1
|
Paseban K, Noroozi S, Gharehcheloo R, Haddadian A, Falahi Robattorki F, Dibah H, Amani R, Sabouri F, Ghanbarzadeh E, Hajrasouiha S, Azari A, Rashidian T, Mirzaie A, Pirdolat Z, Salarkia M, Shahrava DS, Safaeinikjoo F, Seifi A, Sadat Hosseini N, Saeinia N, Bagheri Kashtali A, Ahmadiyan A, Mazid Abadi R, Sadat Kermani F, Andalibi R, Chitgarzadeh A, Tavana AA, Piri Gharaghie T. Preparation and optimization of niosome encapsulated meropenem for significant antibacterial and anti-biofilm activity against methicillin-resistant Staphylococcus aureus isolates. Heliyon 2024; 10:e35651. [PMID: 39211930 PMCID: PMC11357772 DOI: 10.1016/j.heliyon.2024.e35651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 07/30/2024] [Accepted: 08/01/2024] [Indexed: 09/04/2024] Open
Abstract
Background One of the targeted drug delivery systems is the use of nanocarriers, and one of these drug delivery systems is niosome. Niosome have a nano-vesicular structure and are composed of non-ionic surfactants. Objective: In this study, various niosome-encapsulated meropenem formulations were prepared. Subsequently, their antibacterial and anti-biofilm activities were evaluated against methicillin-resistant Staphylococcus aureus (MRSA) strains. Methods The physicochemical properties of niosomal formulations were characterized using a field scanning electron microscope, X-Ray diffraction, Zeta potential, and dynamic light scattering. Antibacterial and anti-biofilm activities were evaluated using broth microdilution and minimum biofilm inhibitory concentration, respectively. In addition, biofilm gene expression analysis was performed using quantitative Real-Time PCR. To evaluate biocompatibility, the cytotoxicity of niosome-encapsulated meropenem in a normal human diploid fibroblast (HDF) cell line was investigated using an MTT assay. Results An F1 formulation of niosome-encapsulated meropenem with a size of 51.3 ± 5.84 nm and an encapsulation efficiency of 84.86 ± 3.14 % was achieved. The synthesized niosomes prevented biofilm capacity with a biofilm growth inhibition index of 69 % and significantly downregulated icaD, FnbA, Ebps, and Bap gene expression in MRSA strains (p < 0.05). In addition, the F1 formulation increased antibacterial activity by 4-6 times compared with free meropenem. Interestingly, the F1 formulation of niosome-encapsulated meropenem indicated cell viability >90 % at all tested concentrations against normal HDF cells. The results of the present study indicate that niosome-encapsulated meropenem increased antibacterial and anti-biofilm activities without profound cytotoxicity in normal human cells, which could prove useful as a good drug delivery system.
Collapse
Affiliation(s)
- Kamal Paseban
- Department of Biology, Zanjan Branch, Islamic Azad University, Zanjan, Iran
| | - Sama Noroozi
- Department of Neurology, University of Utah, Utah, USA
| | - Rokhshad Gharehcheloo
- Department of Pharmacology, Pharmaceutical Branch, Islamic Azad Universty, Tehran, Iran
| | - Abbas Haddadian
- Department of Biology, East Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Farnoush Falahi Robattorki
- Biomedical Engineering Group, Chemical Engineering Department, Engineering Faculty, Tarbiat Modares University, Tehran, Iran
| | - Hedieh Dibah
- Department of Biology, Roudehen Branch, Islamic Azad University, Roudehen, Iran
| | - Reza Amani
- Biotechnology Research Center, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
| | | | - Erfan Ghanbarzadeh
- Department of Microbiology, Faculty of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Shadi Hajrasouiha
- Department of Biology, Roudehen Branch, Islamic Azad University, Roudehen, Iran
| | - Arezou Azari
- Department of Biology, Roudehen Branch, Islamic Azad University, Roudehen, Iran
| | - Tina Rashidian
- Department of Biology, Parand Branch, Islamic Azad University, Parand, Iran
| | - Amir Mirzaie
- Department of Biology, Parand Branch, Islamic Azad University, Parand, Iran
| | - Zahra Pirdolat
- Department of Biology, Roudehen Branch, Islamic Azad University, Roudehen, Iran
| | - Massoumeh Salarkia
- Department of Biology, Roudehen Branch, Islamic Azad University, Roudehen, Iran
| | | | | | - Atena Seifi
- Department of Biology, Roudehen Branch, Islamic Azad University, Roudehen, Iran
| | - Niusha Sadat Hosseini
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Niloofar Saeinia
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | | | - Ali Ahmadiyan
- Department of Biology, Roudehen Branch, Islamic Azad University, Roudehen, Iran
| | - Roza Mazid Abadi
- Department of Biology, Roudehen Branch, Islamic Azad University, Roudehen, Iran
| | | | - Romina Andalibi
- Department of Biology, Roudehen Branch, Islamic Azad University, Roudehen, Iran
| | - Arman Chitgarzadeh
- Department of Biology, Roudehen Branch, Islamic Azad University, Roudehen, Iran
| | - Aryan Aryan Tavana
- Department of Biology, Roudehen Branch, Islamic Azad University, Roudehen, Iran
| | | |
Collapse
|
2
|
Hemmati J, Chiani M, Asghari B, Roshanaei G, Soleimani Asl S, Shafiei M, Arabestani MR. Antibacterial and antibiofilm potentials of vancomycin-loaded niosomal drug delivery system against methicillin-resistant Staphylococcus aureus (MRSA) infections. BMC Biotechnol 2024; 24:47. [PMID: 38978013 PMCID: PMC11229259 DOI: 10.1186/s12896-024-00874-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Accepted: 07/01/2024] [Indexed: 07/10/2024] Open
Abstract
The threat of methicillin-resistant Staphylococcus aureus (MRSA) is increasing worldwide, making it significantly necessary to discover a novel way of dealing with related infections. The quick spread of MRSA isolates among infected individuals has heightened public health concerns and significantly limited treatment options. Vancomycin (VAN) can be applied to treat severe MRSA infections, and the indiscriminate administration of this antimicrobial agent has caused several concerns in medical settings. Owing to several advantageous characteristics, a niosomal drug delivery system may increase the potential of loaded antimicrobial agents. This work aims to examine the antibacterial and anti-biofilm properties of VAN-niosome against MRSA clinical isolates with emphasis on cytotoxicity and stability studies. Furthermore, we aim to suggest an effective approach against MRSA infections by investigating the inhibitory effect of formulated niosome on the expression of the biofilm-associated gene (icaR). The thin-film hydration approach was used to prepare the niosome (Tween 60, Span 60, and cholesterol), and field emission scanning electron microscopy (FE-SEM), an in vitro drug release, dynamic light scattering (DLS), and entrapment efficiency (EE%) were used to investigate the physicochemical properties. The physical stability of VAN-niosome, including hydrodynamic size, polydispersity index (PDI), and EE%, was analyzed for a 30-day storage time at 4 °C and 25 °C. In addition, the human foreskin fibroblast (HFF) cell line was used to evaluate the cytotoxic effect of synthesized niosome. Moreover, minimum inhibitory and bactericidal concentrations (MICs/MBCs) were applied to assess the antibacterial properties of niosomal VAN formulation. Also, the antibiofilm potential of VAN-niosome was investigated by microtiter plate (MTP) and real-time PCR methods. The FE-SEM result revealed that synthesized VAN-niosome had a spherical morphology. The hydrodynamic size and PDI of VAN-niosome reported by the DLS method were 201.2 nm and 0.301, respectively. Also, the surface zeta charge of the prepared niosome was - 35.4 mV, and the EE% ranged between 58.9 and 62.5%. Moreover, in vitro release study revealed a sustained-release profile for synthesized niosomal formulation. Our study showed that VAN-niosome had acceptable stability during a 30-day storage time. Additionally, the VAN-niosome had stronger antibacterial and anti-biofilm properties against MRSA clinical isolates compared with free VAN. In conclusion, the result of our study demonstrated that niosomal VAN could be promising as a successful drug delivery system due to sustained drug release, negligible toxicity, and high encapsulation capacity. Also, the antibacterial and anti-biofilm studies showed the high capacity of VAN-niosome against MRSA clinical isolates. Furthermore, the results of real-time PCR exhibited that VAN-niosome could be proposed as a powerful strategy against MRSA biofilm via down-regulation of icaR gene expression.
Collapse
Affiliation(s)
- Jaber Hemmati
- Department of Microbiology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
- Department of Bacteriology, Pasteur Institute of Iran, Tehran, Iran
| | - Mohsen Chiani
- Department of NanoBiotechnology, Pasteur Institute of Iran, Tehran, Iran
| | - Babak Asghari
- Department of Microbiology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Ghodratollah Roshanaei
- Department of Biostatistics, School of Public Health, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Sara Soleimani Asl
- Department of Anatomy, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Morvarid Shafiei
- Department of Bacteriology, Pasteur Institute of Iran, Tehran, Iran.
| | - Mohammad Reza Arabestani
- Department of Microbiology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran.
- Infectious Disease Research Center, Hamadan University of Medical Sciences, Hamadan, Iran.
| |
Collapse
|
3
|
Mu Y, Wang Z, Song L, Ma K, Chen Y, Li P, Yan Z. Modulating lipid bilayer permeability and structure: Impact of hydrophobic chain length, C-3 hydroxyl group, and double bond in sphingosine. J Colloid Interface Sci 2024; 674:513-526. [PMID: 38943912 DOI: 10.1016/j.jcis.2024.06.171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 06/14/2024] [Accepted: 06/23/2024] [Indexed: 07/01/2024]
Abstract
Sphingosine, an amphiphilic molecule, plays a pivotal role as the core structure of sphingolipids, essential constituents of cell membranes. Its unique capability to enhance the permeability of lipid membranes profoundly influences crucial life processes. The molecular structure of sphingosine dictates its mode of entry into lipid bilayers and governs its interactions with lipids, thereby determining membrane permeability. However, the incomplete elucidation of the relationship between the molecular structure of sphingosine and the permeability of lipid membranes persists due to challenges associated with synthesizing sphingosine molecules. A series of sphingosine-derived molecules, featuring diverse hydrophobic chain lengths and distinct headgroup structure, were meticulously designed and successfully synthesized. These molecules were employed to investigate the permeability of large unilamellar vesicles, functioning as model lipid bilayers. With a decrease in the hydrophobic chain length of sphingosine from C15 to C11, the transient leakage ratio of vesicle contents escalated from ∼ 13 % to ∼ 28 %. Although the presence of double bond did not exert a pronounced influence on transient leakage, it significantly affected the continuous leakage ratio. Conversely, modifying the chirality of the C-3 hydroxyl group gives the opposite result. Notably, methylation at the C-3 hydroxyl significantly elevates transient leakage while suppressing the continuous leakage ratio. Additionally, sphingosines that significantly affect vesicle permeability tend to have a more pronounced impact on cell viability. Throughout this leakage process, the charge state of sphingosine-derived molecule aggregates in the solution emerged as a pivotal factor influencing vesicle permeability. Fluorescence lifetime experiments further revealed discernible variations in the effect of sphingosine molecular structure on the mobility of hydrophobic regions within lipid bilayers. These observed distinctions emphasize the impact of molecular structure on intermolecular interactions, extending to the microscopic architecture of membranes, and underscore the significance of subtle alterations in molecular structure and their associated aggregation behaviors in governing membrane permeability.
Collapse
Affiliation(s)
- Yonghang Mu
- State Key Laboratory of Heavy Oil Processing, College of Chemistry and Chemical Engineering, China University of Petroleum, Qingdao 266580, China
| | - Zi Wang
- State Key Laboratory of Heavy Oil Processing, College of Chemistry and Chemical Engineering, China University of Petroleum, Qingdao 266580, China.
| | - Linhua Song
- State Key Laboratory of Heavy Oil Processing, College of Chemistry and Chemical Engineering, China University of Petroleum, Qingdao 266580, China
| | - Kun Ma
- ISIS Facility, Rutherford Appleton Laboratory, STFC, Chilton, Didcot, Oxon OX11 0QX, UK
| | - Yao Chen
- ISIS Facility, Rutherford Appleton Laboratory, STFC, Chilton, Didcot, Oxon OX11 0QX, UK
| | - Peixun Li
- ISIS Facility, Rutherford Appleton Laboratory, STFC, Chilton, Didcot, Oxon OX11 0QX, UK
| | - Zifeng Yan
- State Key Laboratory of Heavy Oil Processing, College of Chemistry and Chemical Engineering, China University of Petroleum, Qingdao 266580, China.
| |
Collapse
|
4
|
Hemmati J, Chiani M, Chegini Z, Seifalian A, Arabestani MR. Surface modified niosomal quercetin with cationic lipid: an appropriate drug delivery system against Pseudomonas aeruginosa Infections. Sci Rep 2024; 14:13362. [PMID: 38862754 PMCID: PMC11167023 DOI: 10.1038/s41598-024-64416-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 06/08/2024] [Indexed: 06/13/2024] Open
Abstract
The Increase in infections caused by resistant strains of Pseudomonas aeruginosa poses a formidable challenge to global healthcare systems. P. aeruginosa is capable of causing severe human infections across diverse anatomical sites, presenting considerable therapeutic obstacles due to its heightened drug resistance. Niosomal drug delivery systems offer enhanced pharmaceutical potential for loaded contents due to their desirable properties, mainly providing a controlled-release profile. This study aimed to formulate an optimized niosomal drug delivery system incorporating stearylamine (SA) to augment the anti-bacterial and anti-biofilm activities of quercetin (QCT) against both standard and clinical strains of P. aeruginosa. QCT-loaded niosome (QCT-niosome) and QCT-loaded SA- niosome (QCT-SA- niosome) were synthesized by the thin-film hydration technique, and their physicochemical characteristics were evaluated by field emission scanning electron microscopy (FE-SEM), zeta potential measurement, entrapment efficacy (EE%), and in vitro release profile. The anti-P. aeruginosa activity of synthesized niosomes was assessed using minimum inhibitory and bactericidal concentrations (MICs/MBCs) and compared with free QCT. Additionally, the minimum biofilm inhibitory and eradication concentrations (MBICs/MBECs) were carried out to analyze the ability of QCT-niosome and QCT-SA-niosome against P. aeruginosa biofilms. Furthermore, the cytotoxicity assay was conducted on the L929 mouse fibroblasts cell line to evaluate the biocompatibility of the formulated niosomes. FE-SEM analysis revealed that both synthesized niosomal formulations exhibited spherical morphology with different sizes (57.4 nm for QCT-niosome and 178.9 nm for QCT-SA-niosome). The EE% for cationic and standard niosomal formulations was reported at 75.9% and 59.6%, respectively. Both formulations showed an in vitro sustained-release profile, and QCT-SA-niosome exhibited greater stability during a 4-month storage time compared to QCT-niosome. Microbial experiments indicated that both prepared formulations had higher anti-bacterial and anti-biofilm activities than free QCT. Also, the QCT-SA-niosome exhibited greater reductions in MIC, MBC, MBIC, and MBEC values compared to the QCT-niosome at equivalent concentrations. This study supports the potential of QCT-niosome and QCT-SA-niosome as effective agents against P. aeruginosa infections, manifesting significant anti-bacterial and anti-biofilm efficacy alongside biocompatibility with L929 cell lines. Furthermore, our results suggest that optimized QCT-niosome with cationic lipids could efficiently target P. aeruginosa cells with negligible cytotoxic effect.
Collapse
Affiliation(s)
- Jaber Hemmati
- Department of Microbiology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
- Student Research Committee, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Mohsen Chiani
- Department of NanoBiotechnology, Pasteur Institute of Iran, Tehran, Iran
| | - Zahra Chegini
- Department of Microbiology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Alexander Seifalian
- Nanotechnology & Regenerative Medicine Commercialization Centre (NanoRegMed Ltd, Nanoloom Ltd & Liberum Health Ltd), LBIC, University of London, London, UK
| | - Mohammad Reza Arabestani
- Department of Microbiology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran.
- Infectious Disease Research Center, Hamadan University of Medical Sciences, Hamadan, Iran.
| |
Collapse
|
5
|
Beram FM, Ali SN, Mesbahian G, Pashizeh F, Keshvadi M, Mashayekhi F, Khodadadi B, Bashiri Z, Moeinzadeh A, Rezaei N, Namazifard S, Hossein-Khannazer N, Tavakkoli Yaraki M. 3D Printing of Alginate/Chitosan-Based Scaffold Empowered by Tyrosol-Loaded Niosome for Wound Healing Applications: In Vitro and In Vivo Performances. ACS APPLIED BIO MATERIALS 2024; 7:1449-1468. [PMID: 38442406 DOI: 10.1021/acsabm.3c00814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2024]
Abstract
This study introduces a tyrosol-loaded niosome integrated into a chitosan-alginate scaffold (Nio-Tyro@CS-AL), employing advanced electrospinning and 3D printing techniques for wound healing applications. The niosomes, measuring 185.40 ± 6.40 nm with a polydispersity index of 0.168 ± 0.012, encapsulated tyrosol with an efficiency of 77.54 ± 1.25%. The scaffold's microsized porous structure (600-900 μm) enhances water absorption, promoting cell adhesion, migration, and proliferation. Mechanical property assessments revealed the scaffold's enhanced resilience, with niosomes increasing the compressive strength, modulus, and strain to failure, indicative of its suitability for wound healing. Controlled tyrosol release was demonstrated in vitro, essential for therapeutic efficacy. The scaffold exhibited significant antibacterial activity against Pseudomonas aeruginosa and Staphylococcus aureus, with substantial biofilm inhibition and downregulation of bacterial genes (ndvb and icab). A wound healing assay highlighted a notable increase in MMP-2 and MMP-9 mRNA expression and the wound closure area (69.35 ± 2.21%) in HFF cells treated with Nio-Tyro@CS-AL. In vivo studies in mice confirmed the scaffold's biocompatibility, showing no significant inflammatory response, hypertrophic scarring, or foreign body reaction. Histological evaluations revealed increased fibroblast and macrophage activity, enhanced re-epithelialization, and angiogenesis in wounds treated with Nio-Tyro@CS-AL, indicating effective tissue integration and repair. Overall, the Nio-Tyro@CS-AL scaffold presents a significant advancement in wound-healing materials, combining antibacterial properties with enhanced tissue regeneration, and holds promising potential for clinical applications in wound management.
Collapse
Affiliation(s)
| | - Saba Naeimaei Ali
- Medical Microbiology Research Center, Qazvin University of Medical Sciences, Qazvin 3419759811, Iran
| | - Ghazal Mesbahian
- School of Pharmacy, International Campus, Tehran University of Medical Sciences, Tehran 1416634793, Iran
| | - Fatemeh Pashizeh
- Department of Immunology, School of Medicine, Shahid Sadoughi University of Medical Science, Yazd 8916188635, Iran
| | | | - Farzaneh Mashayekhi
- Rasoul Akram Hospital, Iran University of Medical Sciences (IUMS), Tehran 14535, Iran
| | - Behnoosh Khodadadi
- Department of Chemistry, Faculty of Physics and Chemistry, Alzahra University, Tehran 1993891176, Iran
| | - Zahra Bashiri
- Department of Anatomy, School of Medicine, Iran University of Medical Sciences, Tehran 14535, Iran
| | - Alaa Moeinzadeh
- Department of Tissue Engineering and Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran 14535, Iran
| | - Niloufar Rezaei
- Gastroenterology and Liver Diseases Research Center, Research, Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran 19839-63113, Iran
| | - Saina Namazifard
- Department of Mechanical and Aerospace Engineering, The University of Texas at Arlington, 500 West First Street, Arlington, Texas 76019, United States
| | - Nikoo Hossein-Khannazer
- Gastroenterology and Liver Diseases Research Center, Research, Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran 19839-63113, Iran
| | - Mohammad Tavakkoli Yaraki
- School of Natural Sciences, Faculty of Science and Engineering, Macquarie University, Sydney, New South Wales 2109, Australia
| |
Collapse
|
6
|
Ara N, Hafeez A. Nanocarrier-Mediated Drug Delivery via Inhalational Route for Lung Cancer Therapy: A Systematic and Updated Review. AAPS PharmSciTech 2024; 25:47. [PMID: 38424367 DOI: 10.1208/s12249-024-02758-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 02/06/2024] [Indexed: 03/02/2024] Open
Abstract
Lung cancer is one of the most severe lethal malignancies, with approximately 1.6 million deaths every year. Lung cancer can be broadly categorised into small and non-small-cell lung cancer. The traditional chemotherapy is nonspecific, destroys healthy cells and produces systemic toxicity; targeted inhalation drug delivery in conjunction with nanoformulations has piqued interest as an approach for improving chemotherapeutic drug activity in the treatment of lung cancer. Our aim is to discuss the impact of polymer and lipid-based nanocarriers (polymeric nanoparticles, liposomes, niosomes, nanostructured lipid carriers, etc.) to treat lung cancer via the inhalational route of drug administration. This review also highlights the clinical studies, patent reports and latest investigations related to lung cancer treatment through the pulmonary route. In accordance with the PRISMA guideline, a systematic literature search was carried out for published works between 2005 and 2023. The keywords used were lung cancer, pulmonary delivery, inhalational drug delivery, liposomes in lung cancer, nanotechnology in lung cancer, etc. Several articles were searched, screened, reviewed and included. The analysis demonstrated the potential of polymer and lipid-based nanocarriers to improve the entrapment of drugs, sustained release, enhanced permeability, targeted drug delivery and retention impact in lung tissues. Patents and clinical observations further strengthen the translational potential of these carrier systems for human use in lung cancer. This systematic review demonstrated the potential of pulmonary (inhalational) drug delivery approaches based on nanocarriers for lung cancer therapy.
Collapse
Affiliation(s)
- Nargis Ara
- Faculty of Pharmacy, Integral University, Lucknow, 226026, India
| | - Abdul Hafeez
- Faculty of Pharmacy, Integral University, Lucknow, 226026, India.
| |
Collapse
|
7
|
Sharma S, Garg A, Agrawal R, Chopra H, Pathak D. A Comprehensive Review on Niosomes as a Tool for Advanced Drug Delivery. Pharm Nanotechnol 2024; 12:206-228. [PMID: 37496251 DOI: 10.2174/2211738511666230726154557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 06/01/2023] [Accepted: 06/07/2023] [Indexed: 07/28/2023]
Abstract
Over the past few decades, advancements in nanocarrier-based therapeutic delivery have been significant, and niosomes research has recently received much interest. The self-assembled nonionic surfactant vesicles lead to the production of niosomes. The most recent nanocarriers, niosomes, are self-assembled vesicles made of nonionic surfactants with or without the proper quantities of cholesterol or other amphiphilic molecules. Because of their durability, low cost of components, largescale production, simple maintenance, and high entrapment efficiency, niosomes are being used more frequently. Additionally, they enhance pharmacokinetics, reduce toxicity, enhance the solubility of poorly water-soluble compounds, & increase bioavailability. One of the most crucial features of niosomes is their controlled release and targeted diffusion, which is utilized for treating cancer, infectious diseases, and other problems. In this review article, we have covered all the fundamental information about niosomes, including preparation techniques, niosomes types, factors influencing their formation, niosomes evaluation, applications, and administration routes, along with recent developments.
Collapse
Affiliation(s)
- Shivani Sharma
- Department of Pharmaceutics, Rajiv Academy for Pharmacy, N.H. #2, Mathura Delhi Road P.O, Chhatikara, Uttar Pradesh, India
| | - Akash Garg
- Department of Pharmaceutics, Rajiv Academy for Pharmacy, N.H. #2, Mathura Delhi Road P.O, Chhatikara, Uttar Pradesh, India
| | - Rutvi Agrawal
- Department of Pharmaceutics, Rajiv Academy for Pharmacy, N.H. #2, Mathura Delhi Road P.O, Chhatikara, Uttar Pradesh, India
| | - Himansu Chopra
- Department of Pharmaceutics, Rajiv Academy for Pharmacy, N.H. #2, Mathura Delhi Road P.O, Chhatikara, Uttar Pradesh, India
| | - Devender Pathak
- Department of Pharmaceutics, Rajiv Academy for Pharmacy, N.H. #2, Mathura Delhi Road P.O, Chhatikara, Uttar Pradesh, India
| |
Collapse
|
8
|
Saharawat S, Verma S. A Comprehensive Review on Niosomes as a Strategy in Targeted Drug Delivery: Pharmaceutical, and Herbal Cosmetic Applications. Curr Drug Deliv 2024; 21:1460-1473. [PMID: 38231066 DOI: 10.2174/0115672018269199231121055548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 09/11/2023] [Accepted: 09/27/2023] [Indexed: 01/18/2024]
Abstract
Niosomes are newly developed, self-assembling sac-like transporters that deliver medication at a specific site in a focused manner, increasing availability in the body and prolonging healing effects. Niosome discovery has increased drugs' therapeutic effectiveness while also reducing adverse effects. This article aims to concentrate on the increase in the worldwide utilization of niosomal formulation. This overview presents a thorough perspective of niosomal investigation up until now, encompassing categories and production techniques, their significance in pharmaceutical transportation, and cosmetic use. The thorough literature review revealed that extensive attention has been given to developing nanocarriers for drug delivery as they hold immense endeavor to attain targeted delivery to the affected area simultaneously shielding the adjacent healthy tissue. Many reviews and research papers have been published that demonstrate the interest of scientists in niosomes. Phytoconstituents, which possess antioxidant, antibiotic, anti-inflammatory, wound healing, anti-acne, and skin whitening properties, are also encapsulated into niosome. Their flexibility allows for the incorporation of various therapeutic agents, including small molecules, proteins, and peptides making them adaptable for different types of drugs. Niosomes can be modified with ligands, enhancing their targeting capabilities. A flexible drug delivery mechanism provided by non-ionic vesicles, which are self-assembling vesicular nano-carriers created from hydrating non-ionic surfactant, cholesterol, or amphiphilic compounds along comprehensive applications such as transdermal and brain-targeted delivery.
Collapse
Affiliation(s)
- Sakshi Saharawat
- Noida Institute of Engineering and Technology (Pharmacy Institute) Greater Noida, Uttar Pradesh 201306, India
| | - Sushma Verma
- Noida Institute of Engineering and Technology (Pharmacy Institute) Greater Noida, Uttar Pradesh 201306, India
| |
Collapse
|
9
|
Amiri S, Pashizeh F, Moeinabadi-Bidgoli K, Eyvazi Y, Akbari T, Salehi Moghaddam Z, Eskandarisani M, Farahmand F, Hafezi Y, Nouri Jevinani H, Seif M, Mousavi-Niri N, Chiani M, Tavakkoli Yaraki M. Co-encapsulation of hydrophilic and hydrophobic drugs into niosomal nanocarrier for enhanced breast cancer therapy: In silico and in vitro studies. ENVIRONMENTAL RESEARCH 2023; 239:117292. [PMID: 37806480 DOI: 10.1016/j.envres.2023.117292] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 09/29/2023] [Accepted: 10/02/2023] [Indexed: 10/10/2023]
Abstract
Combination therapy has been considered one of the most promising approaches for improving the therapeutic effects of anticancer drugs. This is the first study that uses two different antioxidants in full-characterized niosomal formulation and thoroughly evaluates their synergistic effects on breast cancer cells. In this study, in-silico studies of hydrophilic and hydrophobic drugs (ascorbic acid: Asc and curcumin: Cur) interactions and release were investigated and validated by a set of in vitro experiments to reveal the significant improvement in breast cancer therapy using a co-delivery approach by niosomal nanocarrier. The niosomal nanoparticles containing surfactants (Span 60 and Tween 60) and cholesterol at 2:1 M ratio were prepared through the film hydration method. A systematic evaluation of nanoniosomes was carried out. The release profile demonstrated two phases (initial burst followed by sustained release) and a pH-dependent release schedule over 72 h. The optimized niosomal preparation displayed superior storage stability for up to 2 months at 4 °C, exhibiting extremely minor changes in pharmaceutical encapsulation efficiency and size. Free dual drugs (Asc + Cur) and dual-drug loaded niosomes (Niosomal (Asc + Cur)) enhanced the apoptotic activity and cytotoxicity and inhibited cell migration which confirmed the synergistic effect of co-encapsulated drugs. Also, significant up-regulation of p53 and Bax genes was observed in cells treated with Asc + Cur and Niosomal (Asc + Cur), while the anti-apoptotic Bcl-2 gene was down-regulated. These results were in correlation with the increase in the enzyme activity of SOD, CAT, and caspase, and the levels of malondialdehyde (MDA) and reactive oxygen species (ROS) upon treatment with the mentioned drugs. Furthermore, these anti-cancer effects were higher when using Niosomal (Asc + Cur) than Asc + Cur. Histopathological examination also revealed that Niosomal (Asc + Cur) had a lower mitosis index, invasion, and pleomorphism than Asc + Cur. These findings indicated that niosomal formulation for co-delivery of Asc and Cur would offer a promising delivery system for an effective breast cancer treatment.
Collapse
Affiliation(s)
- Sahar Amiri
- Department of Genetic, Islamic Azad University, Tehran North Branch, Iran
| | - Fatemeh Pashizeh
- Department of Immunology, School of Medicine, Shahid Sadoughi University of Medical Science Yazd, Iran
| | - Kasra Moeinabadi-Bidgoli
- Departments of Medicine and Endocrinology, University of California San Francisco and San Francisco Veterans Affairs Health Center, San Francisco, CA, USA
| | - Yalda Eyvazi
- School of Chemical Engineering, College of Engineering, University of Tehran, Tehran, Iran
| | - Tanin Akbari
- Department of Medical Science, Iran University of Medical Sciences, Tehran, Iran
| | - Zahra Salehi Moghaddam
- Department of Microbial Biotechnology, School of Biology, College of Science, University of Tehran, Iran
| | | | - Faranak Farahmand
- Department of Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Yousef Hafezi
- School of Chemical Engineering, College of Engineering, University of Tehran, Tehran, Iran
| | - Hoda Nouri Jevinani
- Department of Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Mahdi Seif
- Faculty of Materials Science and Engineering, K.N. Toosi University of Technology, Tehran, Iran
| | - Neda Mousavi-Niri
- Department of Biotechnology, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Mohsen Chiani
- Department of Nano Biotechnology, New Technology Research Group, Pasteur Institute of Iran, Tehran, Iran.
| | - Mohammad Tavakkoli Yaraki
- School of Natural Sciences, Faculty of Science and Engineering, Macquarie University, NSW 2109, Australia.
| |
Collapse
|
10
|
Saeedi M, Morteza-Semnani K, Akbari J, Rahimnia SM, Babaei A, Eghbali M, Sanaee A, Hashemi SMH, Omidi M. Eco-friendly preparation, characterization, evaluation of anti-melanogenesis/antioxidant effect and in vitro/in vivo safety profile of kojic acid loaded niosome as skin lightener preparation. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2023; 34:1952-1980. [PMID: 37036014 DOI: 10.1080/09205063.2023.2201817] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2023] [Accepted: 04/08/2023] [Indexed: 04/11/2023]
Abstract
In the current study, an ultrasonic approach (as green method) was utilized to prepared kojic acid niosome (kojisome) which aimed to increase the dermal delivery and improving anti-melanogenesis properties. The study's findings demonstrated that increasing cholesterol enhanced the mean particle size from 68.333 ± 5.686 nm to 325.000 ± 15.099 nm and entrapment efficiency 0% to 39.341 ± 4.126% of the kojisome. Cholesterol may enhance the number and rigidity of bilayers that induced a size enhancement and entrapment efficiency. The skin permeability test revealed that kojisome gel had more kojic acid in dermal layers (437.563 ± 29.857 μg/cm2 or 16.624 ± 1.379%) than kojic acid plain gel (161.290 ± 14.812 μg/cm2 or 6.128 ± 0.672%). The niosome's lipophilicity allowed for gradual penetration, possibly due to better contact with the skin layers. Also, the extended-release behavior of improved kojisome exhibited high safety profile and low side effect in In vitro cytotoxicity assay, dermal irritation test, and Histo-pathological evaluation. Furthermore, optimum kojisome inhibited melanin formation (53.093 ± 2.985% at 1000 µM) higher than free kojic acid (62.383 ± 1.958%) significantly (p < 0.05). In addition, Kojisome 6 inhibited L-dopa auto-oxidation greater extent (94.806 ± 2.411%) than pure kojic acid solution (72.953 ± 2.728%). Kojisome by delivering and targeting large amount of kojic acid on specific site causes high efficacy in inhibition of melanin synthesis. The observations of this study revealed that the produced kojisome might be used as a potential nano-vehicle for kojic acid dermal administration, thereby opening up innovative options for the treatment of hyperpigmentation problems.
Collapse
Affiliation(s)
- Majid Saeedi
- Pharmaceutical Sciences Research Centre, Heamoglobinopathy Institute, Mazandaran University of Medical Sciences, Sari, Iran
- Department of Pharmaceutics, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Katayoun Morteza-Semnani
- Department of Medicinal Chemistry, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Jafar Akbari
- Department of Pharmaceutics, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Seyyed Mobin Rahimnia
- Student Research Committee, Department of Pharmaceutics, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Amirhossein Babaei
- Student Research Committee, Department of Pharmaceutics, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Mohammad Eghbali
- Pharmaceutical Sciences Research Centre, Heamoglobinopathy Institute, Mazandaran University of Medical Sciences, Sari, Iran
- Department of Pharmaceutics, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Alireza Sanaee
- Student Research Committee, Department of Pharmaceutics, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | | | - Mahmoud Omidi
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| |
Collapse
|
11
|
Imtiaz F, Islam M, Saeed H, Ahmed A, Asghar M, Saleem B, Farooq MA, Khan DH, Peltonen L. Novel phytoniosomes formulation of Tradescantia pallida leaves attenuates diabetes more effectively than pure extract. J Drug Deliv Sci Technol 2023. [DOI: 10.1016/j.jddst.2023.104399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2023]
|
12
|
Shahbazi R, Jafari-Gharabaghlou D, Mirjafary Z, Saeidian H, Zarghami N. Design and optimization various formulations of PEGylated niosomal nanoparticles loaded with phytochemical agents: potential anti-cancer effects against human lung cancer cells. Pharmacol Rep 2023; 75:442-455. [PMID: 36859742 DOI: 10.1007/s43440-023-00462-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 02/02/2023] [Accepted: 02/03/2023] [Indexed: 03/03/2023]
Abstract
BACKGROUND Phytochemicals and their derivatives are good options to improve treatment efficiency in cancer patients. Artemisinin (ART) and metformin (MET) are widely used phytochemicals to treat various types of cancers. However, their application because of their dose-dependent side effects, and poor bioavailability brings several challenges. Niosome is a novel nanocarrier that is the best choice to encapsulate both lipophilic and hydrophilic drugs. In this study, we synthesized and characterized various formulations of PEGylated (polyethylene glycol) niosomal nanoparticles co-loaded with ART-MET and evaluated their anticancer effect on A549 lung cancer cells. METHODS Various formulations of PEGylated noisome were prepared by the thin-film hydration method and characterized in size, morphology, release pattern, and physicochemical structure. The cytotoxic effect of the free ART-MET and optimized PEGylated niosomal nanoparticles loaded with ART-MET on A549 cells were evaluated by MTT assay. Furthermore, the Real-time PCR (RT-PCR) technique used to evaluate apoptotic and anti-apoptotic gene expression. RESULTS The size, encapsulation efficiency (EE), and polydispersity index (PDI) of the optimized nanoparticles are 256 nm, 95%, and 0.202, respectively. Additionally, due to the PEGylation hydrophilic character, there is a major consideration of the high impact of PEGylation on reducing niosome size. According to the results of the MTT assay, free ART-MET and ART-MET-loaded niosomal nanoparticles showed dose-dependent toxicity and inhibits the growth of A549 lung cancer cells. Furthermore, the RT-PCR results indicated that ART-MET-loaded niosomal nanoparticles have a higher anti-proliferative effect by inhibiting anti-apoptotic and inducing apoptotic gene expression in A549 lung cancer cells. CONCLUSIONS Our study revealed that the simultaneous use of ART and MET in the optimized PEGylated niosomal nanoparticles delivery system could be an appropriate approach to improve the effectiveness of lung cancer treatment.
Collapse
Affiliation(s)
- Rasoul Shahbazi
- Department of Chemistry, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Davoud Jafari-Gharabaghlou
- Department of Clinical Biochemistry and Laboratory Medicine, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Zohreh Mirjafary
- Department of Chemistry, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Hamid Saeidian
- Department of Science, Payame Noor University (PNU), P.O. Box 19395-3697, Tehran, Iran
| | - Nosratollah Zarghami
- Tuberculosis and Lung Diseases Research Center, University of Medical Sciences, Tabriz, Iran. .,Department of Medical Biochemistry, Faculty of Medicine, Istanbul Aydin University, Istanbul, Turkey.
| |
Collapse
|
13
|
Akbarzadeh I, Rezaei N, Bazzazan S, Mezajin MN, Mansouri A, Karbalaeiheidar H, Ashkezari S, Moghaddam ZS, Lalami ZA, Mostafavi E. In silico and in vitro studies of GENT-EDTA encapsulated niosomes: A novel approach to enhance the antibacterial activity and biofilm inhibition in drug-resistant Klebsiella pneumoniae. BIOMATERIALS ADVANCES 2023; 149:213384. [PMID: 37060635 DOI: 10.1016/j.bioadv.2023.213384] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 12/06/2022] [Accepted: 03/10/2023] [Indexed: 03/17/2023]
Abstract
Klebsiella pneumoniae (Kp) is a common pathogen inducing catheter-related biofilm infections. Developing effective therapy to overcome antimicrobial resistance (AMR) in Kp is a severe therapeutic challenge that must be solved. This study aimed to prepare niosome-encapsulated GENT (Gentamicin) and EDTA (Ethylenediaminetetraacetic acid) (GENT-EDTA/Nio) to evaluate its efficacy toward Kp strains. The thin-film hydration method was used to prepare various formulations of GENT-EDTA/Nio. Formulations were characterized for their physicochemical characteristics. GENT-EDTA/Nio properties were used for optimization with Design-Expert Software. Molecular docking was utilized to determine the antibacterial activity of GENT. The niosomes displayed a controlled drug release and storage stability of at least 60 days at 4 and 25 °C. GENT-EDTA/Nio performance as antimicrobial agents has been evaluated by employing agar well diffusion method, minimum bactericidal concentration (MBC), and minimum inhibitory concentration (MIC) against the Kp bacteria strains. Biofilm formation was investigated after GENT-EDTA/Nio administration through different detection methods, which showed that this formulation reduces biofilm formation. The effect of GENT-EDTA/Nio on the expression of biofilm-related genes (mrkA, ompA, and vzm) was estimated using QRT-PCR. MTT assay was used to evaluate the toxicity effect of niosomal formulations on HFF cells. The present study results indicate that GENT-EDTA/Nio decreases Kp's resistance to antibiotics and increases its antibiotic and anti-biofilm activity and could be helpful as a new approach for drug delivery.
Collapse
|
14
|
Akbari J, Saeedi M, Morteza-Semnani K, Ghasemi M, Eshaghi M, Eghbali M, Jafarkhani B, Rahimnia SM, Negarandeh R, Babaei A, Hashemi SMH, Asare-Addo K, Nokhodchi A. An Eco-Friendly and Hopeful Promise Platform for Delivering Hydrophilic Wound Healing Agents in Topical Administration for Wound Disorder: Diltiazem-Loaded Niosomes. J Pharm Innov 2023. [DOI: 10.1007/s12247-023-09710-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2023]
Abstract
Abstract
Purposes
Calcium channel blockers, such as diltiazem (DLZ), are important drugs for wound repair treatment. This current study used an ultrasonic method to increase the cutaneous delivery of (DLZ) niosomes.
Methods
The impact of the cholesterol:surfactant ratio on the DLZ-loaded niosome formulations was investigated. Differential scanning calorimetry (DSC), powder X-ray diffraction (PXRD), scanning electron microscopy (SEM), attenuated total reflectance-Fourier transform infrared (ATR-FTIR) spectroscopy, drug release, skin sensitivity, animal wound repair model, and histopathological assessment were applied to investigate the characteristics, morphology, and therapeutic effectiveness of the DLZ noisome.
Results
The results showed that changes in the cholesterol:surfactant ratio can influence the zeta potential and the size of the niosome. The maximum entrapment efficiency was observed to be about 94% when the cholesterol content in the formulation was high. The DLZ release studies revealed that the niosomal formulation was released slowly over the course of 24 h. Macroscopic observations of the wound demonstrated that wound closure in the DLZ-niosome-treated group and the commercial brand was equal and higher than in the other groups (gel base, placebo gel, and negative control). Pathological studies described that the wound repair in the DLZ-niosomal gel group was greater than in the other treatment. All the preparations tested for cutaneous irritation on Wistar rats showed the DLZ niosomal gels to be non-irritating.
Conclusion
The findings of this study revealed that the prepared DLZ-niosome could be used as a possible nano-vesicle for DLZ cutaneous delivery thus potentially opening up new prospects for the treatment of wound disorders.
Collapse
|
15
|
Surfactant and Block Copolymer Nanostructures: From Design and Development to Nanomedicine Preclinical Studies. Pharmaceutics 2023; 15:pharmaceutics15020501. [PMID: 36839826 PMCID: PMC9963006 DOI: 10.3390/pharmaceutics15020501] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 12/21/2022] [Accepted: 01/30/2023] [Indexed: 02/05/2023] Open
Abstract
The medical application of nanotechnology in the field of drug delivery has so far exhibited many efforts in treating simple to extremely complicated and life-threatening human conditions, with multiple products already existing in the market. A plethora of innovative drug delivery carriers, using polymers, surfactants and the combination of the above, have been developed and tested pre-clinically, offering great advantages in terms of targeted drug delivery, low toxicity and immune system activation, cellular biomimicry and enhanced pharmacokinetic properties. Furthermore, such artificial systems can be tailor-made with respect to each therapeutic protocol and disease type falling under the scope of personalized medicine. The simultaneous delivery of multiple therapeutic entities of different nature, such as genes and drugs, can be achieved, while novel technologies can offer systems with multiple modalities often combining therapy with diagnosis. In this review, we present prominent, innovative and state-of-the-art scientific efforts on the applications of surfactant-based, polymer-based, and mixed surfactant-polymer nanoparticle drug formulations intended for use in the medical field and in drug delivery. The materials used, formulation steps, nature, properties, physicochemical characteristics, characterization techniques and pharmacokinetic behavior of those systems, are presented extensively in the length of this work. The material presented is focused on research projects that are currently in the developmental, pre-clinical stage.
Collapse
|
16
|
Khan I, Al-Hasani A, Khan MH, Khan AN, -Alam FE, Sadozai SK, Elhissi A, Khan J, Yousaf S. Impact of dispersion media and carrier type on spray-dried proliposome powder formulations loaded with beclomethasone dipropionate for their pulmonary drug delivery via a next generation impactor. PLoS One 2023; 18:e0281860. [PMID: 36913325 PMCID: PMC10010524 DOI: 10.1371/journal.pone.0281860] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 02/02/2023] [Indexed: 03/14/2023] Open
Abstract
Drug delivery via aerosolization for localized and systemic effect is a non-invasive approach to achieving pulmonary targeting. The aim of this study was to prepare spray-dried proliposome (SDP) powder formulations to produce carrier particles for superior aerosolization performance, assessed via a next generation impactor (NGI) in combination with a dry powder inhaler. SDP powder formulations (F1-F10) were prepared using a spray dryer, employing five different types of lactose carriers (Lactose monohydrate (LMH), lactose microfine (LMF), lactose 003, lactose 220 and lactose 300) and two different dispersion media. The first dispersion medium was comprised of water and ethanol (50:50% v/v ratio), and the second dispersion medium comprised wholly of ethanol (100%). In the first dispersion medium, the lipid phase (consisting of Soya phosphatidylcholine (SPC as phospholipid) and Beclomethasone dipropionate (BDP; model drug) were dissolved in ethanol and the lactose carrier in water, followed by spray drying. Whereas in second dispersion medium, the lipid phase and lactose carrier were dispersed in ethanol only, post spray drying. SDP powder formulations (F1-F5) possessed significantly smaller particles (2.89 ± 1.24-4.48 ± 1.20 μm), when compared to SDP F6-F10 formulations (10.63 ± 3.71-19.27 ± 4.98 μm), irrespective of lactose carrier type via SEM (scanning electron microscopy). Crystallinity of the F6-F10 and amorphicity of F1-F15 formulations were confirmed by XRD (X-ray diffraction). Differences in size and crystallinity were further reflected in production yield, where significantly higher production yield was obtained for F1-F5 (74.87 ± 4.28-87.32 ± 2.42%) then F6-F10 formulations (40.08 ± 5.714-54.98 ± 5.82%), irrespective of carrier type. Negligible differences were noted in terms of entrapment efficiency, when comparing F1-F5 SDP formulations (94.67 ± 8.41-96.35 ± 7.93) to F6-F10 formulations (78.16 ± 9.35-82.95 ± 9.62). Moreover, formulations F1-F5 demonstrated significantly higher fine particle fraction (FPF), fine particle dose (FPD) and respirable fraction (RF) (on average of 30.35%, 890.12 μg and 85.90%) when compared to counterpart SDP powder formulations (F6-F10). This study has demonstrated that when a combination of water and ethanol was employed as dispersion medium (formulations F1-F5), superior formulation properties for pulmonary drug delivery were observed, irrespective of carrier type employed.
Collapse
Affiliation(s)
- Iftikhar Khan
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool, United Kingdom
- * E-mail: ,
| | - Ali Al-Hasani
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool, United Kingdom
| | - Mohsin H. Khan
- Surgical A Ward, Khyber Teaching Hospital, Peshawar, Pakistan
| | - Aamir N. Khan
- Cardiology Department, Lady Reading Hospital, Peshawar, Pakistan
| | - Fakhr-e -Alam
- Department of Hepatology, King’s College Hospital, Denmark Hill, London, United Kingdom
| | - Sajid K. Sadozai
- Department of Pharmacy, Kohat University of Science and Technology, Kohat, Pakistan
| | - Abdelbary Elhissi
- Pharmaceutical Sciences Section, College of Pharmacy, Qatar University, Doha, Qatar
| | | | - Sakib Yousaf
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool, United Kingdom
| |
Collapse
|
17
|
Morteza-Semnani K, Saeedi M, Akbari J, Hedayati S, Hashemi SMH, Rahimnia SM, Babaei A, Ghazanfari M, Haghani I, Hedayati MT. Green formulation, characterization, antifungal and biological safety evaluation of terbinafine HCl niosomes and niosomal gels manufactured by eco-friendly green method. JOURNAL OF BIOMATERIALS SCIENCE. POLYMER EDITION 2022; 33:2325-2352. [PMID: 35848460 DOI: 10.1080/09205063.2022.2103626] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Terbinafine (TER) is a promising candidate medication for the topical treatment of fungal infections. However, its solubility in water and skin permeability are limited. To overcome these limitations, a Terbinafine niosome and niosomal gel was developed. The impact of cholesterol:surfactants on terbinafine incorporated niosome (terbinasome) preparations was examined. Differential scanning calorimetry (DSC), photon correlation spectroscopy (PCS), scanning electron microscopy (SEM), and attenuated total reflectance-Fourier transform infrared (ATR-FTIR) spectroscopy were used to assess the morphological features of terbinasome and the physicochemical characteristics of TER in terbinasome. The obtained results has shown that Chol enhanced the diameter of the terbinasome from 123.20 ± 2.86 to 701.93 ± 17.72 nm. The highest encapsulation of terbinafine was estimated to be around 66% due to the cholesterol:surfactants ratio in the terbinasome was 1:3 and 1:6. Additional examination has revealed that changes in the cholesterol:surfactants ratio can result in a change in the PDI value of between 0.421 ± 0.004 and 0.712 ± 0.011. The terbinasome gel was prepared and tested for pharmaceutical testing, including pH, viscosity, spreadability, and stability. The percentage of TER dissolution from terbinasome were determined more than 80% and showed quickest drug release. In a cutaneous permeability examination, the quantity of TER in the cutaneous layers and the receiver compartment were higher for the terbinasome gel than for the TER simple gel. The terbinasome's cell viability was around 90% (HFF cell line) and MTT experiment demonstrated that the terbinasome was not cytotoxic. The MIC of the terbinasome was lower than pure drug against Aspergillus, Fusarium, and Trichophyton. The terbinasomal gels were non-irritant (score < 2) in the cutaneous irritation examination performed on Wistar rats. The research suggests that the optimized terbinasome may be used as a nano-vesicle for TER drug administration, hence opening up new possibilities for the treatment of cutaneous infections.
Collapse
Affiliation(s)
- Katayoun Morteza-Semnani
- Department of Medicinal Chemistry, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Majid Saeedi
- Pharmaceutical Sciences Research Centre, Haemoglobinopathy Institute, Mazandaran University of Medical Sciences, Sari, Iran.,Department of Pharmaceutics, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Jafar Akbari
- Department of Pharmaceutics, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Shakiba Hedayati
- Student Research Committee Center, Mazandaran University of Medical Sciences, Sari, Iran
| | - Seyyed Mohammad Hassan Hashemi
- Department of Pharmaceutics, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran.,Student Research Committee Center, Mazandaran University of Medical Sciences, Sari, Iran
| | - Seyyed Mobin Rahimnia
- Department of Pharmaceutics, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran.,Student Research Committee Center, Mazandaran University of Medical Sciences, Sari, Iran
| | - Amirhossein Babaei
- Department of Pharmaceutics, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran.,Student Research Committee Center, Mazandaran University of Medical Sciences, Sari, Iran
| | - Mona Ghazanfari
- Department of Medical Mycology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran.,Invasive Fungi Research Center, Communicable Diseases Institute, Mazandaran University of Medical Sciences, Sari, Iran
| | - Iman Haghani
- Invasive Fungi Research Center, Communicable Diseases Institute, Mazandaran University of Medical Sciences, Sari, Iran
| | - Mohammad Taghi Hedayati
- Department of Medical Mycology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran.,Invasive Fungi Research Center, Communicable Diseases Institute, Mazandaran University of Medical Sciences, Sari, Iran
| |
Collapse
|
18
|
Oransa HA, Boughdady MF, EL-Sabbagh HM. Novel Mucoadhesive Chitosomes as a Platform for Enhanced Oral Bioavailability of Cinnarizine. Int J Nanomedicine 2022; 17:5641-5660. [PMID: 36452306 PMCID: PMC9704018 DOI: 10.2147/ijn.s384494] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 11/12/2022] [Indexed: 10/05/2024] Open
Abstract
PURPOSE Cinnarizine (CIN) is a class II BSC drug, suffering from erratic bioavailability due to its pH-dependent solubility. It has preferential absorption in the stomach. In this study, new chitosan (CS) coated niosomes of CIN (CIN-loaded chitosomes) have been developed to extend the gastric retention and ameliorate CIN oral bioavailability. METHODS Various CIN-loaded niosomes were fabricated by thin-film hydration technique and fully characterized. Based on the predetermined criteria of low particle size (PS) and high entrapment efficiency percent (EE%), niosomal formulation F1 was selected and further coated with different CS concentrations. The optimized chitosomal formulation (C2) was evaluated through solid state characterization and mucoadhesive efficiency testing. It was also subjected to cytotoxicity study on Caco-2 cells; besides, in vitro drug release, stability and pharmacokinetic studies were assessed. RESULTS The optimized chitosomal formulation (C2) exhibited an EE% of 58.30±2.75%, PS of 440 ±13.03 nm, PDI of 0.335±0.21 and ZP of +28.1±0.10 mv. Solid state characterization results revealed the compatibility between the vesicle components and the entrapment of CIN within niosomal vesicles. C2 formulation demonstrated favorable mucoadhesive efficiency. The cytotoxicity study on Caco-2 cells manifested the safety of the optimized chitosomal formulation (C2) over the free drug. Additionally, it displayed a remarkable sustaining of CIN in vitro release up to 8 h and exhibited a good stability at the refrigerated temperature up to 3 months. In vivo pharmacokinetic assessment revealed that the CIN bioavailability from the optimized chitosomal formulation C2 was enhanced by 2.79 and 1.92 folds compared to the free drug and uncoated niosomal formulation F1, respectively. The priority of the chitosomal formulation (C2) over the niosomal one (F1) was also conferred. CONCLUSION Novel formulation of chitosan coated niosomes (chitosomes) could be presented as a promising platform to improve the oral bioavailability of drugs with narrow absorption window.
Collapse
Affiliation(s)
- Hagar Ahmed Oransa
- Department of Pharmaceutics, Faculty of Pharmacy, Mansoura University, Mansoura, Dakahlia, Egypt
| | - Mariza Fouad Boughdady
- Department of Pharmaceutics, Faculty of Pharmacy, Mansoura University, Mansoura, Dakahlia, Egypt
| | | |
Collapse
|
19
|
Zaid Alkilani A, Abu-Zour H, Alshishani A, Abu-Huwaij R, Basheer HA, Abo-Zour H. Formulation and Evaluation of Niosomal Alendronate Sodium Encapsulated in Polymeric Microneedles: In Vitro Studies, Stability Study and Cytotoxicity Study. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:nano12203570. [PMID: 36296760 PMCID: PMC9611853 DOI: 10.3390/nano12203570] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 10/01/2022] [Accepted: 10/04/2022] [Indexed: 05/14/2023]
Abstract
The aim of this study is to design and evaluate a transdermal delivery system for alendronate sodium (ALS) loaded with nanocarrier to improve its permeability and prolong its release. This is due to its low bioavailability, potential gastrointestinal side effects, and the special administration needed for the oral dosage form of ALS. When using the ether injection method, various niosomal formulations were produced. Size of the particles, polydispersity index (PDI), surface charge (ZP), drug entrapment efficiency (EE), and in vitro release were used to characterize the resulting niosomes. The size of niosomes ranged between 99.6 ± 0.9 and 464.3 ± 67.6 nm, and ZP was from −27.6 to −42.27 mV. The niosomal formulation was then loaded to aqueous polymer solution of 30% polyvinyl pyrrolidone (PVP) (MN-1), 30% PVP with 15% poly(vinyl alcohol) (PVA) (2:1) (MN-2), and 30% PVP with 15% PVA (1:1) (MN-3). The cumulative amount of ALS (Q) was in the following order: MN-1 > MN-2 > MN-3. All formulations in this study were stable at room temperature over two months, in terms of moisture content and drug content. In conclusion, a transdermal delivery of ALS niosomes combined in microneedles (MNs) was successfully prepared to provide sustained release of ALS.
Collapse
Affiliation(s)
- Ahlam Zaid Alkilani
- Department of Pharmacy, Faculty of Pharmacy, Zarqa University, Zarqa 13110, Jordan
- Correspondence:
| | - Hana Abu-Zour
- Department of Pharmacy, Faculty of Pharmacy, Zarqa University, Zarqa 13110, Jordan
| | - Anas Alshishani
- Department of Pharmacy, Faculty of Pharmacy, Zarqa University, Zarqa 13110, Jordan
| | - Rana Abu-Huwaij
- Faculty of Pharmacy, Amman Arab University, Amman 11953, Jordan
| | - Haneen A. Basheer
- Department of Pharmacy, Faculty of Pharmacy, Zarqa University, Zarqa 13110, Jordan
| | - Hadeel Abo-Zour
- Department of Pharmacy, Faculty of Pharmacy, Zarqa University, Zarqa 13110, Jordan
| |
Collapse
|
20
|
pH-Responsive PEGylated Niosomal Nanoparticles as an Active-Targeting Cyclophosphamide Delivery System for Gastric Cancer Therapy. Molecules 2022; 27:molecules27175418. [PMID: 36080186 PMCID: PMC9457647 DOI: 10.3390/molecules27175418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/13/2022] [Accepted: 08/18/2022] [Indexed: 11/17/2022] Open
Abstract
A PEGylated niosomal formulation of cyclophosphamide (Nio-Cyclo-PEG) was prepared using a central composite design and characterized in terms of drug loading, size distribution, and average size. The stability of formulations was also studied at different conditions. In vitro cytotoxicity of drug delivery formulations was assessed on gastric cancer cells using MTT assay. The mechanism of cytotoxicity was studied at the transcriptional level by real-time PCR on Caspase3, Caspase9, CyclinD, CyclinE, MMP-2, and MMP-9 genes, while apoptosis was investigated with flow cytometry. The anti-metastatic property was evaluated using the scratch method. Propidium iodide staining was used to study the cell cycle. The results indicated that the as-designed nanocarrier exhibited a controlled drug release pattern with improved nanoparticle stability. It was found that the living cancer cells treated with Nio-Cyclo-PEG showed a significant decrease in number when compared with the niosomal carrier without PEG (Nio-Cyclo) and free drug (Cyclo). Moreover, the drug-loaded nanocarrier induced planned death (apoptosis) in the cancer cells through the regulation of Caspase3, Caspase9, CyclinD, CyclinE, MMP-9, and MMP-2 gene expression, indicating that the Nio-Cyclo-PEG formulation could significantly inhibit the cell cycle at the sub G1 phase as well as prevent the migration of cancer cells. In conclusion, Nio-Cyclo-PEG as developed in this study could serve as an active-targeting drug delivery nanocarriers for gastric cancer therapy with high efficacy and minimal side effects on healthy tissues/cells.
Collapse
|
21
|
Folate-Targeted Curcumin-Loaded Niosomes for Site-Specific Delivery in Breast Cancer Treatment: In Silico and In Vitro Study. Molecules 2022; 27:molecules27144634. [PMID: 35889513 PMCID: PMC9322601 DOI: 10.3390/molecules27144634] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 07/08/2022] [Accepted: 07/12/2022] [Indexed: 12/21/2022] Open
Abstract
As the most common cancer in women, efforts have been made to develop novel nanomedicine-based therapeutics for breast cancer. In the present study, the in silico curcumin (Cur) properties were investigated, and we found some important drawbacks of Cur. To enhance cancer therapeutics of Cur, three different nonionic surfactants (span 20, 60, and 80) were used to prepare various Cur-loaded niosomes (Nio-Cur). Then, fabricated Nio-Cur were decorated with folic acid (FA) and polyethylene glycol (PEG) for breast cancer suppression. For PEG-FA@Nio-Cur, the gene expression levels of Bax and p53 were higher compared to free drug and Nio-Cur. With PEG-FA-decorated Nio-Cur, levels of Bcl2 were lower than the free drug and Nio-Cur. When MCF7 and 4T1 cell uptake tests of PEG-FA@Nio-Cur and Nio-Cur were investigated, the results showed that the PEG-FA-modified niosomes exhibited the most preponderant endocytosis. In vitro experiments demonstrate that PEG-FA@Nio-Cur is a promising strategy for the delivery of Cur in breast cancer therapy. Breast cancer cells absorbed the prepared nanoformulations and exhibited sustained drug release characteristics.
Collapse
|
22
|
Aboud HM, Hussein AK, Zayan AZ, Makram TS, Sarhan MO, El-Sharawy DM. Tailoring of Selenium-Plated Novasomes for Fine-Tuning Pharmacokinetic and Tumor Uptake of Quercetin: In Vitro Optimization and In Vivo Radiobiodistribution Assessment in Ehrlich Tumor-Bearing Mice. Pharmaceutics 2022; 14:pharmaceutics14040875. [PMID: 35456709 PMCID: PMC9032182 DOI: 10.3390/pharmaceutics14040875] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 04/08/2022] [Accepted: 04/12/2022] [Indexed: 02/01/2023] Open
Abstract
Quercetin (QRC) is a bioflavonoid with anti-inflammatory, antioxidant, and anticancer activities, yet QRC poor bioavailability has hampered its clinical implementation. The aim of the current work was to harness novasomes (NOVs), free fatty acid enriched vesicles, as a novel nano-cargo for felicitous QRC delivery with subsequent functionalization with selenium (SeNOVs), to extend the systemic bio-fate of NOVs and potentiate QRC anticancer efficacy through the synergy with selenium. QRC-NOVs were primed embedding oleic acid, Brij 35, and cholesterol adopting thin-film hydration technique according to Box–Behnken design. Employing Design-Expert® software, the impact of formulation variables on NOVs physicochemical characteristics besides the optimum formulation election were explored. Based on the optimal NOVs formulation, QRC-SeNOVs were assembled via electrostatic complexation/in situ reduction method. The MTT cytotoxicity assay of the uncoated, and coated nanovectors versus crude QRC was investigated in human rhabdomyosarcoma (RD) cells. The in vivo pharmacokinetic and biodistribution studies after intravenous administrations of technetium-99m (99mTc)-labeled QRC-NOVs, QRC-SeNOVs, and QRC-solution were scrutinized in Ehrlich tumor-bearing mice. QRC-NOVs and QRC-SeNOVs disclosed entrapment efficiency of 67.21 and 70.85%, vesicle size of 107.29 and 129.16 nm, ζ potential of −34.71 and −43.25 mV, and accumulatively released 43.26 and 31.30% QRC within 24 h, respectively. Additionally, QRC-SeNOVs manifested a far lower IC50 of 5.56 μg/mL on RD cells than that of QRC-NOVs (17.63 μg/mL) and crude QRC (38.71 μg/mL). Moreover, the biodistribution study elicited higher preferential uptake of 99mTc-QRC-SeNOVs within the tumorous tissues by 1.73- and 5.67-fold as compared to 99mTc-QRC-NOVs and 99mTc-QRC-solution, respectively. Furthermore, the relative uptake efficiency of 99mTc-QRC-SeNOVs was 5.78, the concentration efficiency was 4.74 and the drug-targeting efficiency was 3.21. Hence, the engineered QRC-SeNOVs could confer an auspicious hybrid nanoparadigm for QRC delivery with fine-tuned pharmacokinetics, and synergized antitumor traits.
Collapse
Affiliation(s)
- Heba M. Aboud
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62514, Egypt
- Correspondence: ; Tel.: +20-822162135
| | - Amal K. Hussein
- Department of Pharmaceutics, Faculty of Pharmacy, Minia University, Minia 61519, Egypt;
| | - Abdallah Z. Zayan
- Department of Pharmaceutics, Faculty of Pharmacy, Nahda University, Beni-Suef 62513, Egypt;
| | - Tarek Saad Makram
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, October 6 University, Giza 12585, Egypt;
| | - Mona O. Sarhan
- Labeled Compounds Department, Hot Labs Center, Egyptian Atomic Energy Authority (EAEA), Cairo 13759, Egypt; (M.O.S.); (D.M.E.-S.)
| | - Dina M. El-Sharawy
- Labeled Compounds Department, Hot Labs Center, Egyptian Atomic Energy Authority (EAEA), Cairo 13759, Egypt; (M.O.S.); (D.M.E.-S.)
- Cyclotron Project, Nuclear Research Center, Egyptian Atomic Energy Authority (EAEA), Cairo 13759, Egypt
| |
Collapse
|
23
|
Piri-Gharaghie T, Jegargoshe-Shirin N, Saremi-Nouri S, Khademhosseini SH, Hoseinnezhad-Lazarjani E, Mousavi A, Kabiri H, Rajaei N, Riahi A, Farhadi-Biregani A, Fatehi-Ghahfarokhi S. Effects of Imipenem-containing Niosome nanoparticles against high prevalence methicillin-resistant Staphylococcus Epidermidis biofilm formed. Sci Rep 2022; 12:5140. [PMID: 35332241 PMCID: PMC8948213 DOI: 10.1038/s41598-022-09195-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 03/16/2022] [Indexed: 12/20/2022] Open
Abstract
We aim to assess the antibacterial and anti-biofilm properties of Niosome-encapsulated Imipenem. After isolating Staphylococcus epidermidis isolates and determining their microbial sensitivity, their ability to form biofilms was examined using plate microtiter assay. Various formulations of Niosome-encapsulated Imipenem were prepared using the thin-film hydration method, Minimum Biofilm Inhibitory Concentration (MBIC) and Minimum Inhibitory Concentration (MIC) were determined, and biofilm genes expression was examined. Drug formulations' toxicity effect on HDF cells were determined using MTT assay. Out of the 162 separated S. epidermidis, 106 were resistant to methicillin. 87 MRSE isolates were vancomycin-resistant, all of which could form biofilms. The F1 formulation of niosomal Imipenem with a size of 192.3 ± 5.84 and an encapsulation index of 79.36 ± 1.14 was detected, which prevented biofilm growth with a BGI index of 69% and reduced icaD, FnbA, EbpS biofilms' expression with P ≤ 0.001 in addition to reducing MBIC and MIC by 4-6 times. Interestingly, F1 formulation of niosomal Imipenem indicated cell viability over 90% at all tested concentrations. The results of the present study indicate that Niosome-encapsulated Imipenem reduces the resistance of MRSE to antibiotics in addition to increasing its anti-biofilm and antibiotic activity, and could prove useful as a new strategy for drug delivery.
Collapse
Affiliation(s)
- Tohid Piri-Gharaghie
- Biotechnology Research Center, Microbial Biotechnology Laboratory, AmitisGen Med TECH Group, P.O. Box: 1416673744, Tehran, Iran.
| | - Neda Jegargoshe-Shirin
- Department of Biotechnology, Faculty of Basic Sciences, Damghan Branch, Islamic Azad University, Semnan, Iran
| | - Sara Saremi-Nouri
- Department of Biology, Faculty of Basic Sciences, Azarbaijan Branch, Azarbaijan Shahid Madani University, Azarbaijan, Iran
| | | | | | - Aezam Mousavi
- Biotechnology Research Center, Islamic Azad University, Shahrekord Branch, Shahrekord, Iran
| | - Hamidreza Kabiri
- Young Researchers and Elite Club, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
- Sina Borna Aria (SABA) Co., Ltd, Research and Development Center for Biotechnology, Shahrekord, Iran
| | - Negin Rajaei
- Young Researchers and Elite Club, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
- Sina Borna Aria (SABA) Co., Ltd, Research and Development Center for Biotechnology, Shahrekord, Iran
| | - Anali Riahi
- Department of Biotechnology, Faculty of Basic Sciences, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
| | - Ali Farhadi-Biregani
- Department of Biotechnology, Faculty of Basic Sciences, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
| | - Sadegh Fatehi-Ghahfarokhi
- Department of Biotechnology, Faculty of Basic Sciences, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
| |
Collapse
|
24
|
Shadvar P, Mirzaie A, Yazdani S. Fabrication and optimization of amoxicillin-loaded niosomes: An appropriate strategy to increase antimicrobial and anti-biofilm effects against multidrug-resistant strains of Staphylococcus aureus. Drug Dev Ind Pharm 2022; 47:1568-1577. [PMID: 35007176 DOI: 10.1080/03639045.2022.2027958] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
In this study, different formulations of amoxicillin-loaded niosomes were fabricated using the thin-film hydration method and their physicochemical properties were determined using scanning electron microscopy (SEM), dynamic light scattering (DLS), and Fourier-transform infrared spectroscopy (FTIR). The optimum prepared niosomes had a spherical morphology with an average size of 170.6 ± 6.8 nm and encapsulation efficiency of 65.78 ± 1.45%. The drug release study showed that the release rate of amoxicillin from niosome containing amoxicillin was slow and 47 ± 1% of the drug was released within 8 hours, while 97 ± 0.5% of the free drug was released. In addition, amoxicillin-loaded niosome increased the antimicrobial activity by 2-4 folds against multidrug-resistant (MDR) Staphylococcus aureus strains using broth microdilution assay. Moreover, at ½ minimum inhibitory concentrations, amoxicillin-loaded niosome significantly enhanced the anti-biofilm activity compared to free amoxicillin. Amoxicillin-loaded niosome had negligible cytotoxicity against HEK-293 normal cell line compared to free amoxicillin. The free niosomes exhibited no toxicity against HEK-293 cells and presented a biocompatible nanoscale delivery system. Based on the results, it can be concluded that amoxicillin-loaded niosome can be used as a promising candidate for enhancing antimicrobial and anti-biofilm effects against MDR strains of S. aureus.
Collapse
Affiliation(s)
- Pardis Shadvar
- Department of Microbiology, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran Tehran, Iran
| | - Amir Mirzaie
- Department of Biology, Parand Branch, Islamic Azad University, Parand, Iran
| | - Shaghayegh Yazdani
- Department of Microbiology, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran Tehran, Iran
| |
Collapse
|
25
|
Rajput A, Mandlik S, Pokharkar V. Nanocarrier-Based Approaches for the Efficient Delivery of Anti-Tubercular Drugs and Vaccines for Management of Tuberculosis. Front Pharmacol 2021; 12:749945. [PMID: 34992530 PMCID: PMC8724553 DOI: 10.3389/fphar.2021.749945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 10/11/2021] [Indexed: 11/28/2022] Open
Abstract
Drug-resistant species of tuberculosis (TB), which spread faster than traditiona TB, is a severely infectious disease. The conventional drug therapy used in the management of tuberculosis has several challenges linked with adverse effects. Hence, nanotherapeutics served as an emerging technique to overcome problems associated with current treatment. Nanotherapeutics helps to overcome toxicity and poor solubility issues of several drugs used in the management of tuberculosis. Due to their diameter and surface chemistry, nanocarriers encapsulated with antimicrobial drugs are readily taken up by macrophages. Macrophages play a crucial role as they serve as target sites for active and passive targeting for nanocarriers. The surface of the nanocarriers is coated with ligand-specific receptors, which further enhances drug concentration locally and indicates the therapeutic potential of nanocarriers. This review highlights tuberculosis's current facts, figures, challenges associated with conventional treatment, different nanocarrier-based systems, and its application in vaccine development.
Collapse
Affiliation(s)
| | | | - Varsha Pokharkar
- Department of Pharmaceutics, Poona College of Pharmacy, Bharti Vidyapeeth Deemed University, Pune, India
| |
Collapse
|
26
|
Rezaeizadeh M, Eskanlou A, Soltani H, Pardakhty A, Moshafi MH, Hosseini-Nejad F. Preparation of Stable Clindamycin Phosphate Niosomes by Combination of Sorbitan Esters and their Ethoxylaed Derivatives. J Pharm Innov 2021. [DOI: 10.1007/s12247-021-09594-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
27
|
Ghasemzad M, Hashemian SMR, Memarnejadian A, Akbarzadeh I, Hossein-Khannazer N, Vosough M. The nano-based theranostics for respiratory complications of COVID-19. Drug Dev Ind Pharm 2021; 47:1353-1361. [PMID: 34666567 DOI: 10.1080/03639045.2021.1994989] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
High morbidity and mortality caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has made coronavirus disease 2019 (COVID-19) the leading challenge for health experts all over the world. Currently, there is no specific treatment for COVID-19; however, thanks to worldwide intense attempts, novel vaccines such as mRNA-1273 (Moderna TX, Inc.) and BNT162b2 (Biontech/Pfizer) were developed very fast and FDA approved them for emergency use. Nanomedicine-based drug delivery can be an advanced therapeutic strategy to deal with clinical complications of COVID-19. Given the fact that SARS-CoV-2 typically affects the respiratory tract, application of inhalable nanoparticles (NPs) for targeted drug delivery to the alveolar space appears to be an effective and promising therapeutic strategy. Loading the medicinal components into NPs enhances the stability, bioavailability, solubility and sustained release of them. This approach can circumvent major challenges in efficient drug delivery such as solubility and any adverse impact of medicinal components due to off-targeted delivery and resulting systemic complications. Inhalable NPs could be delivered through nasal sprays, inhalers, and nebulizers. NPs also could interfere in virus attachment to host cells and prevent infection. Moreover, nanomedicine-based technologies can facilitate accurate and rapid detection of virus compared to the conventional methods. In this review, the nano-based theranostics modalities for the management of respiratory complications of COVID-19 were discussed.
Collapse
Affiliation(s)
- Mahsa Ghasemzad
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran.,Faculty of Basic Sciences and Advanced Technologies in biology, Department of Molecular Cell Biology-Genetics, University of Science and Culture, Tehran, Iran.,Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Seyed Mohammad Reza Hashemian
- Chronic Respiratory Diseases Research Center, National Research Institute of Tuberculosis and Lung Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Iman Akbarzadeh
- Department of Chemical and Petrochemical Engineering, Sharif University of Technology, Tehran, Iran
| | - Nikoo Hossein-Khannazer
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Massoud Vosough
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| |
Collapse
|
28
|
Rath G, Pradhan D, Ghosh G, Goyal AK. Challenges and Opportunities of Nanotechnological based Approach for the Treatment of Tuberculosis. Curr Pharm Des 2021; 27:2026-2040. [PMID: 33634753 DOI: 10.2174/1381612827666210226121359] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 01/22/2021] [Indexed: 11/22/2022]
Abstract
Mycobacterium tuberculosis, because of its unique biochemical behavior and a complex host relationship, successfully evades the host immune system. Therefore, chemotherapy appears to be the first-line option for patients with tuberculosis. However, poor patient compliance with anti-tubercular treatment and variability in anti-tubercular drug pharmacokinetics are among the major driving factors for the emergence of drug resistance. The rising cases of extrapulmonary TB, cross-resistance patterns, high prevalence of tuberculosis and HIV co-infections make tuberculosis treatment more complicated than conventional multidrug therapy. Due to their distinct advantages like higher solubility, increased payload, controlled release profiles, tissue-specific accumulation, and lack of toxicity, nanoscale materials have immense potential for drug delivery applications. An appropriate selection of polymer and careful particle engineering further improves therapeutic outcomes with opportunities to overcome conventional anti-tubercular drugs' challenges. The present review introduces the prospect of using nanotechnology in tuberculosis (TB) chemotherapy and provides a comprehensive overview of recent advances in nanocarriers implied for delivering anti-tubercular drugs.
Collapse
Affiliation(s)
- Goutam Rath
- School of Pharmaceutical Sciences, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar, India
| | - Deepak Pradhan
- School of Pharmaceutical Sciences, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar, India
| | - Goutam Ghosh
- School of Pharmaceutical Sciences, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar, India
| | - Amit K Goyal
- Department of Pharmacy, Central University of Rajasthan, Rajasthan, India
| |
Collapse
|
29
|
Targeting Intracellular Mycobacteria Using Nanosized Niosomes Loaded with Antibacterial Agents. NANOMATERIALS 2021; 11:nano11081984. [PMID: 34443815 PMCID: PMC8398725 DOI: 10.3390/nano11081984] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Revised: 07/26/2021] [Accepted: 07/29/2021] [Indexed: 11/16/2022]
Abstract
BACKGROUND Pathogenic intracellular mycobacteria are challenging to treat because of the waxy and complex cell wall characterizing the genus. Niosomes are vesicles with biomimetic cell membrane composition, which allow them to efficiently bind to the eukaryotic cells and deliver their cargo into the cytoplasm. The objective of this study was to develop a new platform based on niosomes loaded with antimicrobial agents to target intracellular mycobacteria. Nanoniosomes were fabricated and loaded with antibiotics and lignin-silver nanoparticles. The efficacy of these nanoniosomes was tested against the intracellular pathogen Mycobacterium abscessus used as a model of infection of human-derived macrophages (THP-1). The cytotoxicity and the immunological response of the agents were tested on THP-1 cells using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay and the secretion of pro- and anti-inflammatory cytokines, respectively. RESULTS M. abscessus was susceptible to the nanoniosomes in infected THP-1 macrophages, suggesting that the nanoniosomes were internalized due to their fusion to the macrophage cellular membrane. Moreover, nanoniosomes showed no upregulation of pro-inflammatory cytokines when exposed to THP-1 macrophages. CONCLUSIONS Nanoniosomes improved drug efficacy while decreasing toxicity and should be considered for further testing in the treatment of intracellular pathogenic mycobacteria or as a new platform for precise intracellular delivery of drugs.
Collapse
|
30
|
Akbari J, Saeedi M, Morteza-Semnani K, Hashemi SMH, Babaei A, Eghbali M, Mohammadi M, Rostamkalaei SS, Asare-Addo K, Nokhodchi A. Innovative topical niosomal gel formulation containing diclofenac sodium (niofenac). J Drug Target 2021; 30:108-117. [PMID: 34116599 DOI: 10.1080/1061186x.2021.1941060] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The purpose of this research was to enhance the transdermal delivery of diclofenac sodium niosomal formulations. To characterise the obtained niosomes, SEM, XRPD, DSC and ATR-FTIR were employed. The size of the niosomes increased from 158.00 ± 6.17 to 400.87 ± 4.99 nm when cholesterol was incorporated into the formulations. It was observed that the zeta potential of niofenac varies from -25.40 ± 1.352 to -43.13 ± 1.171 mV when the cholesterol percentage decreased from 2% to 0.2%. The higher entrapment efficiency percentage (63.70 ± 0.18%) was obtained for the formulations with larger particle sizes and higher cholesterol content. The optimised niofenac formulation showed a controlled release fashion where 61.71 ± 0.59% of the drug released within 24 h. The results showed that the value of permeated diclofenac sodium through the skin layers was higher for the niofenac gel formulation (242.3 ± 31.11 µg/cm2) compared to simple gel formulation (127.40 ± 27.80 µg/cm2). Besides, niofenac formulation outperformed the anti-inflammatory activities in the formalin test compared to the control and diclofenac simple gel group. The licking time was significantly lower in both early (40.2 ± 7.3 s) and late stages (432.4 ± 31.7 s) for niofenac compared to conventional formulation (early stage 130.4 ± 8.73 s and late stage 660.6 ± 123.73 s). This study indicates that niosomal formulations can improve drug therapeutic effects by increasing drug delivery to specific sites.
Collapse
Affiliation(s)
- Jafar Akbari
- Department of Pharmaceutics, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Majid Saeedi
- Department of Pharmaceutics, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Katayoun Morteza-Semnani
- Department of Medicinal Chemistry, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Seyyed Mohammad Hassan Hashemi
- Department of Pharmaceutics, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran.,Student Research Committee, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Amirhossein Babaei
- Department of Pharmaceutics, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran.,Student Research Committee, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Mohammad Eghbali
- Student Research Committee, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Mahsa Mohammadi
- Student Research Committee, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Seyyed Sohrab Rostamkalaei
- Department of Pharmaceutics, Faculty of Pharmacy, Islamic Azad University, Ayatollah Amoli Branch, Amol, Iran.,Medical Plant Research Center, Faculty of Pharmacy, Islamic Azad University, Ayatollah Amoli Branch, Amol, Iran
| | - Kofi Asare-Addo
- Department of Pharmacy, University of Huddersfield, Huddersfield
| | - Ali Nokhodchi
- Pharmaceutics Research Laboratory, School of Life Sciences, University of Sussex, Brighton, UK
| |
Collapse
|
31
|
Bustamante-Torres M, Pino-Ramos VH, Romero-Fierro D, Hidalgo-Bonilla SP, Magaña H, Bucio E. Synthesis and Antimicrobial Properties of Highly Cross-Linked pH-Sensitive Hydrogels through Gamma Radiation. Polymers (Basel) 2021; 13:polym13142223. [PMID: 34300980 PMCID: PMC8309246 DOI: 10.3390/polym13142223] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 06/01/2021] [Accepted: 07/03/2021] [Indexed: 12/20/2022] Open
Abstract
The design of new polymeric systems for antimicrobial drug release focused on medical/surgical procedures is of great interest in the biomedical area due to the high prevalence of bacterial infections in patients with wounds or burns. For this reason, in this work, we present a new design of pH-sensitive hydrogels copolymerized by a graft polymerization method (gamma rays), intended for localized prophylactic release of ciprofloxacin and silver nanoparticles (AgNPs) for potential topical bacterial infections. The synthesized hydrogels were copolymerized from acrylic acid (AAc) and agar. Cross-linked hydrogel film formation depended on monomer concentrations and the degree of radiation used (Cobalt-60). The obtained hydrogel films were characterized by attenuated total reflectance Fourier-transform infrared spectroscopy (ATR-FTIR), thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), and mechanical testing. The swelling of the hydrogels was evidenced by the influence of their pH-sensitiveness. The hydrogel was loaded with antimicrobial agents (AgNPs or ciprofloxacin), and their related activity was evaluated. Finally, the antimicrobial activity of biocidal-loaded hydrogel was tested against Escherichia coli (E. coli) and methicillin-resistant Staphylococcus aureus (MRSA) on in vitro conditions.
Collapse
Affiliation(s)
- Moises Bustamante-Torres
- Departamento de Biología, Escuela de Ciencias Biológicas e Ingeniería, Universidad de Investigación de Tecnología Experimental Yachay, Hacienda San José s/n y Proyecto Yachay (Ciudad del Conocimiento Yachay), Urcuquí 100650, Ecuador
- Departamento de Química de Radiaciones y Radioquímica, Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria, Ciudad de México 04510, Mexico;
- Correspondence: (M.B.-T.); (E.B.)
| | - Victor H. Pino-Ramos
- Departamento de Química de Radiaciones y Radioquímica, Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria, Ciudad de México 04510, Mexico;
| | - David Romero-Fierro
- Departamento de Química, Escuela de Ciencias Química e Ingeniería, Universidad de Investigación de Tecnología Experimental Yachay, Hacienda San José s/n y Proyecto Yachay (Ciudad del Conocimiento Yachay), Urcuquí 100650, Ecuador; (D.R.-F.); (S.P.H.-B.)
| | - Sandra P. Hidalgo-Bonilla
- Departamento de Química, Escuela de Ciencias Química e Ingeniería, Universidad de Investigación de Tecnología Experimental Yachay, Hacienda San José s/n y Proyecto Yachay (Ciudad del Conocimiento Yachay), Urcuquí 100650, Ecuador; (D.R.-F.); (S.P.H.-B.)
| | - Héctor Magaña
- Facultad de Ciencias Químicas e Ingeniería, Universidad Autónoma de Baja California, Calzada Universidad 14418, Parque Industrial Internacional Tijuana, Tijuana 22390, Mexico;
| | - Emilio Bucio
- Departamento de Química de Radiaciones y Radioquímica, Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria, Ciudad de México 04510, Mexico;
- Correspondence: (M.B.-T.); (E.B.)
| |
Collapse
|
32
|
Targhi AA, Moammeri A, Jamshidifar E, Abbaspour K, Sadeghi S, Lamakani L, Akbarzadeh I. Synergistic effect of curcumin-Cu and curcumin-Ag nanoparticle loaded niosome: Enhanced antibacterial and anti-biofilm activities. Bioorg Chem 2021; 115:105116. [PMID: 34333420 DOI: 10.1016/j.bioorg.2021.105116] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 06/16/2021] [Accepted: 06/19/2021] [Indexed: 12/11/2022]
Abstract
In the current study, for the first time, the synergistic activity of curcumin and silver/copper nanoparticles (NPs) was studied against Staphylococcus aureus and Pseudomonas aeruginosa. Moreover, a unique combination of curcumin and silver/copper NPs in free and encapsulated forms was prepared and delivered through a niosomal system. For this purpose, different niosomal formulations of curcumin and metal NPs were prepared by thin film hydration method. Then, the dual drug-loaded niosomes were dispersed in chitosan hydrogel in order to widen its applications. The effect of the molar ratios of lipid to drug and surfactant to cholesterol was investigated to find the optimized noisomal nanoparticles in terms of size, polydispersity index (PDI), and entrapment efficiency (EE). The size and PDI values were measured by dynamic light scattering (DLS). Morphology and in vitro drug release kinetics of niosomes were examined by scanning and transmission electron microscopy (SEM, TEM) and dialysis method, respectively. The drug-loaded niosomes and their hydrogel counterpart were screened for investigating their antibacterial activity against S. aureus and P. aeruginosa by disk diffusion, minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) assays. Furthermore, anti-biofilm assay and expression of biofilm-associated genes by Real-time PCR were performed to evaluate the anti-biofilm effect of NPs. In this study, the drug-loaded niosomal formulations showed good entrapment efficiencies (EE) with a sustained release profile over 72 h. Moreover, compared to free drugs, the optimized niosomal formulations increased antibacterial activity against the bacteria via promotion in the inhibition zone and reduction in MIC and MBC values. Interestingly, gel-based niosomal formulations increased the inhibition zone by about 6 mm and significantly decreased MIC and MBC values compared to niosomal formulations. Also, biofilm eradication of curcumin-metal NPs encapsulated into niosomal hydrogel was highest compared to free and niosomal drugs. Overall, curcumin-Cu or curcumin-Ag nanoparticle loaded niosomes incorporated in hydrogel hold great promise for biomedical applications.
Collapse
Affiliation(s)
| | - Ali Moammeri
- School of Chemical Engineering, College of Engineering, University of Tehran, Tehran, Iran
| | - Elham Jamshidifar
- Department of Pharmaceutical Nanotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Koorosh Abbaspour
- School of Chemical Engineering, College of Engineering, University of Tehran, Tehran, Iran
| | - Somayeh Sadeghi
- Department of Molecular Biology, Pasteur Institute of Iran, Tehran, Iran.
| | - Lida Lamakani
- School of Chemical Engineering, College of Engineering, University of Tehran, Tehran, Iran
| | - Iman Akbarzadeh
- Department of Chemical and Petrochemical Engineering, Sharif University of Technology, Tehran, Iran.
| |
Collapse
|
33
|
Rezaeiroshan A, Saeedi M, Morteza-Semnani K, Akbari J, Hedayatizadeh-Omran A, Goli H, Nokhodchi A. Vesicular Formation of Trans-Ferulic Acid: an Efficient Approach to Improve the Radical Scavenging and Antimicrobial Properties. J Pharm Innov 2021. [DOI: 10.1007/s12247-021-09543-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Abstract
Purposes
Reactive oxygen species production is harmful to human’s health. The presence of antioxidants in the body may help to diminish reactive oxygen species. Trans-ferulic acid is a good antioxidant, but its low water solubility excludes its utilization. The study aims to explore whether a vesicular drug delivery could be a way to overcome the poor absorption of trans-ferulic acid hence improving its antimicrobial efficiency and antioxidant effect.
Methods
Niosomal vesicles containing the drug were prepared by film hydration method. The obtained vesicles were investigated in terms of morphology, size, entrapment efficiency, release behavior, cellular cytotoxicity, antioxidant, cellular protection study, and antimicrobial evaluations.
Results
The optimized niosomal formulation had a particle size of 158.7 nm and entrapment efficiency of 21.64%. The results showed that the optimized formulation containing 25 μM of trans-ferulic acid could enhance the viability of human foreskin fibroblast HFF cell line against reactive oxygen species production. The minimum effective dose of the plain drug and the niosomal formulation against Staphylococcus aurous (ATCC 29213) was 750 µg/mL and 375 µg/mL, respectively, and for Escherichia coli (ATCC 25922), it was 750 µg/mL and 187/5 µg/mL, respectively. The formulation could also improve the minimum bactericidal concentration of the drug in Staphylococcus aurous, Escherichia coli, and Acinobacter baumannii (ATCC 19606).
Conclusion
These results revealed an improvement in both antibacterial and antioxidant effects of the drug in the niosomal formulation.
Collapse
|
34
|
Akbarzadeh I, Shayan M, Bourbour M, Moghtaderi M, Noorbazargan H, Eshrati Yeganeh F, Saffar S, Tahriri M. Preparation, Optimization and In-Vitro Evaluation of Curcumin-Loaded Niosome@calcium Alginate Nanocarrier as a New Approach for Breast Cancer Treatment. BIOLOGY 2021; 10:173. [PMID: 33652630 PMCID: PMC7996962 DOI: 10.3390/biology10030173] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 02/19/2021] [Accepted: 02/22/2021] [Indexed: 12/13/2022]
Abstract
Cancer is one of the most common causes of mortality, and its various treatment methods can have many challenges for patients. As one of the most widely used cancer treatments, chemotherapy may result in diverse side effects. The lack of targeted drug delivery to tumor tissues can raise the possibility of damage to healthy tissues, with attendant dysfunction. In the present study, an optimum formulation of curcumin-loaded niosomes with a calcium alginate shell (AL-NioC) was developed and optimized by a three-level Box-Behnken design-in terms of dimension and drug loading efficiency. The niosomes were characterized by transmission electron microscopy, Fourier-transform infrared spectroscopy, and dynamic light scattering. The as-formulated niosomes showed excellent stability for up to 1 month at 4 °C. Additionally, the niosomal formulation demonstrated a pH-dependent release; a slow-release profile in physiological pH (7.4), and a more significant release rate at acidic conditions (pH = 3). Cytotoxicity studies showed high compatibility of AL-NioC toward normal MCF10A cells, while significant toxicity was observed in MDA-MB-231 and SKBR3 breast cancer cells. Gene expression studies of the cancer cells showed downregulation of Bcl2, cyclin D, and cyclin E genes, as well as upregulation of P53, Bax, caspase-3, and caspase-9 genes expression following the designed treatment. Flow cytometry studies confirmed a significant enhancement in the apoptosis rate in the presence of AL-NioC in both MDA-MB-231 and SKBR3 cells as compared to other samples. In general, the results of this study demonstrated that-thanks to its biocompatibility toward normal cells-the AL-NioC formulation can efficiently deliver hydrophobic drugs to target cancer cells while reducing side effects.
Collapse
Affiliation(s)
- Iman Akbarzadeh
- Department of Chemical and Petrochemical Engineering, Sharif University of Technology, Tehran 1458889694, Iran
| | - Mona Shayan
- Core Facility Center, Pasteur Institute of Iran, Tehran 1316943551, Iran; (M.S.); (S.S.)
| | - Mahsa Bourbour
- Department of Biotechnology, Alzahra University, Tehran 1993893973, Iran;
| | - Maryam Moghtaderi
- Department of Chemical Engineering, Faculty of Engineering, University of Tehran, Tehran 141556619, Iran;
| | - Hassan Noorbazargan
- Department of Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran 1985717443, Iran;
| | - Faten Eshrati Yeganeh
- Department of Chemistry, Science and Research Branch, Islamic Azad University, Tehran 1477893855, Iran;
| | - Samaneh Saffar
- Core Facility Center, Pasteur Institute of Iran, Tehran 1316943551, Iran; (M.S.); (S.S.)
| | | |
Collapse
|
35
|
An illustrated review on nonionic surfactant vesicles (niosomes) as an approach in modern drug delivery: Fabrication, characterization, pharmaceutical, and cosmetic applications. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2020.102234] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
36
|
Gugleva V, Titeva S, Ermenlieva N, Tsibranska S, Tcholakova S, Rangelov S, Momekova D. Development and evaluation of doxycycline niosomal thermoresponsive in situ gel for ophthalmic delivery. Int J Pharm 2020; 591:120010. [DOI: 10.1016/j.ijpharm.2020.120010] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 10/15/2020] [Accepted: 10/19/2020] [Indexed: 01/11/2023]
|
37
|
Heidari F, Akbarzadeh I, Nourouzian D, Mirzaie A, Bakhshandeh H. Optimization and characterization of tannic acid loaded niosomes for enhanced antibacterial and anti-biofilm activities. ADV POWDER TECHNOL 2020. [DOI: 10.1016/j.apt.2020.11.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
38
|
Akbarzadeh I, Keramati M, Azadi A, Afzali E, Shahbazi R, Chiani M, Norouzian D, Bakhshandeh H. Optimization, physicochemical characterization, and antimicrobial activity of a novel simvastatin nano-niosomal gel against E. coli and S. aureus. Chem Phys Lipids 2020; 234:105019. [PMID: 33232724 DOI: 10.1016/j.chemphyslip.2020.105019] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Revised: 10/20/2020] [Accepted: 11/16/2020] [Indexed: 12/17/2022]
Abstract
Niosomes, as a kind of drug delivery system, is widely used for the topical delivery of lipophilic drugs. Optimization of niosomes plays an essential role in enhancing their therapeutic efficiencies. This study aims to prepare an optimized niosomal formulation of simvastatin (nSIM), a lipophilic member of statins, through the experiment (Response Surface methodology). Optimized niosomes were characterized in size, polydispersity index (PDI), entrapment efficiency (EE), stability, releasing pattern, and antimicrobial activity. The different molar ratio of surfactant and cholesterol were applied to prepare various formulation of simvastatin loaded niosome. Mean particle size and size distribution were analyzed by dynamic light scattering. Antibacterial activity was determined by MIC and MBC tests against Staphylococcus aureus and Escherichia coli. The release rate of simvastatin from noisome nanoparticles was studied by the Franz diffusion cell method. The release pattern was studied through zero order, first order, Higuchi, Korsmeyer-Peppas, and Hixson-Crowell kinetics models. Optimized niosomes were obtained by span 80, drug to cholesterol ratio of 0.4 with 7 min sonication time. Mean particle size, PDI, zeta potential, and entrapment efficiency (EE%) of optimized nSIM were obtained about 168 nm, 0.34, -32.40, and 96 %, respectively. The niosomes significantly decreased the drug's releasing rate and enhanced antibacterial activity against S. aureus and E. Coli. It was found that the release pattern of drug followed the Higuchi kinetic model which means drug release is by diffusion. Overall, our findings indicated that the prepared simvastatin loaded niosomes showed good stability and biological properties than free drug. Our study suggests that niosomal formulation could be considered as a promising strategy for the delivery of poor water-soluble drugs that enhance antibacterial activity.
Collapse
Affiliation(s)
- Iman Akbarzadeh
- Department of Nanobiotechnology, New Technologies Research Group, Pasteur Institute of Iran, Tehran, Iran; Department of Chemical and Petroleum Engineering, Biotechnology Research Center, Sharif University of Technology, Tehran, Iran
| | - Maliheh Keramati
- Department of Nanobiotechnology, New Technologies Research Group, Pasteur Institute of Iran, Tehran, Iran
| | - Amir Azadi
- Department of Pharmaceutics, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Elham Afzali
- Department of Chemistry, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Rasoul Shahbazi
- Department of Chemistry, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Mohsen Chiani
- Department of Nanobiotechnology, New Technologies Research Group, Pasteur Institute of Iran, Tehran, Iran
| | - Dariush Norouzian
- Department of Nanobiotechnology, New Technologies Research Group, Pasteur Institute of Iran, Tehran, Iran
| | - Haleh Bakhshandeh
- Department of Nanobiotechnology, New Technologies Research Group, Pasteur Institute of Iran, Tehran, Iran.
| |
Collapse
|
39
|
Mirzaie A, Peirovi N, Akbarzadeh I, Moghtaderi M, Heidari F, Yeganeh FE, Noorbazargan H, Mirzazadeh S, Bakhtiari R. Preparation and optimization of ciprofloxacin encapsulated niosomes: A new approach for enhanced antibacterial activity, biofilm inhibition and reduced antibiotic resistance in ciprofloxacin-resistant methicillin-resistance Staphylococcus aureus. Bioorg Chem 2020; 103:104231. [DOI: 10.1016/j.bioorg.2020.104231] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 07/02/2020] [Accepted: 08/08/2020] [Indexed: 12/13/2022]
|
40
|
Hedayati Ch M, Abolhassani Targhi A, Shamsi F, Heidari F, Salehi Moghadam Z, Mirzaie A, Behdad R, Moghtaderi M, Akbarzadeh I. Niosome-encapsulated tobramycin reduced antibiotic resistance and enhanced antibacterial activity against multidrug-resistant clinical strains of Pseudomonas aeruginosa. J Biomed Mater Res A 2020; 109:966-980. [PMID: 32865883 DOI: 10.1002/jbm.a.37086] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 08/02/2020] [Accepted: 08/08/2020] [Indexed: 12/18/2022]
Abstract
In the current study, niosome-encapsulated tobramycin based on Span 60 and Tween 60 was synthesized and its biological efficacies including anti-bacterial, anti-efflux, and anti-biofilm activities were investigated against multidrug resistant (MDR) clinical strains of Pseudomonas aeruginosa. The niosomal formulations were characterized using scanning electron microscopy, transmission electron microscopy, and dynamic light scattering measurement. The encapsulation efficiency was found to be 69.54% ±; 0.67. The prepared niosomal formulations had a high storage stability to 60 days with small changes in size and drug entrapment, which indicates that it is a suitable candidate for pharmaceutical applications. The results of biological study showed the anti-bacterial activity via reduction of antibiotic resistance, enhanced anti-efflux and anti-biofilm activities by more folds in comparison to free tobramycin. In addition, niosome encapsulated tobramycin down-regulated the MexAB-OprM efflux genes, pslA and pelA biofilm related genes in MDR P. aeruginosa strains. The anti-proliferative activity of formulation was evaluated against HEK293 cell lines, which exhibited negligible cytotoxicity against HEK293 cells. The finding of our study shows that encapsulation of tobramycin in niosome enhanced the antibacterial activity and reduced antibiotic resistance in MDR strains of P. aeruginosa comparing to free tobramycin and it can be considered as a favorable drug delivery system.
Collapse
Affiliation(s)
- Mojtaba Hedayati Ch
- Department of Microbiology, Guilan University of Medical Sciences, Rasht, Iran
| | | | - Farzaneh Shamsi
- Department of Biology, Roudehen Branch, Islamic Azad University, Roudehen, Iran
| | - Fatemeh Heidari
- Department of Cellular and Molecular Biology, Islamic Azad University, Tehran Medical Branch, Tehran, Iran
| | | | - Amir Mirzaie
- Department of Biology, Roudehen Branch, Islamic Azad University, Roudehen, Iran
| | - Reyhaneh Behdad
- Department of Biology, Varamin-Pishva Branch, Islamic Azad University, Varamin, Iran
| | - Maryam Moghtaderi
- Department of Chemical Engineering, University of Tehran, Tehran, Iran
| | - Iman Akbarzadeh
- Department of Chemical and Petrochemical Engineering, Sharif University of Technology, Tehran, Iran
| |
Collapse
|
41
|
Akbarzadeh I, Saremi Poor A, Yaghmaei S, Norouzian D, Noorbazargan H, Saffar S, Ahangari Cohan R, Bakhshandeh H. Niosomal delivery of simvastatin to MDA-MB-231 cancer cells. Drug Dev Ind Pharm 2020; 46:1535-1549. [PMID: 32808813 DOI: 10.1080/03639045.2020.1810269] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
OBJECTIVE The objective of this study was to use nano-niosomal formulations to deliver simvastatin as a poor-water soluble drug into breast cancer cells. SIGNIFICANCE Our study focused on the problem associated with poor water-soluble drugs which have significant biological activity in vivo. METHODS Different niosomal formulations of simvastatin were prepared and characterized in terms of morphology, size, encapsulation efficiency (EE), and release kinetic. Antiproliferative activity and the mechanism were assessed by quantitative real-time PCR and flow cytometry. Moreover, confocal microscopy was employed to analyze the cell uptake of simvastatin loaded niosomes to the cancerous cells. RESULTS Size, polydispersity index (PDI), and EE of the best formulation were obtained as 164.8 nm, 0.232, and 97%, respectively. The formulated simvastatin had a spherical shape and showed a slow release profile of the drug after 72 h. Stability data elucidated an increase in mean diameter and PDI which was lower for 4 °C than 25 °C. Confocal microscopy showed the localization of drug loaded niosomes in the cancer cells. The MTT assay revealed both free drug and drug loaded niosomes exhibited a dose-dependent cytotoxicity against breast cancer cells (MDA-MB-231 cells). Flow cytometry and qPCR analysis revealed drug loaded niosomes exert their cytotoxicity on cancerous cells via regulation of apoptotic and anti-apoptotic genes. CONCLUSION The prepared niosomal simvastatin showed good physicochemical and biological properties than free drug. Our study suggests that niosomal delivery could be considered as a promising strategy for the delivery of poor water-soluble drugs to cancer cells.
Collapse
Affiliation(s)
- Iman Akbarzadeh
- Department of Nanobiotechnology, New Technologies Research Group, Pasteur Institute of Iran, Tehran, Iran.,Department of Chemical and Petrochemical Engineering, Sharif University of Technology, Tehran, Iran
| | - Anita Saremi Poor
- Department of Biochemistry, Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
| | - Soheila Yaghmaei
- Department of Chemical and Petrochemical Engineering, Sharif University of Technology, Tehran, Iran
| | - Dariush Norouzian
- Department of Nanobiotechnology, New Technologies Research Group, Pasteur Institute of Iran, Tehran, Iran
| | - Hassan Noorbazargan
- Department of Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Samaneh Saffar
- Core Facility Center, Pasteur Institute of Iran, Tehran, Iran
| | - Reza Ahangari Cohan
- Department of Nanobiotechnology, New Technologies Research Group, Pasteur Institute of Iran, Tehran, Iran
| | - Haleh Bakhshandeh
- Department of Nanobiotechnology, New Technologies Research Group, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
42
|
Kashef MT, Saleh NM, Assar NH, Ramadan MA. The Antimicrobial Activity of Ciprofloxacin-Loaded Niosomes against Ciprofloxacin-Resistant and Biofilm-Forming Staphylococcus aureus. Infect Drug Resist 2020; 13:1619-1629. [PMID: 32606813 PMCID: PMC7294563 DOI: 10.2147/idr.s249628] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 05/09/2020] [Indexed: 11/23/2022] Open
Abstract
Purpose The threat of Staphylococcus aureus antimicrobial resistance is increasing worldwide. Niosomes are a new drug delivery system that enhances the antimicrobial potential of antibiotics. We hereby aim to evaluate the antimicrobial and antibiofilm activity of ciprofloxacin-loaded niosomes. Methods The antimicrobial susceptibility of clinical S. aureus isolates (n=59) was determined by Kirby-Bauer disk diffusion method. Their biofilm formation activity was tested by Christensen's method. Two ciprofloxacin-loaded niosomal formulations were prepared by thin-film hydration method, and their minimum inhibitory concentrations (MIC) were determined by agar dilution method, against ciprofloxacin-resistant and biofilm-forming isolates (n=24). Their ability to inhibit biofilm formation and eradicate already formed biofilms was evaluated and further confirmed by scanning electron microscope images. Non-synonymous mutations, in a quinolone resistance-determining regions of S. aureus isolates, were detected by polymerase chain reaction. Results Most of the isolates were methicillin- (47/59) and ciprofloxacin-resistant (45/59). All except two isolates were capable of biofilm production. Niosomal preparation I reduced ciprofloxacin MIC by twofold in four isolates, whereas preparation II reduced ciprofloxacin MIC of most isolates by 8- to 32-fold, with three isolates that became ciprofloxacin-susceptible. Non-synonymous mutations were detected in isolates that maintained phenotypic ciprofloxacin resistance against ciprofloxacin-loaded niosomal preparation II. Ciprofloxacin-loaded niosomes reduced the minimum biofilm inhibitory concentration and the minimum biofilm eradication concentration in 58% and 62% of the tested isolates, respectively. Conclusion Ciprofloxacin-loaded niosomes can restore ciprofloxacin activity against resistant S. aureus isolates. To our knowledge, this is the first report on the inhibition of biofilm formation and eradication of formed biofilms by ciprofloxacin-loaded niosomes.
Collapse
Affiliation(s)
- Mona T Kashef
- Department of Microbiology and Immunology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| | - Nehal M Saleh
- Department of Microbiology, National Organization for Drug Control and Research, Giza, Egypt
| | - Nouran H Assar
- Department of Microbiology, National Organization for Drug Control and Research, Giza, Egypt
| | - Mohammed A Ramadan
- Department of Microbiology and Immunology, Faculty of Pharmacy, Cairo University, Cairo, Egypt
| |
Collapse
|
43
|
Optimized doxycycline-loaded niosomal formulation for treatment of infection-associated prostate cancer: An in-vitro investigation. J Drug Deliv Sci Technol 2020. [DOI: 10.1016/j.jddst.2020.101715] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
44
|
Tajbakhsh M, Saeedi M, Morteza-Semnani K, Akbari J, Nokhodchi A. Innovation of testosome as a green formulation for the transdermal delivery of testosterone enanthate. J Drug Deliv Sci Technol 2020. [DOI: 10.1016/j.jddst.2020.101685] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
45
|
Minakshi P, Ghosh M, Brar B, Kumar R, Lambe UP, Ranjan K, Manoj J, Prasad G. Nano-antimicrobials: A New Paradigm for Combating Mycobacterial Resistance. Curr Pharm Des 2020; 25:1554-1579. [PMID: 31218956 DOI: 10.2174/1381612825666190620094041] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Accepted: 06/11/2019] [Indexed: 02/07/2023]
Abstract
BACKGROUND Mycobacterium group contains several pathogenic bacteria including M. tuberculosis where the emergence of multidrug-resistant tuberculosis (MDR-TB) and extensively drug-resistant tuberculosis (XDR-TB) is alarming for human and animal health around the world. The condition has further aggravated due to the speed of discovery of the newer drugs has been outpaced by the rate of resistance developed in microorganisms, thus requiring alternative combat strategies. For this purpose, nano-antimicrobials have emerged as a potential option. OBJECTIVE The current review is focused on providing a detailed account of nanocarriers like liposome, micelles, dendrimers, solid lipid NPs, niosomes, polymeric nanoparticles, nano-suspensions, nano-emulsion, mesoporous silica and alginate-based drug delivery systems along with the recent updates on developments regarding nanoparticle-based therapeutics, vaccines and diagnostic methods developed or under pipeline with their potential benefits and limitations to combat mycobacterial diseases for their successful eradication from the world in future. RESULTS Distinct morphology and the underlying mechanism of pathogenesis and resistance development in this group of organisms urge improved and novel methods for the early and efficient diagnosis, treatment and vaccination to eradicate the disease. Recent developments in nanotechnology have the potential to meet both the aspects: nano-materials are proven components of several efficient targeted drug delivery systems and the typical physicochemical properties of several nano-formulations have shown to possess distinct bacteriocidal properties. Along with the therapeutic aspects, nano-vaccines and theranostic applications of nano-formulations have grown in popularity in recent times as an effective alternative means to combat different microbial superbugs. CONCLUSION Nanomedicine holds a bright prospect to perform a key role in global tuberculosis elimination program.
Collapse
Affiliation(s)
- Prasad Minakshi
- Department of Animal Biotechnology, LLR University of Veterinary and Animal Sciences, Hisar-125 004, Haryana, India
| | - Mayukh Ghosh
- Department of Veterinary Biochemistry, Ranchi Veterinary College, Birsa Agricultural University, Ranchi-834 006, Jharkhand, India
| | - Basanti Brar
- Department of Animal Biotechnology, LLR University of Veterinary and Animal Sciences, Hisar-125 004, Haryana, India
| | - Rajesh Kumar
- Department of Veterinary Physiology, COVAS, KVASU, Pookode, Wayanad- 673576, Kerala, India
| | - Upendra P Lambe
- Department of Animal Biotechnology, LLR University of Veterinary and Animal Sciences, Hisar-125 004, Haryana, India
| | | | - Jinu Manoj
- RVDEC Mahendergarh, LUVAS, Haryana, India
| | - Gaya Prasad
- SVP University of Agriculture and Technology, Meerut, India
| |
Collapse
|
46
|
Design and Physicochemical Characterization of Lysozyme Loaded Niosomal Formulations as a New Controlled Delivery System. Pharm Chem J 2020. [DOI: 10.1007/s11094-020-02100-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
47
|
Sadeghi S, Bakhshandeh H, Ahangari Cohan R, Peirovi A, Ehsani P, Norouzian D. Synergistic Anti-Staphylococcal Activity Of Niosomal Recombinant Lysostaphin-LL-37. Int J Nanomedicine 2019; 14:9777-9792. [PMID: 31849468 PMCID: PMC6911324 DOI: 10.2147/ijn.s230269] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2019] [Accepted: 11/07/2019] [Indexed: 11/29/2022] Open
Abstract
Purpose Staphylococcus aureus is the most common persistent pathogen in humans, so development of new formulations to combat pathogen invasion is quite necessary. Methods In the current study, for the first time, the synergistic activity of recombinant lysostaphin and LL-37 peptide was studied against S. aureus. Moreover, different niosomal formulations of the peptide and protein were prepared and analyzed in terms of size, shape, zeta potential, and entrapment efficiency. Also, a long-term antibacterial activity of the best niosomal formulation and free forms was measured against S. aureus in vitro. Results The optimal niosomal formulation was obtained by mixing the surfactants (span60 and tween60; 2:1 w/w), cholesterol, and dicetylphosphate at a ratio of 47:47:6, respectively. They showed uniform spherical shapes with the size of 565 and 325 nm for lysostaphin and LL-37, respectively. This formulation showed high entrapment efficiency for the peptide, protein, and a slow-release profile over time. Release kinetic was best fitted by Higuchi model indicating a diffusion-based release of the drugs. The lysostaphin/LL-37 niosomal formulation synergistically inhibited growth of S. aureus for up to 72 hours. However, the same amounts of free forms of both anti-microbial agents could not hold the anti-microbial effect and growth was seen in the following 72 hours. Cytotoxicity assay specified that lysostaphin/LL-37 niosomal combination had no deleterious effect on normal fibroblast cells at effective antimicrobial concentrations. Conclusion This study indicated that the use of lysostaphin in combination with LL-37, either in niosomal or free forms, synergistically inhibited growth of S. aureus in vitro. In addition, niosomal preparation of antimicrobial agents could provide a long-term protection against bacterial infections.
Collapse
Affiliation(s)
- Somayeh Sadeghi
- Department of Nano Biotechnology, New Technology Research Group, Pasteur Institute of Iran, Tehran, Iran.,Department of Molecular Biology, Pasteur Institute of Iran, Tehran, Iran
| | - Haleh Bakhshandeh
- Department of Nano Biotechnology, New Technology Research Group, Pasteur Institute of Iran, Tehran, Iran
| | - Reza Ahangari Cohan
- Department of Nano Biotechnology, New Technology Research Group, Pasteur Institute of Iran, Tehran, Iran
| | - Afshin Peirovi
- Department of Nano Biotechnology, New Technology Research Group, Pasteur Institute of Iran, Tehran, Iran
| | - Parastoo Ehsani
- Department of Molecular Biology, Pasteur Institute of Iran, Tehran, Iran
| | - Dariush Norouzian
- Department of Nano Biotechnology, New Technology Research Group, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
48
|
Qaiser R, Bashir S. Nanovesicles of sorbitan isostearate: a novel sustained-release non-ionic surfactant. BIOINSPIRED BIOMIMETIC AND NANOBIOMATERIALS 2019. [DOI: 10.1680/jbibn.18.00032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Sorbitan isostearate (Span 120) is a novel non-ionic surfactant for development of vesicular systems. The present work aimed to develop, characterise and evaluate Span 120 based niosomes for enhanced drug delivery. Span 120 niosomes were prepared by using the thin-film hydration method and naproxen sodium was used as a model drug. Fourier transform infrared spectroscopy analysis was also done for preformulation studies. Niosomes prepared with Span 120 and cholesterol (2:1) were spherical, as shown by transmission electron microscopy, with a mean size of 173 ± 2·96 nm, a polydispersity index of 0·28 ± 0·02, a zeta potential of −50 ± 1·2 mV and an entrapment efficiency of 91·92%. The in vitro release study showed a sustained release (21·9%) of naproxen sodium in 12 h. The release kinetics was uniform and followed the Korsmeyer–Peppas model, with n > 0·5. Accordingly, niosomes with a molar ratio of 2:1 was selected for in vivo anti-inflammatory activity. A carrageenan-induced paw oedema test was performed, which showed an enhanced inhibitory effect of loaded niosomes with Span 120 compared to the standard drug. In conclusion, the use of Span 120 is a promising approach to formulating niosomes with an improved and sustained effect.
Collapse
Affiliation(s)
- Rabia Qaiser
- Department of Pharmaceutics, Faculty of Pharmacy, University of Sargodha, Sargodha, Pakistan
| | - Sajid Bashir
- Department of Pharmaceutics, Faculty of Pharmacy, University of Sargodha, Sargodha, Pakistan
| |
Collapse
|
49
|
Chen S, Hanning S, Falconer J, Locke M, Wen J. Recent advances in non-ionic surfactant vesicles (niosomes): Fabrication, characterization, pharmaceutical and cosmetic applications. Eur J Pharm Biopharm 2019; 144:18-39. [PMID: 31446046 DOI: 10.1016/j.ejpb.2019.08.015] [Citation(s) in RCA: 198] [Impact Index Per Article: 39.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 08/14/2019] [Accepted: 08/21/2019] [Indexed: 01/17/2023]
Abstract
Development of nanocarriers for drug delivery has received considerable attention due to their potential in achieving targeted delivery to the diseased site while sparing the surrounding healthy tissue. Safe and efficient drug delivery has always been a challenge in medicine. During the last decade, a large amount of interest has been drawn on the fabrication of surfactant-based vesicles to improve drug delivery. Niosomes are self-assembled vesicular nano-carriers formed by hydration of non-ionic surfactant, cholesterol or other amphiphilic molecules that serve as a versatile drug delivery system with a variety of applications ranging from dermal delivery to brain-targeted delivery. A large number of research articles have been published reporting their fabrication methods and applications in pharmaceutical and cosmetic fields. Niosomes have the same advantages as liposomes, such as the ability to incorporate both hydrophilic and lipophilic compounds. Besides, niosomes can be fabricated with simple methods, require less production cost and are stable over an extended period, thus overcoming the major drawbacks of liposomes. This review provides a comprehensive summary of niosomal research to date, it provides a detailed overview of the formulation components, types of niosomes, effects of components on the formation of niosomes, fabrication and purification methods, physical characterization techniques of niosomes, recent applications in pharmaceutical field such as in oral, ocular, topical, pulmonary, parental and transmucosal drug delivery, and cosmetic applications. Finally, limitations and the future outlook for this delivery system have also been discussed.
Collapse
Affiliation(s)
- Shuo Chen
- School of Pharmacy, Faculty of Medical and Health Sciences, University of Auckland, 85 Park Road, Grafton, Auckland 1023, New Zealand
| | - Sara Hanning
- School of Pharmacy, Faculty of Medical and Health Sciences, University of Auckland, 85 Park Road, Grafton, Auckland 1023, New Zealand
| | - James Falconer
- School of Pharmacy, University of Queensland, Pharmacy Australia Centre of Excellence, Level 4, 20 Cornwall Street, Woolloongabba, Queensland 4102, Australia
| | - Michelle Locke
- School of Pharmacy, Faculty of Medical and Health Sciences, University of Auckland, 85 Park Road, Grafton, Auckland 1023, New Zealand; Department of Plastic and Reconstructive Surgery, Middlemore Hospital, Counties Manukau District Health Board, Private Bag 93311, Otahuhu, Auckland 1640, New Zealand
| | - Jingyuan Wen
- School of Pharmacy, Faculty of Medical and Health Sciences, University of Auckland, 85 Park Road, Grafton, Auckland 1023, New Zealand.
| |
Collapse
|
50
|
Potential application of nanovesicles (niosomes and liposomes) for fortification of functional beverages with Isoleucine-Proline-Proline: A comparative study with central composite design approach. Food Chem 2019; 293:368-377. [PMID: 31151624 DOI: 10.1016/j.foodchem.2019.05.015] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Revised: 04/22/2019] [Accepted: 05/02/2019] [Indexed: 01/06/2023]
Abstract
In this study, the efficiency and practical utilization feasibility of niosomal and liposomal nanovesicles loading Isoleucine-Proline-Proline (IPP) as suitable ingredients of functional beverages were evaluated. Vesicles were tailored by different preparation methods using phospholipid and non-ionic surfactants. The optimization process was performed by central composite design approach. The results of Fourier transform infrared spectroscopy demonstrated the compatibility of IPP with the vesicles. The phospholipidic nanovesicles, produced by modified ethanol injection-microchannel technique, were smaller with lower polydispersity index than non-ionic surfactant vesicles developed by the method of thin film hydration and probe sonication. However, niosomal model functional beverage exhibited more proper palatability, biological activity and physicochemical properties during long-term storage than liposomal one. Moreover, niosomes exhibited more sustained release behaviour in simulated blood fluid than liposomes. These findings are of great importance for design and development of the functional foods containing IPP.
Collapse
|