1
|
Pilpilidis K, Tsanidis G, Rouni MA, Markakis J, Samaras T. Revisiting the safety limit in magnetic nanoparticle hyperthermia: insights from eddy current induced heating. Phys Med Biol 2025; 70:035009. [PMID: 39813796 DOI: 10.1088/1361-6560/adaad0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Accepted: 01/15/2025] [Indexed: 01/18/2025]
Abstract
Objective.Magnetic nanoparticle hyperthermia (MNH) emerges as a promising therapeutic strategy for cancer treatment, leveraging alternating magnetic fields (AMFs) to induce localized heating through magnetic nanoparticles. However, the interaction of AMFs with biological tissues leads to non-specific heating caused by eddy currents, triggering thermoregulatory responses and complex thermal gradients throughout the body of the patient. While previous studies have implemented the Atkinson-Brezovich limit to mitigate potential harm, recent research underscores discrepancies between this threshold and clinical outcomes, necessitating a re-evaluation of this safety limit. Therefore, in this study, through electromagnetic (EM) simulations, the complex interaction between AMFs and anatomical models was investigated.Approach.In particular, we considered a circular coil configuration placed at different positions along the craniocaudal axis of various anatomical human models. The excitation current was normalized, at different frequencies, to meet the basic restriction of local 10 g-averaged specific energy absorption rate (SAR) in the human models, as defined by the exposure guidelines of the International Commission on Non-Ionizing Radiation Protection (ICNIRP) and the standard IEC 60601-2-33 of the International Electrotechnical Commission (IEC).Main results.The resulting permissible magnetic field strength values, for the reference levels set by the ICNIRP 2020 guidelines, emerged to be up to approximately 1.4 and 3 times less than that defined in the Atkinson-Brezovich limit. The widely used limit was found to align more closely with the first level of controlled operating mode defined in the IEC 60601-2-33 standard.Significance.The results indicate that the permissible magnetic field amplitude during MNH treatment should be much lower than that in the Atkinson-Brezovich limit. This study offers valuable insights into the role of computational simulations in advancing the potential to establish a reliable metric for safety evaluation and monitoring within the clinical framework of MNH.
Collapse
Affiliation(s)
| | - George Tsanidis
- Thessaloniki Software Solutions S.A., 555 35 Thessaloniki, Greece
| | - Maria Anastasia Rouni
- Thessaloniki Software Solutions S.A., 555 35 Thessaloniki, Greece
- Faculty of Sciences, School of Physics, Aristotle University, 541 24 Thessaloniki, Greece
| | - John Markakis
- Thessaloniki Software Solutions S.A., 555 35 Thessaloniki, Greece
- Faculty of Sciences, School of Physics, Aristotle University, 541 24 Thessaloniki, Greece
| | - Theodoros Samaras
- Faculty of Sciences, School of Physics, Aristotle University, 541 24 Thessaloniki, Greece
- Department of Physics, University of Malta, Msida, MSD 2080, Malta
| |
Collapse
|
2
|
Radoń A, Włodarczyk A, Sieroń Ł, Rost-Roszkowska M, Chajec Ł, Łukowiec D, Ciuraszkiewicz A, Gębara P, Wacławek S, Kolano-Burian A. Influence of the modifiers in polyol method on magnetically induced hyperthermia and biocompatibility of ultrafine magnetite nanoparticles. Sci Rep 2023; 13:7860. [PMID: 37188707 DOI: 10.1038/s41598-023-34738-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 05/06/2023] [Indexed: 05/17/2023] Open
Abstract
Magnetite nanoparticles (Fe3O4 NPs) are widely tested in various biomedical applications, including magnetically induced hyperthermia. In this study, the influence of the modifiers, i.e., urotropine, polyethylene glycol, and NH4HCO3, on the size, morphology, magnetically induced hyperthermia effect, and biocompatibility were tested for Fe3O4 NPs synthesized by polyol method. The nanoparticles were characterized by a spherical shape and similar size of around 10 nm. At the same time, their surface is functionalized by triethylene glycol or polyethylene glycol, depending on the modifiers. The Fe3O4 NPs synthesized in the presence of urotropine had the highest colloidal stability related to the high positive value of zeta potential (26.03 ± 0.55 mV) but were characterized by the lowest specific absorption rate (SAR) and intrinsic loss power (ILP). The highest potential in the hyperthermia applications have NPs synthesized using NH4HCO3, for which SAR and ILP were equal to 69.6 ± 5.2 W/g and 0.613 ± 0.051 nHm2/kg, respectively. Their application possibility was confirmed for a wide range of magnetic fields and by cytotoxicity tests. The absence of differences in toxicity to dermal fibroblasts between all studied NPs was confirmed. Additionally, no significant changes in the ultrastructure of fibroblast cells were observed apart from the gradual increase in the number of autophagous structures.
Collapse
Affiliation(s)
- Adrian Radoń
- Faculty of Mechanical Engineering, Silesian University of Technology, Konarskiego 18 a St., 44-100, Gliwice, Poland.
- Łukasiewicz Research Network - Institute of Non-Ferrous Metals, Sowinskiego 5 St, 44-100, Gliwice, Poland.
| | - Agnieszka Włodarczyk
- Department of Medical Genetics, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Medyków 18, 40-752, Katowice, Poland
| | - Łukasz Sieroń
- Department of Medical Genetics, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Medyków 18, 40-752, Katowice, Poland
| | - Magdalena Rost-Roszkowska
- Institute of Biology, Biotechnology and Environmental Protection, University of Silesia in Katowice, Bankowa 9, 40-007, Katowice, Poland
| | - Łukasz Chajec
- Institute of Biology, Biotechnology and Environmental Protection, University of Silesia in Katowice, Bankowa 9, 40-007, Katowice, Poland
| | - Dariusz Łukowiec
- Faculty of Mechanical Engineering, Silesian University of Technology, Konarskiego 18 a St., 44-100, Gliwice, Poland
| | - Agnieszka Ciuraszkiewicz
- Łukasiewicz Research Network - Institute of Non-Ferrous Metals, Sowinskiego 5 St, 44-100, Gliwice, Poland
| | - Piotr Gębara
- Department of Physics, Częstochowa University of Technology, Armii Krajowej 19, 42-200, Czestochowa, Poland
| | - Stanisław Wacławek
- Institute for Nanomaterials, Advanced Technologies and Innovation, Technical University of Liberec, Studentská 1402/2, 461 17, Liberec 1, Czech Republic
| | - Aleksandra Kolano-Burian
- Łukasiewicz Research Network - Institute of Non-Ferrous Metals, Sowinskiego 5 St, 44-100, Gliwice, Poland
| |
Collapse
|
3
|
Tsiapla AR, Kalimeri AA, Maniotis N, Myrovali E, Samaras T, Angelakeris M, Kalogirou O. Mitigation of magnetic particle hyperthermia side effects by magnetic field controls. Int J Hyperthermia 2021; 38:511-522. [PMID: 33784924 DOI: 10.1080/02656736.2021.1899310] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Objective: In magnetic particle hyperthermia, a promising least-invasive cancer treatment, malignant regions in proximity with magnetic nanoparticles undergo heat stress, while unavoidably surrounding healthy tissues may also suffer from heat either directly or indirectly by the induced eddy currents, due to the developed electric fields as well. Here, we propose a facile upgrade of a typical magnetic particle hyperthermia protocol, to selectively mitigate eddy currents' heating without compromising the beneficial role of heating in malignant regions.Method: The key idea is to apply the external magnetic field intermittently (in an ON/OFF pulse mode), instead of the continuous field mode typically applied. The parameters of the intermittent field mode, such as time intervals (ON time: 25-100 s, OFF time: 50-200 s, Duty Cycle:16-100%) and field amplitude (30-70 mT) are optimized based on evaluation on healthy tissue and cancer tissue phantoms. The goal is to sustain in cancer tissue phantom the maximum temperature increase (preferably within 4-8°C above body temperature of 37°C), while in the healthy tissue phantom temperature variation is suppressed far below the 4°C dictating the eddy current mitigation.Results: Optimum conditions of intermittent field (ON/OFF: 50/100 in s, Duty Cycle: 33%, magnetic field: 45mT) are then examined in ex-vivo samples verifying the successful suppression of eddy currents. Simultaneously, a well-elaborated theoretical approach provides a rapid calculation of temperature increase and, furthermore, the ability to quickly simulate a variety of duty cycle times and field controls may save experimental time.Conclusion: Eventually, the application of an intermittent field mode in a magnetic particle hyperthermia protocol, succeeds in eddy current mitigation in surrounding tissues and allows for the application of larger field amplitudes that may augment hyperthermia efficiency without objecting typical biomedical applicability field constraints such as Brezovich criterion.
Collapse
Affiliation(s)
- Aikaterini-Rafailia Tsiapla
- School of Physics, Faculty of Sciences, Aristotle University, Thessaloniki, Greece.,Center for Interdisciplinary Research and Innovation (CIRI-AUTH), MagnaCharta, Thessaloniki, Greece
| | - Antonia-Areti Kalimeri
- School of Physics, Faculty of Sciences, Aristotle University, Thessaloniki, Greece.,Center for Interdisciplinary Research and Innovation (CIRI-AUTH), MagnaCharta, Thessaloniki, Greece
| | - Nikolaos Maniotis
- School of Physics, Faculty of Sciences, Aristotle University, Thessaloniki, Greece.,Center for Interdisciplinary Research and Innovation (CIRI-AUTH), MagnaCharta, Thessaloniki, Greece
| | - Eirini Myrovali
- School of Physics, Faculty of Sciences, Aristotle University, Thessaloniki, Greece.,Center for Interdisciplinary Research and Innovation (CIRI-AUTH), MagnaCharta, Thessaloniki, Greece
| | - Theodoros Samaras
- School of Physics, Faculty of Sciences, Aristotle University, Thessaloniki, Greece.,Center for Interdisciplinary Research and Innovation (CIRI-AUTH), MagnaCharta, Thessaloniki, Greece
| | - Mavroeidis Angelakeris
- School of Physics, Faculty of Sciences, Aristotle University, Thessaloniki, Greece.,Center for Interdisciplinary Research and Innovation (CIRI-AUTH), MagnaCharta, Thessaloniki, Greece
| | - Orestis Kalogirou
- School of Physics, Faculty of Sciences, Aristotle University, Thessaloniki, Greece.,Center for Interdisciplinary Research and Innovation (CIRI-AUTH), MagnaCharta, Thessaloniki, Greece
| |
Collapse
|
4
|
Zharkov MN, Brodovskaya EP, Kulikov OA, Gromova EV, Ageev VP, Atanova AV, Kozyreva ZV, Tishin AM, Pyatakov AP, Pyataev NA, Sukhorukov GB. Enhanced cytotoxicity caused by AC magnetic field for polymer microcapsules containing packed magnetic nanoparticles. Colloids Surf B Biointerfaces 2021; 199:111548. [DOI: 10.1016/j.colsurfb.2020.111548] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Revised: 11/28/2020] [Accepted: 12/19/2020] [Indexed: 12/11/2022]
|
5
|
Kandala SK, Sharma A, Mirpour S, Liapi E, Ivkov R, Attaluri A. Validation of a coupled electromagnetic and thermal model for estimating temperatures during magnetic nanoparticle hyperthermia. Int J Hyperthermia 2021; 38:611-622. [PMID: 33853493 PMCID: PMC8363028 DOI: 10.1080/02656736.2021.1913244] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Revised: 03/28/2021] [Accepted: 03/30/2021] [Indexed: 11/02/2022] Open
Abstract
PURPOSE Alternating magnetic field (AMF) tissue interaction models are generally not validated. Our aim was to develop and validate a coupled electromagnetic and thermal model for estimating temperatures in large organs during magnetic nanoparticle hyperthermia (MNH). MATERIALS AND METHODS Coupled finite element electromagnetic and thermal model validation was performed by comparing the results to experimental data obtained from temperatures measured in homogeneous agar gel phantoms exposed to an AMF at fixed frequency (155 ± 10 kHz). The validated model was applied to a three-dimensional (3D) rabbit liver built from computed tomography (CT) images to investigate the contribution of nanoparticle heating and nonspecific eddy current heating as a function of AMF amplitude. RESULTS Computed temperatures from the model were in excellent agreement with temperatures calculated using the analytical method (error < 1%) and temperatures measured in phantoms (maximum absolute error <2% at each probe location). The 3D rabbit liver model for a fixed concentration of 5 mg Fe/cm3 of tumor revealed a maximum temperature ∼44 °C in tumor and ∼40 °C in liver at AMF amplitude of ∼12 kA/m (peak). CONCLUSION A validated coupled electromagnetic and thermal model was developed to estimate temperatures due to eddy current heating in homogeneous tissue phantoms. The validated model was successfully used to analyze temperature distribution in complex rabbit liver tumor geometry during MNH. In future, model validation should be extended to heterogeneous tissue phantoms, and include heat sink effects from major blood vessels.
Collapse
Affiliation(s)
- Sri Kamal Kandala
- Department of Mechanical Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, MD, USA
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Anirudh Sharma
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Sahar Mirpour
- Department of Radiology and Radiological Sciences, Johns Hopkins Hospital, Baltimore, MD, USA
| | - Eleni Liapi
- Department of Radiology and Radiological Sciences, Johns Hopkins Hospital, Baltimore, MD, USA
- Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, MD, USA
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Robert Ivkov
- Department of Mechanical Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, MD, USA
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Materials Science and Engineering, Whiting School of Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Anilchandra Attaluri
- Department of Mechanical Engineering, The Pennsylvania State University - Harrisburg, Middletown, PA, USA
| |
Collapse
|
6
|
Kandala SK, Liapi E, Whitcomb LL, Attaluri A, Ivkov R. Temperature-controlled power modulation compensates for heterogeneous nanoparticle distributions: a computational optimization analysis for magnetic hyperthermia. Int J Hyperthermia 2018; 36:115-129. [PMID: 30541354 PMCID: PMC6411438 DOI: 10.1080/02656736.2018.1538538] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Purpose: To study, with computational models, the utility of power modulation to reduce tissue temperature heterogeneity for variable nanoparticle distributions in magnetic nanoparticle hyperthermia. Methods: Tumour and surrounding tissue were modeled by elliptical two- and three-dimensional computational phantoms having six different nanoparticle distributions. Nanoparticles were modeled as point heat sources having amplitude-dependent loss power. The total number of nanoparticles was fixed, and their spatial distribution and heat output were varied. Heat transfer was computed by solving the Pennes’ bioheat equation using finite element methods (FEM) with temperature-dependent blood perfusion. Local temperature was regulated using a proportional-integral-derivative (PID) controller. Tissue temperature, thermal dose and tissue damage were calculated. The required minimum thermal dose delivered to the tumor was kept constant, and heating power was adjusted for comparison of both the heating methods. Results: Modulated power heating produced lower and more homogeneous temperature distributions than did constant power heating for all studied nanoparticle distributions. For a concentrated nanoparticle distribution, located off-center within the tumor, the maximum temperatures inside the tumor were 16% lower for modulated power heating when compared to constant power heating. This resulted in less damage to surrounding normal tissue. Modulated power heating reached target thermal doses up to nine-fold more rapidly when compared to constant power heating. Conclusions: Controlling the temperature at the tumor-healthy tissue boundary by modulating the heating power of magnetic nanoparticles demonstrably compensates for a variable nanoparticle distribution to deliver effective treatment.
Collapse
Affiliation(s)
- Sri Kamal Kandala
- a Department of Mechanical Engineering, Whiting School of Engineering , Johns Hopkins University , Baltimore , MD , USA.,b Department of Radiation Oncology and Molecular Radiation Sciences, School of Medicine , Johns Hopkins University , Baltimore , MD , USA
| | - Eleni Liapi
- c Department of Radiology and Radiological Sciences , Johns Hopkins Hospital , Baltimore , MD , USA.,d Institute for NanoBioTechnology, Johns Hopkins University , Baltimore , MD , USA.,e Department of Oncology, School of Medicine , Johns Hopkins University Baltimore , MD , USA
| | - Louis L Whitcomb
- a Department of Mechanical Engineering, Whiting School of Engineering , Johns Hopkins University , Baltimore , MD , USA
| | - Anilchandra Attaluri
- f Department of Mechanical Engineering , The Pennsylvania State University - Harrisburg , Middletown , PA , USA
| | - Robert Ivkov
- a Department of Mechanical Engineering, Whiting School of Engineering , Johns Hopkins University , Baltimore , MD , USA.,b Department of Radiation Oncology and Molecular Radiation Sciences, School of Medicine , Johns Hopkins University , Baltimore , MD , USA.,d Institute for NanoBioTechnology, Johns Hopkins University , Baltimore , MD , USA.,e Department of Oncology, School of Medicine , Johns Hopkins University Baltimore , MD , USA.,g Department of Materials Science and Engineering, Whiting School of Engineering , Johns Hopkins University , Baltimore , MD , USA
| |
Collapse
|
7
|
Mahmoudi K, Bouras A, Bozec D, Ivkov R, Hadjipanayis C. Magnetic hyperthermia therapy for the treatment of glioblastoma: a review of the therapy's history, efficacy and application in humans. Int J Hyperthermia 2018; 34:1316-1328. [PMID: 29353516 PMCID: PMC6078833 DOI: 10.1080/02656736.2018.1430867] [Citation(s) in RCA: 204] [Impact Index Per Article: 29.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Revised: 01/14/2018] [Accepted: 01/17/2018] [Indexed: 02/07/2023] Open
Abstract
Hyperthermia therapy (HT) is the exposure of a region of the body to elevated temperatures to achieve a therapeutic effect. HT anticancer properties and its potential as a cancer treatment have been studied for decades. Techniques used to achieve a localised hyperthermic effect include radiofrequency, ultrasound, microwave, laser and magnetic nanoparticles (MNPs). The use of MNPs for therapeutic hyperthermia generation is known as magnetic hyperthermia therapy (MHT) and was first attempted as a cancer therapy in 1957. However, despite more recent advancements, MHT has still not become part of the standard of care for cancer treatment. Certain challenges, such as accurate thermometry within the tumour mass and precise tumour heating, preclude its widespread application as a treatment modality for cancer. MHT is especially attractive for the treatment of glioblastoma (GBM), the most common and aggressive primary brain cancer in adults, which has no cure. In this review, the application of MHT as a therapeutic modality for GBM will be discussed. Its therapeutic efficacy, technical details, and major experimental and clinical findings will be reviewed and analysed. Finally, current limitations, areas of improvement, and future directions will be discussed in depth.
Collapse
Affiliation(s)
- Keon Mahmoudi
- Department of Neurosurgery, Brain Tumor Nanotechnology Laboratory, Tisch Cancer Institute at Mount Sinai, New York, NY, USA
| | - Alexandros Bouras
- Department of Neurosurgery, Brain Tumor Nanotechnology Laboratory, Tisch Cancer Institute at Mount Sinai, New York, NY, USA
| | - Dominique Bozec
- Department of Neurosurgery, Brain Tumor Nanotechnology Laboratory, Tisch Cancer Institute at Mount Sinai, New York, NY, USA
| | - Robert Ivkov
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University School of Medicine Baltimore, MD, USA
| | - Constantinos Hadjipanayis
- Department of Neurosurgery, Brain Tumor Nanotechnology Laboratory, Tisch Cancer Institute at Mount Sinai, New York, NY, USA
- Department of Neurosurgery, Mount Sinai Beth Israel, New York, NY, USA
| |
Collapse
|
8
|
Sohail A, Ahmad Z, Bég OA, Arshad S, Sherin L. A review on hyperthermia via nanoparticle-mediated therapy. Bull Cancer 2017; 104:452-461. [DOI: 10.1016/j.bulcan.2017.02.003] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Revised: 02/02/2017] [Accepted: 02/05/2017] [Indexed: 12/26/2022]
|
9
|
Angelakeris M. Magnetic nanoparticles: A multifunctional vehicle for modern theranostics. Biochim Biophys Acta Gen Subj 2017; 1861:1642-1651. [PMID: 28219721 DOI: 10.1016/j.bbagen.2017.02.022] [Citation(s) in RCA: 104] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Revised: 02/12/2017] [Accepted: 02/13/2017] [Indexed: 11/18/2022]
Abstract
Magnetic nanoparticles provide a unique multifunctional vehicle for modern theranostics since they can be remotely and non-invasively employed as imaging probes, carrier vectors and smart actuators. Additionally, special delivery schemes beyond the typical drug delivery such as heat or mechanical stress may be magnetically triggered to promote certain cellular pathways. To start with, we need magnetic nanoparticles with several well-defined and reproducible structural, physical, and chemical features, while bio-magnetic nanoparticle design imposes several additional constraints. Except for the intrinsic requirement for high quality of magnetic properties in order to obtain the maximum efficiency with the minimum dose, the surface manipulation of the nanoparticles is a key aspect not only for transferring them from the growth medium to the biological environment but also to bind functional molecules that will undertake specific targeting, drug delivery, cell-specific monitoring and designated treatment without sparing biocompatibility and sustainability in-vivo. The ability of magnetic nanoparticles to interact with matter at the nanoscale not only provides the possibility to ascertain the molecular constituents of a disease, but also the way in which the totality of a biological function may be affected as well. The capacity to incorporate an array of structural and chemical functionalities onto the same nanoscale architecture also enables more accurate, sensitive and precise screening together with cure of diseases with significant pathological heterogeneity such as cancer. This article is part of a Special Issue entitled "Recent Advances in Bionanomaterials" Guest Editor: Dr. Marie-Louise Saboungi and Dr. Samuel D. Bader.
Collapse
Affiliation(s)
- M Angelakeris
- Department of Physics, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece.
| |
Collapse
|
10
|
Lemal P, Geers C, Rothen-Rutishauser B, Lattuada M, Petri-Fink A. Measuring the heating power of magnetic nanoparticles: an overview of currently used methods. ACTA ACUST UNITED AC 2017. [DOI: 10.1016/j.matpr.2017.09.175] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
11
|
Shydlovska O, Zholobak N, Dybkova S, Osinsky S, Bubnovskaya L, Yelenich O, Solopan S, Belous A. Synthesis and comparative characteristics of biological activities of (La, Sr)MnO3 and Fe3O4 nanoparticles. EUROPEAN JOURNAL OF NANOMEDICINE 2017. [DOI: 10.1515/ejnm-2016-0028] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
AbstractIn the last decade, ferromagnetic nanoparticles that are able to be heated under an AMF (alternating magnetic field) have gained considerable interest in the field of nanotechnology. The current study explores the peculiarity of the synthesis and the properties of Fe
Collapse
|
12
|
Bellizzi G, Bucci OM, Chirico G. Numerical assessment of a criterion for the optimal choice of the operative conditions in magnetic nanoparticle hyperthermia on a realistic model of the human head. Int J Hyperthermia 2016; 32:688-703. [PMID: 27268850 DOI: 10.3109/02656736.2016.1167258] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
PURPOSE This paper presents a numerical study aiming at assessing the effectiveness of a recently proposed optimisation criterion for determining the optimal operative conditions in magnetic nanoparticle hyperthermia applied to the clinically relevant case of brain tumours. MATERIALS AND METHODS The study is carried out using the Zubal numerical phantom, and performing electromagnetic-thermal co-simulations. The Pennes model is used for thermal balance; the dissipation models for the magnetic nanoparticles are those available in the literature. The results concerning the optimal therapeutic concentration of nanoparticles, obtained through the analysis, are validated using experimental data on the specific absorption rate of iron oxide nanoparticles, available in the literature. RESULTS The numerical estimates obtained by applying the criterion to the treatment of brain tumours shows that the acceptable values for the product between the magnetic field amplitude and frequency may be two to four times larger than the safety threshold of 4.85 × 10(8)A/m/s usually considered. This would allow the reduction of the dosage of nanoparticles required for an effective treatment. In particular, depending on the tumour depth, concentrations of nanoparticles smaller than 10 mg/mL of tumour may be sufficient for heating tumours smaller than 10 mm above 42 °C. Moreover, the study of the clinical scalability shows that, whatever the tumour position, lesions larger than 15 mm may be successfully treated with concentrations lower than 10 mg/mL. The criterion also allows the prediction of the temperature rise in healthy tissue, thus assuring safe treatment. CONCLUSIONS The criterion can represent a helpful tool for planning and optimising an effective hyperthermia treatment.
Collapse
Affiliation(s)
- Gennaro Bellizzi
- a Department of Electrical Engineering and Information Technology , University of Naples Federico II , Naples , Italy ;,b Institute for the Electromagnetic Sensing of Environment, National Research Council , Naples , Italy
| | - Ovidio M Bucci
- b Institute for the Electromagnetic Sensing of Environment, National Research Council , Naples , Italy ;,c National Interuniversity Consortium for Telecommunications , Parma , Italy
| | - Gaetano Chirico
- a Department of Electrical Engineering and Information Technology , University of Naples Federico II , Naples , Italy
| |
Collapse
|
13
|
Rácz J, de Châtel PF, Szabó IA, Szunyogh L, Nándori I. Improved efficiency of heat generation in nonlinear dynamics of magnetic nanoparticles. Phys Rev E 2016; 93:012607. [PMID: 26871122 DOI: 10.1103/physreve.93.012607] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Indexed: 06/05/2023]
Abstract
The deterministic Landau-Lifshitz-Gilbert equation has been used to investigate the nonlinear dynamics of magnetization and the specific loss power in magnetic nanoparticles with uniaxial anisotropy driven by a rotating magnetic field. We propose a new type of applied field, which is "simultaneously rotating and alternating," i.e., the direction of the rotating external field changes periodically. We show that a more efficient heat generation by magnetic nanoparticles is possible with this new type of applied field and we suggest its possible experimental realization in cancer therapy which requires the enhancement of loss energies.
Collapse
Affiliation(s)
- J Rácz
- University of Debrecen, H-4010 Debrecen P. O. Box 105, Hungary
- Institute of Nuclear Research, P. O. Box 51, H-4001 Debrecen, Hungary
| | - P F de Châtel
- MTA-DE Particle Physics Research Group, H-4010 Debrecen P. O. Box 105, Hungary
| | - I A Szabó
- University of Debrecen, H-4010 Debrecen P. O. Box 105, Hungary
| | - L Szunyogh
- Department of Theoretical Physics and MTA-BME Condensed Matter Research Group, Budapest University of Technology and Economics, H-1111 Budapest Budafoki 8., Hungary
| | - I Nándori
- Institute of Nuclear Research, P. O. Box 51, H-4001 Debrecen, Hungary
- MTA-DE Particle Physics Research Group, H-4010 Debrecen P. O. Box 105, Hungary
| |
Collapse
|
14
|
Abstract
We present a critical review of the state of the art of magnetic particle hyperthermia (MPH) as a minimal invasive tumour therapy. Magnetic principles of heating mechanisms are discussed with respect to the optimum choice of nanoparticle properties. In particular, the relation between superparamagnetic and ferrimagnetic single domain nanoparticles is clarified in order to choose the appropriate particle size distribution and the role of particle mobility for the relaxation path is discussed. Knowledge of the effect of particle properties for achieving high specific heating power provides necessary guidelines for development of nanoparticles tailored for tumour therapy. Nanoscale heat transfer processes are discussed with respect to the achievable temperature increase in cancer cells. The need to realize a well-controlled temperature distribution in tumour tissue represents the most serious problem of MPH, at present. Visionary concepts of particle administration, in particular by means of antibody targeting, are far from clinical practice, yet. On the basis of current knowledge of treating cancer by thermal damaging, this article elucidates possibilities, prospects, and challenges for establishment of MPH as a standard medical procedure.
Collapse
Affiliation(s)
- Silvio Dutz
- Institute of Biomedical Engineering and Informatics (BMTI), Technische Universität Ilmenau, G-Kirchhoff-Str. 2, D-98693 Ilmenau, Germany. Department of Nano Biophotonics, Institute of Photonic Technology (IPHT), A.-Einstein-Str. 9, D-07745 Jena, Germany
| | | |
Collapse
|
15
|
Bellizzi G, Bucci OM. Blind focusing of electromagnetic fields in hyperthermia exploiting target contrast variations. IEEE Trans Biomed Eng 2014; 62:208-17. [PMID: 25099394 DOI: 10.1109/tbme.2014.2344711] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
This paper suggests a novel approach to the blind focusing of the electromagnetic field for microwave hyperthermia. The idea is to induce a contrast variation in the target and to exploit this variation for the synthesis of the excitations of the antenna array employed for the focusing, by performing a differential scattering measurement. In particular, the excitation vector is set as the right singular vector associated with the largest singular value of the differential scattering matrix, obtained as difference of two scattering matrixes measured by the antenna array itself before and after the contrast change. As a result, the approach is computationally effective and totally blind, not requiring any a priori knowledge of the electric and geometric features of the region hosting the target, as well as of its spatial position with respect to the antenna array.
Collapse
|
16
|
Rivet CJ, Yuan Y, Gilbert RJ, Borca-Tasciuc DA. Effect of magnetic nanoparticle heating on cortical neuron viability. Int J Hyperthermia 2014; 30:79-85. [PMID: 24471936 DOI: 10.3109/02656736.2013.873825] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
PURPOSE Superparamagnetic iron oxide nanoparticles are currently approved for use as an adjunctive treatment to glioblastoma multiforme radiotherapy. Radio frequency stimulation of the nanoparticles generates localised hyperthermia, which sensitises the tumour to the effects of radiotherapy. Clinical trials reported thus far are promising, with an increase in patient survival rate; however, what are left unaddressed are the implications of this technology on the surrounding healthy tissue. METHODS AND MATERIALS Aminosilane-coated iron oxide nanoparticles suspended in culture medium were applied to chick embryonic cortical neuron cultures. Cultures were heated to 37 °C or 45 °C by an induction coil system for 2 h. The latter regime emulates the therapeutic conditions of the adjunctive therapy. Cellular viability and neurite retraction was quantified 24 h after exposure to the hyperthermic events. RESULTS The hyperthermic load inflicted little damage to the neuron cultures, as determined by calcein-AM, propidium iodide, and alamarBlue® assays. Fluorescence imaging was used to assess the extent of neurite retraction which was found to be negligible. CONCLUSIONS Retention of chick, embryonic cortical neuron viability was confirmed under the thermal conditions produced by radiofrequency stimulation of iron oxide nanoparticles. While these results are not directly applicable to clinical applications of hyperthermia, the thermotolerance of chick embryonic cortical neurons is promising and calls for further studies employing human cultures of neurons and glial cells.
Collapse
Affiliation(s)
- Christopher J Rivet
- Department of Biomedical Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute , Troy, New York and
| | | | | | | |
Collapse
|
17
|
Andreu I, Natividad E. Accuracy of available methods for quantifying the heat power generation of nanoparticles for magnetic hyperthermia. Int J Hyperthermia 2013; 29:739-51. [DOI: 10.3109/02656736.2013.826825] [Citation(s) in RCA: 105] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
18
|
Dutz S, Hergt R. Magnetic nanoparticle heating and heat transfer on a microscale: Basic principles, realities and physical limitations of hyperthermia for tumour therapy. Int J Hyperthermia 2013; 29:790-800. [DOI: 10.3109/02656736.2013.822993] [Citation(s) in RCA: 330] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
19
|
Lahonian M, Golneshan AA. Numerical Study of Temperature Distribution in a Spherical Tissue in Magnetic Fluid Hyperthermia Using Lattice Boltzmann Method. IEEE Trans Nanobioscience 2011; 10:262-8. [DOI: 10.1109/tnb.2011.2177100] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
20
|
Golneshan AA, Lahonian M. The effect of magnetic nanoparticle dispersion on temperature distribution in a spherical tissue in magnetic fluid hyperthermia using the lattice Boltzmann method. Int J Hyperthermia 2011; 27:266-74. [DOI: 10.3109/02656736.2010.519370] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
21
|
Sanson C, Diou O, Thévenot J, Ibarboure E, Soum A, Brûlet A, Miraux S, Thiaudière E, Tan S, Brisson A, Dupuis V, Sandre O, Lecommandoux S. Doxorubicin loaded magnetic polymersomes: theranostic nanocarriers for MR imaging and magneto-chemotherapy. ACS NANO 2011; 5:1122-40. [PMID: 21218795 DOI: 10.1021/nn102762f] [Citation(s) in RCA: 256] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Hydrophobically modified maghemite (γ-Fe(2)O(3)) nanoparticles were encapsulated within the membrane of poly(trimethylene carbonate)-b-poly(l-glutamic acid) (PTMC-b-PGA) block copolymer vesicles using a nanoprecipitation process. This formation method gives simple access to highly magnetic nanoparticles (MNPs) (loaded up to 70 wt %) together with good control over the vesicles size (100-400 nm). The simultaneous loading of maghemite nanoparticles and doxorubicin was also achieved by nanoprecipitation. The deformation of the vesicle membrane under an applied magnetic field has been evidenced by small angle neutron scattering. These superparamagnetic hybrid self-assemblies display enhanced contrast properties that open potential applications for magnetic resonance imaging. They can also be guided in a magnetic field gradient. The feasibility of controlled drug release by radio frequency magnetic hyperthermia was demonstrated in the case of encapsulated doxorubicin molecules, showing the viability of the concept of magneto-chemotherapy. These magnetic polymersomes can be used as efficient multifunctional nanocarriers for combined therapy and imaging.
Collapse
Affiliation(s)
- Charles Sanson
- Université de Bordeaux/IPB, ENSCBP, 16 avenue Pey Berland, 33607 Pessac Cedex, France
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|