard Medical School, 20 Staniford Street, Boston, MA 02114 USA
| |
Collapse
|
17
|
Sadar S, Kaspate D, Vyawahare N. Protective effect of L-glutamine against diabetes-induced nephropathy in experimental animal: Role of KIM-1, NGAL, TGF-β1, and collagen-1. Ren Fail 2016; 38:1483-1495. [PMID: 27756197 DOI: 10.1080/0886022x.2016.1227918] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Diabetic nephropathy is a serious microvascular complication and one of the main causes of end-stage renal disease. L-Glutamine (LG) is naturally occurring amino acids with antidiabetic and antioxidant potential. The aim of present investigation was to evaluate the potential of LG against streptozotocin (STZ)-induced diabetic nephropathy (DN) in laboratory rats. DN was induced in male Wistar rats (200-220 g) by intraperitoneal administration of STZ (55 mg/kg). Animals were treated orally with either distilled water (10 mg/kg) or LG (250, 500, and 1000 mg/kg) or Sitagliptin (5 mg/kg). Various biochemical, molecular, and histological (hematoxylin-eosin and Masson's trichrome stain) parameters were assessed. Administration of LG (500 and 1000 mg/kg) significantly inhibited (p < .05) STZ-induced alterations in serum and urine biochemistry (urine creatinine, uric acid, albumin, and BUN). It also significantly increased creatinine clearance rate. STZ induced increase in renal oxidonitrosative stress was significantly decreased (p < .05) by LG (500 and 1000 mg/kg) treatment. Upregulated renal KIM-1, NGAL, TGF-β1, and collagen-1 mRNA expression after STZ administration was significantly inhibited (p < .05) by LG (500 and 1000 mg/kg) treatment. Correlation analysis also revealed that antidiabetic potential of LG attenuates STZ-induced elevated renal KIM-1, NGAL, TGF-β1, and collagen-1 mRNA expression. Histopathological alteration induced by STZ in renal tissue was ameliorated by LG treatment. In conclusion, results of present investigation suggest that treatment with LG ameliorated STZ-induced DN via the inhibition of oxidonitrosative stress as well as downregulation of KIM-1, NGAL, TGF-β1, and collagen-1 mRNA expressions.
Collapse
Affiliation(s)
- Smeeta Sadar
- a Padmashree Dr D. Y. Patil College of Pharmacy , Akurdi , Pune , Maharashtra , India
| | - Dipti Kaspate
- b Cognizant Technology Solution , Hinjewadi, Pune , Maharashtra , India
| | - Neeraj Vyawahare
- a Padmashree Dr D. Y. Patil College of Pharmacy , Akurdi , Pune , Maharashtra , India
| |
Collapse
|
18
|
|
19
|
The progress in understanding and treatment of diabetic retinopathy. Prog Retin Eye Res 2015; 51:156-86. [PMID: 26297071 DOI: 10.1016/j.preteyeres.2015.08.001] [Citation(s) in RCA: 633] [Impact Index Per Article: 70.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Revised: 08/12/2015] [Accepted: 08/13/2015] [Indexed: 12/15/2022]
Abstract
Diabetic retinopathy is the most frequently occurring complication of diabetes mellitus and remains a leading cause of vision loss globally. Its aetiology and pathology have been extensively studied for half a century, yet there are disappointingly few therapeutic options. Although some new treatments have been introduced for diabetic macular oedema (DMO) (e.g. intravitreal vascular endothelial growth factor inhibitors ('anti-VEGFs') and new steroids), up to 50% of patients fail to respond. Furthermore, for people with proliferative diabetic retinopathy (PDR), laser photocoagulation remains a mainstay therapy, even though it is an inherently destructive procedure. This review summarises the clinical features of diabetic retinopathy and its risk factors. It describes details of retinal pathology and how advances in our understanding of pathogenesis have led to identification of new therapeutic targets. We emphasise that although there have been significant advances, there is still a pressing need for a better understanding basic mechanisms enable development of reliable and robust means to identify patients at highest risk, and to intervene effectively before vision loss occurs.
Collapse
|
20
|
Roy S, Bae E, Amin S, Kim D. Extracellular matrix, gap junctions, and retinal vascular homeostasis in diabetic retinopathy. Exp Eye Res 2015; 133:58-68. [PMID: 25819455 DOI: 10.1016/j.exer.2014.08.011] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2014] [Revised: 08/19/2014] [Accepted: 08/20/2014] [Indexed: 12/15/2022]
Abstract
The vascular basement membrane (BM) contains extracellular matrix (ECM) proteins that assemble in a highly organized manner to form a supportive substratum for cell attachment facilitating myriad functions that are vital to cell survival and overall retinal homeostasis. The BM provides a microenvironment in which bidirectional signaling through integrins regulates cell attachment, turnover, and functionality. In diabetic retinopathy, the BM undergoes profound structural and functional changes, and recent studies have brought to light the implications of such changes. Thickened vascular BM in the retinal capillaries actively participate in the development and progression of characteristic changes associated with diabetic retinopathy. High glucose (HG)-induced compromised cell-cell communication via gap junctions (GJ) in retinal vascular cells may disrupt homeostasis in the retinal microenvironment. In this review, the role of altered ECM synthesis, compromised GJ activity, and disturbed retinal homeostasis in the development of retinal vascular lesions in diabetic retinopathy are discussed.
Collapse
Affiliation(s)
- Sayon Roy
- Department of Medicine, Boston University School of Medicine, Boston, MA, USA; Department of Ophthalmology, Boston University School of Medicine, Boston, MA, USA.
| | - Edward Bae
- Department of Medicine, Boston University School of Medicine, Boston, MA, USA; Department of Ophthalmology, Boston University School of Medicine, Boston, MA, USA
| | - Shruti Amin
- Department of Medicine, Boston University School of Medicine, Boston, MA, USA; Department of Ophthalmology, Boston University School of Medicine, Boston, MA, USA
| | - Dongjoon Kim
- Department of Medicine, Boston University School of Medicine, Boston, MA, USA; Department of Ophthalmology, Boston University School of Medicine, Boston, MA, USA
| |
Collapse
|
21
|
Abstract
Diabetic retinopathy (DR) is one of today's main causes of blindness in numerous developed countries worldwide. The underlying pathogenesis of DR is complex and not well understood, thus impeding development of specific, effective treatment modalities. Consequently, the use of animal models of DR is of critical importance for investigating the pathogenesis of and treatment for DR. While rats and mice are the most commonly used animal models of DR, the zebrafish now appears to be a promising model. Nonhuman primates and humans have similar eye structures, and both can develop spontaneous diabetes mellitus (DM). Although various traditionally used animal models of DR undergo a number of pathological changes similar to those of human DR, several human variations, e.g. retinal neovascularization, cannot yet be fully mimicked in any existing animal model of DM. Since both the animal models and the methods chosen for inducing DR have great influence on experimental results, a clear understanding of available animal models is vital for planning an experimental design. In this review, we summarize the mechanisms, methodologies and pros and cons of the most commonly used animal models of DR.
Collapse
Affiliation(s)
- Xiaoyan Jiang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University , Guangzhou , P.R. China
| | | | | |
Collapse
|
22
|
Mi XS, Yuan TF, Ding Y, Zhong JX, So KF. Choosing preclinical study models of diabetic retinopathy: key problems for consideration. DRUG DESIGN DEVELOPMENT AND THERAPY 2014; 8:2311-9. [PMID: 25429204 PMCID: PMC4242133 DOI: 10.2147/dddt.s72797] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Diabetic retinopathy (DR) is the most common complication of diabetes mellitus in the eye. Although the clinical treatment for DR has already developed to a relative high level, there are still many urgent problems that need to be investigated in clinical and basic science. Currently, many in vivo animal models and in vitro culture systems have been applied to solve these problems. Many approaches have also been used to establish different DR models. However, till now, there has not been a single study model that can clearly and exactly mimic the developmental process of the human DR. Choosing the suitable model is important, not only for achieving our research goals smoothly, but also, to better match with different experimental proposals in the study. In this review, key problems for consideration in choosing study models of DR are discussed. These problems relate to clinical relevance, different approaches for establishing models, and choice of different species of animals as well as of the specific in vitro culture systems. Attending to these considerations will deepen the understanding on current study models and optimize the experimental design for the final goal of preventing DR.
Collapse
Affiliation(s)
- Xue-Song Mi
- Department of Ophthalmology, First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, People's Republic of China ; Department of Anatomy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, People's Republic of China
| | - Ti-Fei Yuan
- School of Psychology, Nanjing Normal University, Nanjing, People's Republic of China ; Department of Ophthalmology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong
| | - Yong Ding
- Department of Ophthalmology, First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, People's Republic of China
| | - Jing-Xiang Zhong
- Department of Ophthalmology, First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, People's Republic of China
| | - Kwok-Fai So
- Department of Ophthalmology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong ; Guangdong-Hongkong-Macau Institute of Central Nervous System, Jinan University, Guangzhou, People's Republic of China
| |
Collapse
|
23
|
Omran OM. Effects of Thymoquinone on STZ-induced Diabetic Nephropathy: An Immunohistochemical Study. Ultrastruct Pathol 2013; 38:26-33. [DOI: 10.3109/01913123.2013.830166] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
24
|
Bek T, Al-Mashhadi RH, Misfeldt M, Riis-Vestergaard MJ, Bentzon JF, Pedersen SMM. Relaxation of porcine retinal arterioles exposed to hypercholesterolemia in vivo is modified by hepatic LDL-receptor deficiency and diabetes mellitus. Exp Eye Res 2013; 115:79-86. [PMID: 23806330 DOI: 10.1016/j.exer.2013.06.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2013] [Revised: 06/03/2013] [Accepted: 06/10/2013] [Indexed: 10/26/2022]
Abstract
Metabolic disturbances in diabetes mellitus include changes in the type and concentration of lipids in the blood plasma which may contribute to the development of diabetic retinopathy. This disease is characterized by changes in retinal blood flow secondary to changes in the tone of retinal arterioles which is regulated by compounds such as adenosine, adenosine triphosphate (ATP), the glutamate agonist N-methyl-d-aspartate (NMDA) and prostaglandin E2 (PGE2). However, the relation between increased plasma low density lipoprotein (LDL) and tone regulation in retinal resistance vessels has not been studied in detail. Twelve male and nine female Yucatan minipigs overexpressing a gain-of-function mutant (D374Y) of the human gene PCSK9 that blocks LDL transport into the liver and twelve wild-type males were studied. The animals were fed a cholesterol rich diet from the age of 60 days, followed by induction of diabetes mellitus in twelve of the transgenic animals. The animals were sacrificed at a mean age of 51 weeks (range 26-60 weeks), followed by inspection and histological examination of retinal vessels, and examination of the changes in vascular tone induced by adenosine, ATP, NMDA and PGE2. In the transgenic pigs without diabetes mellitus ATP-induced relaxation was reduced in isolated arterioles, and a whitish infiltration in an arteriole was observed in 4/8 (50%) of the animals, whereas these changes were not found in the other groups. Histological examination of one of the infiltrations showed staining with Oil Red O representing foamy cells sub-endothelially in the vascular wall indicating atheromatosis. Adenosine, ATP and PGE2 induced a significant concentration-dependent relaxation of retinal arterioles in all groups. The presence of perivascular retinal tissue had no effect on the relaxing effect of adenosine, but increased the relaxing effect of ATP and PGE2 in the two transgenic animal groups, whereas NMDA had no significant effect on vascular tone in any of the groups. Relaxation of porcine retinal arterioles exposed to hypercholesterolemia in vivo is modified by hepatic LDL-receptor deficiency and diabetes mellitus. This suggests that transgenic animal models are suitable for studying the influence of systemic diseases on retinal vascular function.
Collapse
Affiliation(s)
- Toke Bek
- Department of Ophthalmology, Aarhus University Hospital, Nørrebrogade 44, DK-8000 Aarhus C, Denmark.
| | | | | | | | | | | |
Collapse
|
25
|
Robinson R, Barathi VA, Chaurasia SS, Wong TY, Kern TS. Update on animal models of diabetic retinopathy: from molecular approaches to mice and higher mammals. Dis Model Mech 2013; 5:444-56. [PMID: 22730475 PMCID: PMC3380708 DOI: 10.1242/dmm.009597] [Citation(s) in RCA: 193] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Diabetic retinopathy (DR) is the most common microvascular complication of diabetes and one of the major causes of blindness worldwide. The pathogenesis of DR has been investigated using several animal models of diabetes. These models have been generated by pharmacological induction, feeding a galactose diet, and spontaneously by selective inbreeding or genetic modification. Among the available animal models, rodents have been studied most extensively owing to their short generation time and the inherited hyperglycemia and/or obesity that affect certain strains. In particular, mice have proven useful for studying DR and evaluating novel therapies because of their amenability to genetic manipulation. Mouse models suitable for replicating the early, non-proliferative stages of the retinopathy have been characterized, but no animal model has yet been found to demonstrate all of the vascular and neural complications that are associated with the advanced, proliferative stages of DR that occur in humans. In this review, we summarize commonly used animal models of DR, and briefly outline the in vivo imaging techniques used for characterization of DR in these models. Through highlighting the ocular pathological findings, clinical implications, advantages and disadvantages of these models, we provide essential information for planning experimental studies of DR that will lead to new strategies for its prevention and treatment.
Collapse
|
26
|
Tarr JM, Kaul K, Chopra M, Kohner EM, Chibber R. Pathophysiology of diabetic retinopathy. ISRN OPHTHALMOLOGY 2013; 2013:343560. [PMID: 24563789 PMCID: PMC3914226 DOI: 10.1155/2013/343560] [Citation(s) in RCA: 266] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2012] [Accepted: 12/13/2012] [Indexed: 12/13/2022]
Abstract
Diabetes is now regarded as an epidemic, with the population of patients expected to rise to 380 million by 2025. Tragically, this will lead to approximately 4 million people around the world losing their sight from diabetic retinopathy, the leading cause of blindness in patients aged 20 to 74 years. The risk of development and progression of diabetic retinopathy is closely associated with the type and duration of diabetes, blood glucose, blood pressure, and possibly lipids. Although landmark cross-sectional studies have confirmed the strong relationship between chronic hyperglycaemia and the development and progression of diabetic retinopathy, the underlying mechanism of how hyperglycaemia causes retinal microvascular damage remains unclear. Continued research worldwide has focussed on understanding the pathogenic mechanisms with the ultimate goal to prevent DR. The aim of this paper is to introduce the multiple interconnecting biochemical pathways that have been proposed and tested as key contributors in the development of DR, namely, increased polyol pathway, activation of protein kinase C (PKC), increased expression of growth factors such as vascular endothelial growth factor (VEGF) and insulin-like growth factor-1 (IGF-1), haemodynamic changes, accelerated formation of advanced glycation endproducts (AGEs), oxidative stress, activation of the renin-angiotensin-aldosterone system (RAAS), and subclinical inflammation and capillary occlusion. New pharmacological therapies based on some of these underlying pathogenic mechanisms are also discussed.
Collapse
Affiliation(s)
| | | | | | | | - Rakesh Chibber
- Institute of Biomedical and Clinical Science, Peninsula College of Medicine and Dentistry, University of Exeter, St Luke's Campus, Magdalen Road, Exeter EX1 2LU, UK
| |
Collapse
|
27
|
Lai AKW, Lo ACY. Animal models of diabetic retinopathy: summary and comparison. J Diabetes Res 2013; 2013:106594. [PMID: 24286086 PMCID: PMC3826427 DOI: 10.1155/2013/106594] [Citation(s) in RCA: 112] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2013] [Revised: 09/02/2013] [Accepted: 09/02/2013] [Indexed: 12/16/2022] Open
Abstract
Diabetic retinopathy (DR) is a microvascular complication associated with chronic exposure to hyperglycemia and is a major cause of blindness worldwide. Although clinical assessment and retinal autopsy of diabetic patients provide information on the features and progression of DR, its underlying pathophysiological mechanism cannot be deduced. In order to have a better understanding of the development of DR at the molecular and cellular levels, a variety of animal models have been developed. They include pharmacological induction of hyperglycemia and spontaneous diabetic rodents as well as models of angiogenesis without diabetes (to compensate for the absence of proliferative DR symptoms). In this review, we summarize the existing protocols to induce diabetes using STZ. We also describe and compare the pathological presentations, in both morphological and functional aspects, of the currently available DR animal models. The advantages and disadvantages of using different animals, ranging from zebrafish, rodents to other higher-order mammals, are also discussed. Until now, there is no single model that displays all the clinical features of DR as seen in human. Yet, with the understanding of the pathological findings in these animal models, researchers can select the most suitable models for mechanistic studies or drug screening.
Collapse
Affiliation(s)
- Angela Ka Wai Lai
- Department of Ophthalmology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong
| | - Amy C. Y. Lo
- Department of Ophthalmology, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong
- Research Center of Heart, Brain, Hormone and Healthy Aging, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong
- *Amy C. Y. Lo:
| |
Collapse
|
28
|
Bódi N, Talapka P, Poles MZ, Hermesz E, Jancsó Z, Katarova Z, Izbéki F, Wittmann T, Fekete É, Bagyánszki M. Gut region-specific diabetic damage to the capillary endothelium adjacent to the myenteric plexus. Microcirculation 2012; 19:316-26. [PMID: 22296580 DOI: 10.1111/j.1549-8719.2012.00164.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
OBJECTIVE Damage in the capillaries supplying the MP has been proposed as a critical factor in the development of diabetic enteric neuropathy. We therefore investigated connections between STZ-induced diabetes and the BM morphology, the size of caveolar compartments, the width of TJs, the transport of albumin, and the quantitative features of Cav-1 and eNOS expression in these microvessels. METHODS Gut segments from diabetic rats were compared with those from insulin-treated diabetics and those from controls. The effects of diabetes on the BM, the caveolar compartments, and the TJs were evaluated morphometrically. The quantitative features of the albumin transport were investigated by postembedding immunohistochemistry. The diabetes-related changes in Cav-1 and eNOS expression were assessed by postembedding immunohistochemistry and molecular method. RESULTS Thickening of the BM, enlargement of the caveolar compartments, opening of the junctions, enhanced transport of albumin, and overexpression of Cav-1 and eNOS were documented in diabetic animals. Insulin replacement in certain gut segments prevented the development of these alterations. CONCLUSIONS These data provide morphological, functional, and molecular evidence that the endothelial cells in capillaries adjacent to the MP is a target of diabetic damage in a regional manner.
Collapse
Affiliation(s)
- Nikolett Bódi
- Department of Physiology, Anatomy and Neuroscience, University of Szeged, Szeged, Hungary
| | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Animal models as tools to investigate antidiabetic and anti-inflammatory plants. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2012; 2012:142087. [PMID: 22899950 PMCID: PMC3414199 DOI: 10.1155/2012/142087] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 04/17/2012] [Accepted: 05/30/2012] [Indexed: 01/12/2023]
Abstract
Plants have been historically used for diabetes treatment and related anti-inflammatory activity throughout the world; few of them have been validated by scientific criteria. Recently, a large diversity of animal models has been developed for better understanding the pathogenesis of diabetes mellitus and its underlying inflammatory mechanism and new drugs have been introduced in the market to treat this disease. The aim of this work is to review the available animal models of diabetes and anti-inflammatory activity along with some in vitro models which have been used as tools to investigate the mechanism of action of drugs with potential antidiabetic properties and related anti-inflammatory mechanism. At present, the rigorous procedures for evaluation of conventional antidiabetic medicines have rarely been applied to test raw plant materials used as traditional treatments for diabetes; and natural products, mainly derived from plants, have been tested in chemically induced diabetes model. This paper contributes to design new strategies for the development of novel antidiabetic drugs and its related inflammatory activity in order to treat this serious condition which represents a global public health problem.
Collapse
|
30
|
Bagyánszki M, Bódi N. Diabetes-related alterations in the enteric nervous system and its microenvironment. World J Diabetes 2012; 3:80-93. [PMID: 22645637 PMCID: PMC3360223 DOI: 10.4239/wjd.v3.i5.80] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2011] [Revised: 04/06/2012] [Accepted: 05/11/2012] [Indexed: 02/05/2023] Open
Abstract
Gastric intestinal symptoms common among diabetic patients are often caused by intestinal motility abnormalities related to enteric neuropathy. It has recently been demonstrated that the nitrergic subpopulation of myenteric neurons are especially susceptible to the development of diabetic neuropathy. Additionally, different susceptibility of nitrergic neurons located in different intestinal segments to diabetic damage and their different levels of responsiveness to insulin treatment have been revealed. These findings indicate the importance of the neuronal microenvironment in the pathogenesis of diabetic nitrergic neuropathy. The main focus of this review therefore was to summarize recent advances related to the diabetes-related selective nitrergic neuropathy and associated motility disturbances. Special attention was given to the findings on capillary endothelium and enteric glial cells. Growing evidence indicates that capillary endothelium adjacent to the myenteric ganglia and enteric glial cells surrounding them are determinative in establishing the ganglionic microenvironment. Additionally, recent advances in the development of new strategies to improve glycemic control in type 1 and type 2 diabetes mellitus are also considered in this review. Finally, looking to the future, the recent and promising results of metagenomics for the characterization of the gut microbiome in health and disease such as diabetes are highlighted.
Collapse
Affiliation(s)
- Mária Bagyánszki
- Mária Bagyánszki, Nikolett Bódi, Department of Physiology, Anatomy and Neuroscience, Faculty of Science, University of Szeged, H-6726 Szeged, Hungary
| | | |
Collapse
|
31
|
Bruun C, Leifsson P, Johansen L, Jensen H, Nielsen J, Fredholm M. Expression of Matrix Metalloproteinase-9 and -12 in Porcine Lung Infections. J Comp Pathol 2012; 146:253-7. [DOI: 10.1016/j.jcpa.2011.05.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2011] [Revised: 05/06/2011] [Accepted: 05/18/2011] [Indexed: 10/18/2022]
|