1
|
Joseph DP, Rajchakit U, Pilkington LI, Sarojini V, Barker D. Antimicrobial fibres derived from aryl-diazonium conjugation of chitosan with Harakeke (Phormium tenax) and Hemp (Cannabis sativa) Hurd. Int J Biol Macromol 2024; 264:130840. [PMID: 38548496 DOI: 10.1016/j.ijbiomac.2024.130840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 03/04/2024] [Accepted: 03/11/2024] [Indexed: 04/10/2024]
Abstract
Surface functionalisation of natural materials to develop sustainable and environmentally friendly antimicrobial fibres has received great research interest in recent years. Herein, chitosan covalent conjugation via aryl-diazonium based chemistry onto Phormium tenax fibres (PTF) and hemp hurds (HH) was investigated. PTF are fibres derived from Harakeke/New Zealand flax, an indigenous and abundant plant source of leaf fibres, which served as an important 19th century export commodity of New Zealand. HH are obtained as a by-product from the hemp (Cannabis sativa) industry and find applications as traditional construction material, animal bedding, chemical absorbent, insulation, fireboard etc. This study reports aryl-diazonium covalent attachment of chitosan and PD13 (6-O-(3-(2-(N,N-dimethylamino)ethylamino)-2-hydroxypropyl)chitosan), a chitosan derivative with improved antibacterial activity, on to PTF and HH. The modification was confirmed using FTIR, XPS, SEM and water contact angle studies. Comparison of aryl-diazonium versus the use of succinic anhydride bridging for chitosan attachment was also investigated, with the diazonium method giving improved results. The treated PTF and HH fibres had good antibacterial activity against Staphylococcus aureus and this study contributes to the development of sustainable antibacterial fibres using bio-based materials.
Collapse
Affiliation(s)
- Delsa Pulickal Joseph
- School of Chemical Sciences, University of Auckland, 23 Symonds St., Auckland 1010, New Zealand
| | - Urawadee Rajchakit
- School of Chemical Sciences, University of Auckland, 23 Symonds St., Auckland 1010, New Zealand; The MacDiarmid Institute for Advanced Materials and Nanotechnology, Victoria University of Wellington, PO Box 600, Wellington, New Zealand
| | - Lisa I Pilkington
- School of Chemical Sciences, University of Auckland, 23 Symonds St., Auckland 1010, New Zealand; Te Pūnaha Matatini, Auckland 1142, New Zealand
| | - Vijayalekshmi Sarojini
- School of Chemical Sciences, University of Auckland, 23 Symonds St., Auckland 1010, New Zealand; The MacDiarmid Institute for Advanced Materials and Nanotechnology, Victoria University of Wellington, PO Box 600, Wellington, New Zealand
| | - David Barker
- School of Chemical Sciences, University of Auckland, 23 Symonds St., Auckland 1010, New Zealand; The MacDiarmid Institute for Advanced Materials and Nanotechnology, Victoria University of Wellington, PO Box 600, Wellington, New Zealand.
| |
Collapse
|
2
|
Lam PL, Gambari R, Ho YW, Wong WY, Hau DKP, Leung TWT, Leung PHM, Chui CH. Anti-methicillin resistance Staphylococcus aureus and in vitro toxicology evaluation of corilagin-loaded gelatin/agar microspheres with potential biotextile applications. Int J Biol Macromol 2023; 237:123982. [PMID: 36907297 DOI: 10.1016/j.ijbiomac.2023.123982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 02/10/2023] [Accepted: 03/05/2023] [Indexed: 03/13/2023]
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) has emerged since the early 1960s. The increasing resistance of pathogens to currently used antibiotics requires the urgent discovery of new antimicrobials effective in combating drug-resistant bacteria. From past to present, medicinal plants are useful to cure human diseases. Corilagin (β-1-O-galloyl-3,6-(R)-hexahydroxydiphenoyl-d-glucose), commonly found in Phyllanthus species, exerts potentiating effect on β-lactams against MRSA. However, its biological effect may not be fully utilized. Therefore, incorporating microencapsulation technology with the delivery of corilagin would be more effective in utilizing the potential effect on biomedical applications. This work reports the development of a safe micro-particulate system which combined agar with gelatin as wall matrix materials for topical delivery of corilagin in order to eliminate the potential toxicity of the crosslinker formaldehyde. The optimal parameters for microsphere preparation were identified and the particle size of optimal microspheres was 20.11 μm ± 3.58. Antibacterial studies revealed that micro-trapped corilagin (minimum bactericidal concentration, MBC = 0.5 mg/mL) possessed a higher potency against MRSA than free corilagin (MBC = 1 mg/mL). The in vitro skin cytotoxicity showed the safety of the corilagin-loaded microspheres for topical applications, with approximately 90 % of HaCaT cell viability. Our results demonstrated the potential of corilagin-loaded gelatin/agar microspheres for the applicable bio-textile products to treat drug-resistant bacterial infections.
Collapse
Affiliation(s)
- P-L Lam
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong, China
| | - R Gambari
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy.
| | - Y-W Ho
- Allways Health Care Medical Centre, Tsuen Wan, Hong Kong, China
| | - W-Y Wong
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong, China.
| | - D K-P Hau
- Research and Development Division, One Health International Limited, Hong Kong, China
| | - T W-T Leung
- Comprehensive Oncology Centre, 3/F, Li Shu Fan Block, Hong Kong Sanatorium & Hospital, Happy Valley, Hong Kong
| | - P H-M Leung
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong, China.
| | - C-H Chui
- Research and Development Division, One Health International Limited, Hong Kong, China.
| |
Collapse
|
3
|
Microencapsulation for Functional Textile Coatings with Emphasis on Biodegradability—A Systematic Review. COATINGS 2021. [DOI: 10.3390/coatings11111371] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The review provides an overview of research findings on microencapsulation for functional textile coatings. Methods for the preparation of microcapsules in textiles include in situ and interfacial polymerization, simple and complex coacervation, molecular inclusion and solvent evaporation from emulsions. Binders play a crucial role in coating formulations. Acrylic and polyurethane binders are commonly used in textile finishing, while organic acids and catalysts can be used for chemical grafting as crosslinkers between microcapsules and cotton fibres. Most of the conventional coating processes can be used for microcapsule-containing coatings, provided that the properties of the microcapsules are appropriate. There are standardised test methods available to evaluate the characteristics and washfastness of coated textiles. Among the functional textiles, the field of environmentally friendly biodegradable textiles with microcapsules is still at an early stage of development. So far, some physicochemical and physical microencapsulation methods using natural polymers or biodegradable synthetic polymers have been applied to produce environmentally friendly antimicrobial, anti-inflammatory or fragranced textiles. Standardised test methods for evaluating the biodegradability of textile materials are available. The stability of biodegradable microcapsules and the durability of coatings during the use and care of textiles still present several challenges that offer many opportunities for further research.
Collapse
|
4
|
Malhotra B, Kulkarni GT, Dhiman N, Joshi D, Chander S, Kharkwal A, Sharma AK, Kharkwal H. Recent advances on Berberis aristata emphasizing berberine alkaloid including phytochemistry, pharmacology and drug delivery system. J Herb Med 2021. [DOI: 10.1016/j.hermed.2021.100433] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
5
|
Valle JAB, Valle RDCSC, Bierhalz ACK, Bezerra FM, Hernandez AL, Lis Arias MJ. Chitosan microcapsules: Methods of the production and use in the textile finishing. J Appl Polym Sci 2021. [DOI: 10.1002/app.50482] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
6
|
Massella D, Argenziano M, Ferri A, Guan J, Giraud S, Cavalli R, Barresi AA, Salaün F. Bio-Functional Textiles: Combining Pharmaceutical Nanocarriers with Fibrous Materials for Innovative Dermatological Therapies. Pharmaceutics 2019; 11:E403. [PMID: 31405229 PMCID: PMC6723157 DOI: 10.3390/pharmaceutics11080403] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Revised: 07/30/2019] [Accepted: 08/05/2019] [Indexed: 12/16/2022] Open
Abstract
In the field of pharmaceutical technology, significant attention has been paid on exploiting skin as a drug administration route. Considering the structural and chemical complexity of the skin barrier, many research works focused on developing an innovative way to enhance skin drug permeation. In this context, a new class of materials called bio-functional textiles has been developed. Such materials consist of the combination of advanced pharmaceutical carriers with textile materials. Therefore, they own the possibility of providing a wearable platform for continuous and controlled drug release. Notwithstanding the great potential of these materials, their large-scale application still faces some challenges. The present review provides a state-of-the-art perspective on the bio-functional textile technology analyzing the several issues involved. Firstly, the skin physiology, together with the dermatological delivery strategy, is keenly described in order to provide an overview of the problems tackled by bio-functional textiles technology. Secondly, an overview of the main dermatological nanocarriers is provided; thereafter the application of these nanomaterial to textiles is presented. Finally, the bio-functional textile technology is framed in the context of the different dermatological administration strategies; a comparative analysis that also considers how pharmaceutical regulation is conducted.
Collapse
Affiliation(s)
- Daniele Massella
- ENSAIT, GEMTEX-Laboratoire de Génie et Matériaux Textiles, F-59000 Lille, France.
- Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino (TO), Italy.
- College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, China.
| | - Monica Argenziano
- Department of Drug Science and Technology, University of Turin, Via P. Giuria 9, 10125 Torino, Italy
| | - Ada Ferri
- Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino (TO), Italy
| | - Jinping Guan
- College of Textile and Clothing Engineering, Soochow University, Suzhou 215123, China
| | - Stéphane Giraud
- ENSAIT, GEMTEX-Laboratoire de Génie et Matériaux Textiles, F-59000 Lille, France
| | - Roberta Cavalli
- Department of Drug Science and Technology, University of Turin, Via P. Giuria 9, 10125 Torino, Italy
| | - Antonello A Barresi
- Department of Applied Science and Technology, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino (TO), Italy
| | - Fabien Salaün
- ENSAIT, GEMTEX-Laboratoire de Génie et Matériaux Textiles, F-59000 Lille, France
| |
Collapse
|
7
|
Ghayempour S, Montazer M. Micro/nanoencapsulation of essential oils and fragrances: Focus on perfumed, antimicrobial, mosquito-repellent and medical textiles. J Microencapsul 2016; 33:497-510. [DOI: 10.1080/02652048.2016.1216187] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Soraya Ghayempour
- Textile Engineering Department, Functional Fibrous Structures & Environmental Enhancement (FFSEE), Amirkabir University of Technology, Tehran, Iran
| | - Majid Montazer
- Textile Engineering Department, Functional Fibrous Structures & Environmental Enhancement (FFSEE), Amirkabir University of Technology, Tehran, Iran
| |
Collapse
|
8
|
Lum JS, Salinas SS, Filocamo SF. Multifunctional coatings created using an antimicrobial polymer as a platform for titania precipitation on cotton. J Appl Polym Sci 2015. [DOI: 10.1002/app.43199] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- June S. Lum
- Development and Engineering Center; US Army Natick Soldier Research; Natick Massachusetts
| | - Stephen S. Salinas
- Development and Engineering Center; US Army Natick Soldier Research; Natick Massachusetts
- Massachusetts Institute of Technology; Cambridge Massachusetts
| | - Shaun F. Filocamo
- Development and Engineering Center; US Army Natick Soldier Research; Natick Massachusetts
| |
Collapse
|
9
|
Lam PL, Kok SHL, Bian ZX, Lam KH, Gambari R, Lee KKH, Chui CH. Microencapsulation-protectedl-ascorbic acid for the application of human epithelial HaCaT cell proliferation. J Microencapsul 2014; 31:754-8. [DOI: 10.3109/02652048.2014.918670] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
10
|
Xiao Z, Liu W, Zhu G, Zhou R, Niu Y. A review of the preparation and application of flavour and essential oils microcapsules based on complex coacervation technology. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2014; 94:1482-1494. [PMID: 24282124 DOI: 10.1002/jsfa.6491] [Citation(s) in RCA: 124] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2013] [Revised: 10/23/2013] [Accepted: 11/26/2013] [Indexed: 06/02/2023]
Abstract
This paper briefly introduces the preparation and application of flavour and essential oils microcapsules based on complex coacervation technology. The conventional encapsulating agents of oppositely charged proteins and polysaccharides that are used for microencapsulation of flavours and essential oils are reviewed along with the recent advances in complex coacervation methods. Proteins extracted from animal-derived products (gelatin, whey proteins, silk fibroin) and from vegetables (soy proteins, pea proteins), and polysaccharides such as gum Arabic, pectin, chitosan, agar, alginate, carrageenan and sodium carboxymethyl cellulose are described in depth. In recent decades, flavour and essential oils microcapsules have found numerous potential practical applications in food, textiles, agriculturals and pharmaceuticals. In this paper, the different coating materials and their application are discussed in detail. Consequently, the information obtained allows criteria to be established for selecting a method for the preparation of microcapsules according to their advantages, limitations and behaviours as carriers of flavours and essential oils.
Collapse
Affiliation(s)
- Zuobing Xiao
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai, 201418, China
| | | | | | | | | |
Collapse
|
11
|
Advanced progress of microencapsulation technologies: In vivo and in vitro models for studying oral and transdermal drug deliveries. J Control Release 2014; 178:25-45. [DOI: 10.1016/j.jconrel.2013.12.028] [Citation(s) in RCA: 126] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2013] [Revised: 12/10/2013] [Accepted: 12/17/2013] [Indexed: 11/20/2022]
|
12
|
Xiao Z, Liu W, Zhu G, Zhou R, Niu Y. Production and characterization of multinuclear microcapsules encapsulating lavender oil by complex coacervation. FLAVOUR FRAG J 2013. [DOI: 10.1002/ffj.3192] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Zuobing Xiao
- Shanghai Institute of Technology; No. 100 Haiquan Road Shanghai 201418 P.R. China
| | - Wanlong Liu
- Shanghai Institute of Technology; No. 100 Haiquan Road Shanghai 201418 P.R. China
| | - Guangyong Zhu
- Shanghai Institute of Technology; No. 100 Haiquan Road Shanghai 201418 P.R. China
| | | | - Yunwei Niu
- Shanghai Institute of Technology; No. 100 Haiquan Road Shanghai 201418 P.R. China
| |
Collapse
|