1
|
Wang F, Yang Z, Peng W, Song L, Luo Y, Zhao Z, Huang L. RPCA-based thermoacoustic imaging for microwave ablation monitoring. PHOTOACOUSTICS 2024; 38:100622. [PMID: 38911132 PMCID: PMC11192794 DOI: 10.1016/j.pacs.2024.100622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 05/11/2024] [Accepted: 05/17/2024] [Indexed: 06/25/2024]
Abstract
Microwave ablation (MWA) is a potent cancer treatment tool, but its effectiveness can be hindered by the lack of visual feedback. This paper validates the feasibility of using microwave-induced thermoacoustic imaging (TAI) technique to monitor the MWA process. A feasibility analysis was conducted at the principle level and a high-performance real-time TAI system was introduced. To address the interference caused by MWA, a robust principal component analysis (RPCA)-based method for TAI was proposed. This method leverages the correlation between multiple signal frames to eliminate interference. RPCA's effectiveness in TAI was demonstrated through three sets of different experiments. Experiments demonstrated that TAI can effectively monitors the MWA process. This work represents the first application of RPCA-related matrix decomposition methods in TAI, paving the way for the application of TAI in more complex clinical scenarios. By providing rapid and accurate visual feedback, this research advances MWA technology.
Collapse
Affiliation(s)
- Fuyong Wang
- School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu, 611731, Sichuan, China
| | - Zeqi Yang
- School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu, 611731, Sichuan, China
| | - Wanting Peng
- School of Information Engineering, Southwest University of Science and Technology, Mianyang, 621010, Sichuan, China
| | - Ling Song
- Department of Ultrasound, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Yan Luo
- Department of Ultrasound, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Zhiqin Zhao
- School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu, 611731, Sichuan, China
| | - Lin Huang
- School of Electronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu, 611731, Sichuan, China
| |
Collapse
|
2
|
Kim K, Narsinh K, Ozhinsky E. Technical advances in motion-robust MR thermometry. Magn Reson Med 2024; 92:15-27. [PMID: 38501903 PMCID: PMC11132643 DOI: 10.1002/mrm.30057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 01/25/2024] [Accepted: 01/27/2024] [Indexed: 03/20/2024]
Abstract
Proton resonance frequency shift (PRFS) MR thermometry is the most common method used in clinical thermal treatments because of its fast acquisition and high sensitivity to temperature. However, motion is the biggest obstacle in PRFS MR thermometry for monitoring thermal treatment in moving organs. This challenge arises because of the introduction of phase errors into the PRFS calculation through multiple methods, such as image misregistration, susceptibility changes in the magnetic field, and intraframe motion during MRI acquisition. Various approaches for motion correction have been developed for real-time, motion-robust, and volumetric MR thermometry. However, current technologies have inherent trade-offs among volume coverage, processing time, and temperature accuracy. These tradeoffs should be considered and chosen according to the thermal treatment application. In hyperthermia treatment, precise temperature measurements are of increased importance rather than the requirement for exceedingly high temporal resolution. In contrast, ablation procedures require robust temporal resolution to accurately capture a rapid temperature rise. This paper presents a comprehensive review of current cutting-edge MRI techniques for motion-robust MR thermometry, and recommends which techniques are better suited for each thermal treatment. We expect that this study will help discern the selection of motion-robust MR thermometry strategies and inspire the development of motion-robust volumetric MR thermometry for practical use in clinics.
Collapse
Affiliation(s)
- Kisoo Kim
- Department of Radiology & Biomedical Imaging, University of California, San Francisco, California, USA
| | - Kazim Narsinh
- Department of Radiology & Biomedical Imaging, University of California, San Francisco, California, USA
| | - Eugene Ozhinsky
- Department of Radiology & Biomedical Imaging, University of California, San Francisco, California, USA
| |
Collapse
|
3
|
Hübner F, Blauth S, Leithäuser C, Schreiner R, Siedow N, Vogl TJ. Validating a simulation model for laser-induced thermotherapy using MR thermometry. Int J Hyperthermia 2022; 39:1315-1326. [PMID: 36220179 DOI: 10.1080/02656736.2022.2129102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022] Open
Abstract
OBJECTIVES We want to investigate whether temperature measurements obtained from MR thermometry are accurate and reliable enough to aid the development and validation of simulation models for Laser-induced interstitial thermotherapy (LITT). METHODS Laser-induced interstitial thermotherapy (LITT) is applied to ex-vivo porcine livers. An artificial blood vessel is used to study the cooling effect of large blood vessels in proximity to the ablation zone. The experimental setting is simulated using a model based on partial differential equations (PDEs) for temperature, radiation, and tissue damage. The simulated temperature distributions are compared to temperature data obtained from MR thermometry. RESULTS The overall agreement between measurement and simulation is good for two of our four test cases, while for the remaining cases drift problems with the thermometry data have been an issue. At higher temperatures local deviations between simulation and measurement occur in close proximity to the laser applicator and the vessel. This suggests that certain aspects of the model may need some refinement. CONCLUSION Thermometry data is well-suited for aiding the development of simulations models since it shows where refinements are necessary and enables the validation of such models.
Collapse
Affiliation(s)
- Frank Hübner
- Institute for Diagnostic and Interventional Radiology of the J.W. Goethe University Hospital, Frankfurt am Main, Germany
| | | | | | - Roland Schreiner
- Institute for Diagnostic and Interventional Radiology of the J.W. Goethe University Hospital, Frankfurt am Main, Germany
| | | | - Thomas J Vogl
- Institute for Diagnostic and Interventional Radiology of the J.W. Goethe University Hospital, Frankfurt am Main, Germany
| |
Collapse
|
4
|
Parker DL, Payne A, Odéen H. A k-space-based method to measure and correct for temporal B 0 field variations in MR temperature imaging. Magn Reson Med 2022; 88:1098-1111. [PMID: 35576148 PMCID: PMC11034809 DOI: 10.1002/mrm.29275] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 03/29/2022] [Accepted: 04/01/2022] [Indexed: 11/10/2022]
Abstract
PURPOSE Present a method to use change in phase in repeated Cartesian k-space measurements to monitor the change in magnetic field for dynamic MR temperature imaging. METHODS The method is applied to focused ultrasound heating experiments in a gelatin phantom and an ex vivo salt pork sample, without and with simulated respiratory motion. RESULTS In each experiment, phase variations due to B0 field drift and respiration were readily apparent in the measured phase difference. With correction, the SD of the temperature over time was reduced from 0.18°C to 0.14°C (no breathing) and from 0.81°C to 0.22°C (with breathing) for the gelatin phantom, and from 0.68°C to 0.13°C (no breathing) and from 1.06°C to 0.17°C (with breathing) for the pork sample. The accuracy in nonheated regions, assessed as the RMS error deviation from 0°C, improved from 1.70°C to 1.11°C (no breathing) and from 4.73°C to 1.47°C (with breathing) for the gelatin phantom, and from 5.95°C to 0.88°C (no breathing) and from 13.40°C to 1.73°C (with breathing) for the pork sample. The correction did not affect the temperature measurement accuracy in the heated regions. CONCLUSION This work demonstrates that phase changes resulting from variations in B0 due to drift and respiration, commonly seen in MR thermometry applications, can be measured directly from 3D Cartesian acquisition methods. The correction of temporal field variations using the presented technique improved temperature accuracy, reduced variability in nonheated regions, and did not reduce accuracy in heated regions.
Collapse
Affiliation(s)
- Dennis L Parker
- Utah Center for Advanced Imaging Research, Department of Radiology and Imaging Sciences, University of Utah, Salt Lake City, Utah, United States
| | - Allison Payne
- Utah Center for Advanced Imaging Research, Department of Radiology and Imaging Sciences, University of Utah, Salt Lake City, Utah, United States
| | - Henrik Odéen
- Utah Center for Advanced Imaging Research, Department of Radiology and Imaging Sciences, University of Utah, Salt Lake City, Utah, United States
| |
Collapse
|
5
|
Le Guevelou J, Chirila ME, Achard V, Guillemin PC, Lorton O, Uiterwijk JWE, Dipasquale G, Salomir R, Zilli T. Combined hyperthermia and radiotherapy for prostate cancer: a systematic review. Int J Hyperthermia 2022; 39:547-556. [PMID: 35313781 DOI: 10.1080/02656736.2022.2053212] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Optimization of treatment strategies for prostate cancer patients treated with curative radiation therapy (RT) represents one of the major challenges for the radiation oncologist. Dose escalation or combination of RT with systemic therapies is used to improve tumor control in patients with unfavorable prostate cancer, at the risk of increasing rates and severity of treatment-related toxicities. Elevation of temperature to a supra-physiological level has been shown to both increase tumor oxygenation and reduce DNA repair capabilities. Thus, hyperthermia (HT) combined with RT represents a compelling treatment strategy to improve the therapeutic ratio in prostate cancer patients. The aim of the present systematic review is to report on preclinical and clinical evidence supporting the combination of HT and RT for prostate cancer, discussing future applications and developments of this combined treatment.
Collapse
Affiliation(s)
- Jennifer Le Guevelou
- Division of Radiation Oncology, Geneva University Hospital, Geneva, Switzerland.,Faculty of Medicine, Geneva University, Geneva, Switzerland
| | - Monica Emilia Chirila
- Division of Radiation Oncology, Geneva University Hospital, Geneva, Switzerland.,Amethyst Radiotherapy Centre, Cluj-Napoca, Romania
| | - Vérane Achard
- Division of Radiation Oncology, Geneva University Hospital, Geneva, Switzerland.,Faculty of Medicine, Geneva University, Geneva, Switzerland
| | | | - Orane Lorton
- Department of Radiology and Medical Informatics, Geneva University Hospital, Geneva, Switzerland
| | | | - Giovanna Dipasquale
- Division of Radiation Oncology, Geneva University Hospital, Geneva, Switzerland
| | - Rares Salomir
- Faculty of Medicine, Geneva University, Geneva, Switzerland.,Department of Radiology and Medical Informatics, Geneva University Hospital, Geneva, Switzerland
| | - Thomas Zilli
- Division of Radiation Oncology, Geneva University Hospital, Geneva, Switzerland.,Faculty of Medicine, Geneva University, Geneva, Switzerland
| |
Collapse
|
6
|
Geoghegan R, Ter Haar G, Nightingale K, Marks L, Natarajan S. Methods of monitoring thermal ablation of soft tissue tumors - A comprehensive review. Med Phys 2022; 49:769-791. [PMID: 34965307 DOI: 10.1002/mp.15439] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Revised: 11/30/2020] [Accepted: 12/15/2021] [Indexed: 11/12/2022] Open
Abstract
Thermal ablation is a form of hyperthermia in which oncologic control can be achieved by briefly inducing elevated temperatures, typically in the range 50-80°C, within a target tissue. Ablation modalities include high intensity focused ultrasound, radiofrequency ablation, microwave ablation, and laser interstitial thermal therapy which are all capable of generating confined zones of tissue destruction, resulting in fewer complications than conventional cancer therapies. Oncologic control is contingent upon achieving predefined coagulation zones; therefore, intraoperative assessment of treatment progress is highly desirable. Consequently, there is a growing interest in the development of ablation monitoring modalities. The first section of this review presents the mechanism of action and common applications of the primary ablation modalities. The following section outlines the state-of-the-art in thermal dosimetry which includes interstitial thermal probes and radiologic imaging. Both the physical mechanism of measurement and clinical or pre-clinical performance are discussed for each ablation modality. Thermal dosimetry must be coupled with a thermal damage model as outlined in Section 4. These models estimate cell death based on temperature-time history and are inherently tissue specific. In the absence of a reliable thermal model, the utility of thermal monitoring is greatly reduced. The final section of this review paper covers technologies that have been developed to directly assess tissue conditions. These approaches include visualization of non-perfused tissue with contrast-enhanced imaging, assessment of tissue mechanical properties using ultrasound and magnetic resonance elastography, and finally interrogation of tissue optical properties with interstitial probes. In summary, monitoring thermal ablation is critical for consistent clinical success and many promising technologies are under development but an optimal solution has yet to achieve widespread adoption.
Collapse
Affiliation(s)
- Rory Geoghegan
- Department of Urology, University of California Los Angeles, Los Angeles, California, USA
| | - Gail Ter Haar
- Department of Physics, Institute of Cancer Research, University of London, Sutton, UK
| | - Kathryn Nightingale
- Department of Biomedical Engineering, Duke University, Durham, North Carolina, USA
| | - Leonard Marks
- Department of Urology, University of California Los Angeles, Los Angeles, California, USA
| | - Shyam Natarajan
- Departments of Urology & Bioengineering, University of California Los Angeles, Los Angeles, California, USA
| |
Collapse
|
7
|
Kokuryo D, Kumamoto E, Kuroda K. Recent technological advancements in thermometry. Adv Drug Deliv Rev 2020; 163-164:19-39. [PMID: 33217482 DOI: 10.1016/j.addr.2020.11.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Revised: 07/25/2020] [Accepted: 11/02/2020] [Indexed: 12/12/2022]
Abstract
Thermometry is the key factor for achieving successful thermal therapy. Although invasive thermometry with a probe has been used for more than four decades, this method can only detect the local temperature within the probing volume. Noninvasive temperature imaging using a tomographic technique is ideal for monitoring hot-spot formation in the human body. Among various techniques, such as X-ray computed tomography, microwave tomography, echo sonography, and magnetic resonance (MR) imaging, the proton resonance frequency shift method of MR thermometry is the only method currently available for clinical practice because its temperature sensitivity is consistent in most aqueous tissues and can be easily observed using common clinical scanners. New techniques are being proposed to improve the robustness of this method against tissue motion. MR techniques for fat thermometry were also developed based on relaxation times. One of the latest non-MR techniques to attract attention is photoacoustic imaging.
Collapse
Affiliation(s)
- Daisuke Kokuryo
- Graduate School of System Informatics, Kobe University, Japan
| | - Etsuko Kumamoto
- Information Science and Technology Center, Kobe University, Japan
| | - Kagayaki Kuroda
- School of Information Science and Technology, Tokai University, Japan; Center for Frontier Medical Engineering, Chiba University, Japan.
| |
Collapse
|
8
|
Bazrafshan B, Koujan A, Hübner F, Leithäuser C, Siedow N, Vogl TJ. A thermometry software tool for monitoring laser-induced interstitial thermotherapy. ACTA ACUST UNITED AC 2019; 64:449-457. [PMID: 30243013 DOI: 10.1515/bmt-2017-0197] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Accepted: 08/21/2018] [Indexed: 11/15/2022]
Abstract
The purpose of this study was to develop a thermometry software tool for temperature monitoring during laser-induced interstitial thermotherapy (LITT). C++ programming language and several libraries including DICOM Toolkit, Grassroots DICOM library, Insight Segmentation and Registration Toolkit, Visualization Toolkit and Quasar Toolkit were used. The software's graphical user interface creates windows displaying the temperature map and the coagulation extent in the tissue, determined by the magnetic resonance imaging (MRI) thermometry with the echo planar imaging sequence and a numerical simulation based on the radiation and heat transfer in biological tissues, respectively. The software was evaluated applying the MRI-guided LITT to ex vivo pig liver and simultaneously measuring the temperature through a fiber-optic thermometer as reference. Using the software, the temperature distribution determined by the MRI method was compared with the coagulation extent simulation. An agreement was shown between the MRI temperature map and the simulated coagulation extent. Furthermore, the MRI-based and simulated temperatures agreed with the measured one - a correlation coefficient of 0.9993 and 0.9996 was obtained, respectively. The precision of the MRI temperature amounted to 2.4°C. In conclusion, the software tool developed in the present study can be applied for monitoring and controlling the LITT procedure in ex vivo tissues.
Collapse
Affiliation(s)
- Babak Bazrafshan
- Universitätsklinikum Frankfurt, Institut für Diagnostische und Interventionelle Radiologie (IDIR), Theodor-Stern-Kai 7, Frankfurt am Main 60590, Germany, Phone: +49 69 6301 4793, Fax: +49 69 6301 7258
| | - Ahmad Koujan
- Universitätsklinikum Frankfurt, Institut für Diagnostische und Interventionelle Radiologie (IDIR), Theodor-Stern-Kai 7, Frankfurt am Main 60590, Germany
| | - Frank Hübner
- Universitätsklinikum Frankfurt, Institut für Diagnostische und Interventionelle Radiologie (IDIR), Theodor-Stern-Kai 7, Frankfurt am Main 60590, Germany
| | - Christian Leithäuser
- Fraunhofer-Institut für Techno- und Wirtschaftsmathematik (ITWM), Fraunhofer-Platz 1, Kaiserslautern 67663, Germany
| | - Norbert Siedow
- Fraunhofer-Institut für Techno- und Wirtschaftsmathematik (ITWM), Fraunhofer-Platz 1, Kaiserslautern 67663, Germany
| | - Thomas J Vogl
- Universitätsklinikum Frankfurt, Institut für Diagnostische und Interventionelle Radiologie (IDIR), Theodor-Stern-Kai 7, Frankfurt am Main 60590, Germany
| |
Collapse
|
9
|
Odéen H, Parker DL. Magnetic resonance thermometry and its biological applications - Physical principles and practical considerations. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2019; 110:34-61. [PMID: 30803693 PMCID: PMC6662927 DOI: 10.1016/j.pnmrs.2019.01.003] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Accepted: 01/23/2019] [Indexed: 05/25/2023]
Abstract
Most parameters that influence the magnetic resonance imaging (MRI) signal experience a temperature dependence. The fact that MRI can be used for non-invasive measurements of temperature and temperature change deep inside the human body has been known for over 30 years. Today, MR temperature imaging is widely used to monitor and evaluate thermal therapies such as radio frequency, microwave, laser, and focused ultrasound therapy. In this paper we cover the physical principles underlying the biological applications of MR temperature imaging and discuss practical considerations and remaining challenges. For biological tissue, the MR signal of interest comes mostly from hydrogen protons of water molecules but also from protons in, e.g., adipose tissue and various metabolites. Most of the discussed methods, such as those using the proton resonance frequency (PRF) shift, T1, T2, and diffusion only measure temperature change, but measurements of absolute temperatures are also possible using spectroscopic imaging methods (taking advantage of various metabolite signals as internal references) or various types of contrast agents. Currently, the PRF method is the most used clinically due to good sensitivity, excellent linearity with temperature, and because it is largely independent of tissue type. Because the PRF method does not work in adipose tissues, T1- and T2-based methods have recently gained interest for monitoring temperature change in areas with high fat content such as the breast and abdomen. Absolute temperature measurement methods using spectroscopic imaging and contrast agents often offer too low spatial and temporal resolution for accurate monitoring of ablative thermal procedures, but have shown great promise in monitoring the slower and usually less spatially localized temperature change observed during hyperthermia procedures. Much of the current research effort for ablative procedures is aimed at providing faster measurements, larger field-of-view coverage, simultaneous monitoring in aqueous and adipose tissues, and more motion-insensitive acquisitions for better precision measurements in organs such as the heart, liver, and kidneys. For hyperthermia applications, larger coverage, motion insensitivity, and simultaneous aqueous and adipose monitoring are also important, but great effort is also aimed at solving the problem of long-term field drift which gets interpreted as temperature change when using the PRF method.
Collapse
Affiliation(s)
- Henrik Odéen
- University of Utah, Utah Center for Advanced Imaging Research, Department of Radiology and Imaging Sciences, 729 Arapeen Drive, Salt Lake City, UT 84108-1217, USA.
| | - Dennis L Parker
- University of Utah, Utah Center for Advanced Imaging Research, Department of Radiology and Imaging Sciences, 729 Arapeen Drive, Salt Lake City, UT 84108-1217, USA.
| |
Collapse
|
10
|
Abstract
The unique ability of magnetic resonance imaging to measure temperature noninvasively, in vivo, makes it an attractive tool for monitoring interventional procedures, such as radiofrequency or microwave ablation in real-time. The most frequently used approach for magnetic resonance-based temperature measurement is proton resonance frequency (PRF) thermometry. Although it has many advantages, including tissue-independence and real-time capability, the main drawback is its motion sensitivity. This is likely the reason PRF thermometry in moving organs, such as the liver, is not commonly used in the clinical arena. In recent years, however, several developments suggest that motion-corrected thermometry in the liver is achievable. The present article summarizes the diverse attempts to correct thermometry in the liver. Therefore, the physical principle of PRF is introduced, with additional references for necrosis zone estimation and how to deal with fat phase modulation, and main magnetic field drifts. The primary categories of motion correction are presented, including general methods for motion compensation and library-based approaches, and referenceless thermometry and hybrid methods. Practical validation of the described methods in larger patient groups will be necessary to establish accurate motion-corrected thermometry in the clinical arena, with the goal of complete liver tumor ablation.
Collapse
|
11
|
Karakitsios I, Mihcin S, Melzer A. Reference-less MR thermometry on pre-clinical thiel human cadaver for liver surgery with MRgFUS. MINIM INVASIV THER 2018; 28:15-21. [PMID: 29764258 DOI: 10.1080/13645706.2018.1470985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Abstract
PURPOSE Reference-less MR thermometry can be a promising technique for temperature mapping during liver treatment with Magnetic Resonance-guided Focused Ultrasound (MRgFUS), as it is more robust to breathing motion than Proton Resonance Frequency MR thermometry. However, there is a lack of a pre-clinical model for repeatable testing of reference-less thermometry. The purpose of this work was to verify the explanted Thiel embalmed human liver and whole Thiel embalmed human cadaver for application of a custom made reference-less thermometry algorithm during MRgFUS sonication. MATERIAL AND METHODS Phase maps were generated during sonication as an input to the algorithm. A square Region-of-Interest (ROI) was designed around the heated area. The ROI was interpolated using a two-dimensional polynomial to the surrounding phase map to calculate the background phase. RESULTS Using the phase information from the images, the temperature rise was measured. Validation of the methodology showed accordance of temperatures with actual temperatures. CONCLUSIONS The explanted liver and the whole cadaver constitute a promising and feasible model to study reference-less techniques for thermometry during MRgFUS, before clinical trials.
Collapse
Affiliation(s)
- Ioannis Karakitsios
- a Institute for Medical Science and Technology , University of Dundee , Dundee , Scotland , UK
| | - Senay Mihcin
- a Institute for Medical Science and Technology , University of Dundee , Dundee , Scotland , UK
| | - Andreas Melzer
- a Institute for Medical Science and Technology , University of Dundee , Dundee , Scotland , UK
| |
Collapse
|
12
|
Celicanin Z, Manasseh G, Petrusca L, Scheffler K, Auboiroux V, Crowe LA, Hyacinthe JN, Natsuaki Y, Santini F, Becker CD, Terraz S, Bieri O, Salomir R. Hybrid ultrasound-MR guided HIFU treatment method with 3D motion compensation. Magn Reson Med 2017; 79:2511-2523. [PMID: 28944490 DOI: 10.1002/mrm.26897] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Revised: 08/10/2017] [Accepted: 08/11/2017] [Indexed: 01/16/2023]
Abstract
PURPOSE Treatments using high-intensity focused ultrasound (HIFU) in the abdominal region remain challenging as a result of respiratory organ motion. A novel method is described here to achieve 3D motion-compensated ultrasound (US) MR-guided HIFU therapy using simultaneous ultrasound and MRI. METHODS A truly hybrid US-MR-guided HIFU method was used to plan and control the treatment. Two-dimensional ultrasound was used in real time to enable tracking of the motion in the coronal plane, whereas an MR pencil-beam navigator was used to detect anterior-posterior motion. Prospective motion compensation of proton resonance frequency shift (PRFS) thermometry and HIFU electronic beam steering were achieved. RESULTS The 3D prospective motion-corrected PRFS temperature maps showed reduced intrascan ghosting artifacts, a high signal-to-noise ratio, and low geometric distortion. The k-space data yielded a consistent temperature-dependent PRFS effect, matching the gold standard thermometry within approximately 1°C. The maximum in-plane temperature elevation ex vivo was improved by a factor of 2. Baseline thermometry acquired in volunteers indicated reduction of residual motion, together with an accuracy/precision of near-harmonic referenceless PRFS thermometry on the order of 0.5/1.0°C. CONCLUSIONS Hybrid US-MR-guided HIFU ablation with 3D motion compensation was demonstrated ex vivo together with a stable referenceless PRFS thermometry baseline in healthy volunteer liver acquisitions. Magn Reson Med 79:2511-2523, 2018. © 2017 International Society for Magnetic Resonance in Medicine.
Collapse
Affiliation(s)
- Zarko Celicanin
- Department of Radiology, Division of Radiological Physics, University of Basel Hospital, Basel, Switzerland.,Department of Biomedical Engineering, University of Basel, Basel, Switzerland
| | - Gibran Manasseh
- Image Guided Interventions Laboratory, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Lorena Petrusca
- Hepatobiliary and Pancreatic Interventional Radiology, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Klaus Scheffler
- MRC Department, MPI for Biological Cybernetics, Tübingen, Germany.,Department of Biomedical Magnetic Resonance, University of Tübingen, Tübingen, Germany
| | - Vincent Auboiroux
- Image Guided Interventions Laboratory, Faculty of Medicine, University of Geneva, Geneva, Switzerland.,Clinatec/LETI/CEA, 38054, Grenoble, France
| | - Lindsey A Crowe
- Radiology Department, University Hospitals of Geneva, Geneva, Switzerland
| | - Jean-Noel Hyacinthe
- Image Guided Interventions Laboratory, Faculty of Medicine, University of Geneva, Geneva, Switzerland.,School of Health Sciences, HES-SO, University of Applied Sciences and Arts of Western Switzerland, Geneva, Switzerland
| | | | - Francesco Santini
- Department of Radiology, Division of Radiological Physics, University of Basel Hospital, Basel, Switzerland.,Department of Biomedical Engineering, University of Basel, Basel, Switzerland
| | - Christoph D Becker
- Hepatobiliary and Pancreatic Interventional Radiology, Faculty of Medicine, University of Geneva, Geneva, Switzerland.,Radiology Department, University Hospitals of Geneva, Geneva, Switzerland
| | - Sylvain Terraz
- Image Guided Interventions Laboratory, Faculty of Medicine, University of Geneva, Geneva, Switzerland.,Radiology Department, University Hospitals of Geneva, Geneva, Switzerland
| | - Oliver Bieri
- Department of Radiology, Division of Radiological Physics, University of Basel Hospital, Basel, Switzerland.,Department of Biomedical Engineering, University of Basel, Basel, Switzerland
| | - Rares Salomir
- Image Guided Interventions Laboratory, Faculty of Medicine, University of Geneva, Geneva, Switzerland.,Radiology Department, University Hospitals of Geneva, Geneva, Switzerland
| |
Collapse
|
13
|
Ferrer CJ, Bartels LW, van Stralen M, Denis de Senneville B, Moonen CTW, Bos C. Fluid filling of the digestive tract for improved proton resonance frequency shift-based MR thermometry in the pancreas. J Magn Reson Imaging 2017. [PMID: 28646608 DOI: 10.1002/jmri.25800] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
PURPOSE To demonstrate that fluid filling of the digestive tract improves the performance of respiratory motion-compensated proton resonance frequency shift (PRFS)-based magnetic resonance (MR) thermometry in the pancreas. MATERIALS AND METHODS In seven volunteers (without heating), we evaluated PRFS thermometry in the pancreas with and without filling of the surrounding digestive tract. All data acquisition was performed at 1.5T, then all datasets were analyzed and compared with three different PRFS respiratory motion-compensated thermometry methods: gating, multibaseline, and referenceless. The temperature precision of the different methods was evaluated by assessing temperature standard deviation over time, while a simulation experiment was used to study the accuracy of the methods. RESULTS Without fluid intake, errors in temperature precision in the pancreas up to 10°C were observed for all evaluated methods. After liquid intake, temperature precision improved to median values between 1.8 and 2.9°C. The simulations showed that gating had the lowest accuracy, with errors up to 7°C. Multibaseline and referenceless thermometry performed better, with a median error in the pancreas between -3 and +3°C after fluid intake, for all volunteers. CONCLUSION Preparation of the digestive tract near the pancreas by filling it with fluid improved MR thermometry precision and accuracy for all common respiratory motion-compensated methods evaluated. These improvements are attributed to reducing field inhomogeneity in the pancreas. LEVEL OF EVIDENCE 2 Technical Efficacy: Stage 1 J. Magn. Reson. Imaging 2018;47:692-701.
Collapse
Affiliation(s)
- Cyril J Ferrer
- Imaging Division, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Lambertus W Bartels
- Imaging Division, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Marijn van Stralen
- Imaging Division, University Medical Center Utrecht, Utrecht, the Netherlands
| | | | - Chrit T W Moonen
- Imaging Division, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Clemens Bos
- Imaging Division, University Medical Center Utrecht, Utrecht, the Netherlands
| |
Collapse
|
14
|
Kardoulaki EM, Syms RRA, Young IR, Choonee K, Rea M, Gedroyc WMW. Optothermal profile of an ablation catheter with integrated microcoil for MR-thermometry during Nd:YAG laser interstitial thermal therapies of the liver—an in-vitro experimental and theoretical study. Med Phys 2016; 42:1389-97. [PMID: 25735293 DOI: 10.1118/1.4908225] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
PURPOSE Flexible microcoils integrated with ablation catheters can improve the temperature accuracy during local MR-thermometry in Nd:YAG laser interstitial thermal therapies. Here, the authors are concerned with obtaining a preliminary confirmation of the clinical utility of the modified catheter. They investigate whether the thin-film substrate and copper tracks of the printed coil inductor affect the symmetry of the thermal profile, and hence of the lesion produced. METHODS Transmission spectroscopy in the near infrared was performed to test for the attenuation at 1064 nm through the 25 μm thick Kapton substrate of the microcoil. The radial transmission profile of an infrared high-power, light emitting diode with >80% normalized power at 1064 nm was measured through a cross section of the modified applicator to assess the impact of the copper inductor on the optical profile. The measurements were performed in air, as well as with the applicator surrounded by two types of scattering media; crystals of NaCl and a layer of liver-mimicking gel phantom. A numerical model based on Huygens-Fresnel principle and finite element simulations, using a commercially available package (COMSOL Multiphysics), were employed to compare with the optical measurements. The impact of the modified optical profile on the thermal symmetry was assessed by examining the high resolution microcoil derived thermal maps from a Nd:YAG laser ablation performed on a liver-mimicking gel phantom. RESULTS Less than 30% attenuation through the Kapton film was verified. Shadowing behind the copper tracks was observed in air and the measured radial irradiation correlated well with the diffraction pattern calculated numerically using the Huygens-Fresnel principle. Both optical experiments and simulations, demonstrate that shadowing is mitigated by the scattering properties of a turbid medium. The microcoil derived thermal maps at the end of a Nd:YAG laser ablation performed on a gel phantom in a 3 T scanner confirm that the modified irradiation pattern does not disrupt the thermal symmetry, even though, unlike tissue, the gel is minimally scattering. CONCLUSIONS The results from this initial assessment indicate that microcoils can be safely integrated with ablation catheters and ensure that the complete necrosis of the liver tumor can still be achieved.
Collapse
Affiliation(s)
- Evdokia M Kardoulaki
- Department of Electrical and Electronic Engineering, Imperial College London, London SW7 2AZ, United Kingdom
| | - Richard R A Syms
- Department of Electrical and Electronic Engineering, Imperial College London, London SW7 2AZ, United Kingdom
| | - Ian R Young
- Department of Electrical and Electronic Engineering, Imperial College London, London SW7 2AZ, United Kingdom
| | - Kaushal Choonee
- Department of Electrical and Electronic Engineering, Imperial College London, London SW7 2AZ, United Kingdom
| | - Marc Rea
- Department of Radiology, Imperial College Healthcare NHS Trust, Paddington, London W2 1NY, United Kingdom
| | - Wladyslaw M W Gedroyc
- Department of Radiology, Imperial College Healthcare NHS Trust, Paddington, London W2 1NY, United Kingdom
| |
Collapse
|
15
|
Winter L, Oberacker E, Paul K, Ji Y, Oezerdem C, Ghadjar P, Thieme A, Budach V, Wust P, Niendorf T. Magnetic resonance thermometry: Methodology, pitfalls and practical solutions. Int J Hyperthermia 2015; 32:63-75. [DOI: 10.3109/02656736.2015.1108462] [Citation(s) in RCA: 132] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
|
16
|
Davis RM, Viglianti BL, Yarmolenko P, Park JY, Stauffer P, Needham D, Dewhirst MW. A method to convert MRI images of temperature change into images of absolute temperature in solid tumours. Int J Hyperthermia 2014; 29:569-81. [PMID: 23957326 DOI: 10.3109/02656736.2013.790091] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
PURPOSE During hyperthermia (HT), the therapeutic response of tumours varies substantially within the target temperature range (39-43 °C). Current thermometry methods are either invasive or measure only temperature change, which limits the ability to study tissue responses to HT. This study combines manganese-containing low temperature sensitive liposomes (Mn-LTSL) with proton resonance frequency shift (PRFS) thermometry to measure absolute temperature in tumours with high spatial and temporal resolution using MRI. METHODS Liposomes were loaded with 300 mM MnSO(4). The phase transition temperature (T(m)) of Mn-LTSL samples was measured by differential scanning calorimetry (DSC). The release of manganese from Mn-LTSL in saline was characterised with inductively coupled plasma atomic emission spectroscopy. A 2T GE small animal scanner was used to acquire dynamic T1-weighted images and temperature change images of Mn-LTSL in saline phantoms and fibrosarcoma-bearing Fisher-344 rats receiving hyperthermia after Mn-LTSL injection. RESULTS The T(m) of Mn-LTSL in rat blood was 42.9 ± 0.2 °C (DSC). For Mn-LTSL samples (0.06 mM-0.5 mM Mn(2+) in saline) heated monotonically from 30 °C to 50 °C, a peak in the rate of MRI signal enhancement occurred at 43.1° ± 0.3 °C. The same peak in signal enhancement rate was observed during heating of fibrosarcoma tumours (N = 3) after injection of Mn-LTSL, and the peak was used to convert temperature change images into absolute temperature. Accuracies of calibrated temperature measurements were in the range 0.9-1.8 °C. CONCLUSION The release of Mn(2+) from Mn-LTSL affects the rate of MR signal enhancement which enables conversion of MRI-based temperature change images to absolute temperature.
Collapse
Affiliation(s)
- Ryan M Davis
- Graduate Program of Biomedical Engineering, Duke University, Durham, NC, USA
| | | | | | | | | | | | | |
Collapse
|
17
|
Wichmann JL, Beeres M, Borchard BM, Naguib NNN, Bodelle B, Lee C, Zangos S, Vogl TJ, Mack MG, Eichler K. Evaluation of MRI T1-based treatment monitoring during laser-induced thermotherapy of liver metastases for necrotic size prediction. Int J Hyperthermia 2013; 30:19-26. [DOI: 10.3109/02656736.2013.854931] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
|
18
|
Saccomandi P, Schena E, Silvestri S. Techniques for temperature monitoring during laser-induced thermotherapy: an overview. Int J Hyperthermia 2013; 29:609-19. [PMID: 24032415 DOI: 10.3109/02656736.2013.832411] [Citation(s) in RCA: 164] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Laser-induced thermotherapy (LITT) is a hyperthermic procedure recently employed to treat cancer in several organs. The amount of coagulated tissue depends on the temperature distribution around the applicator, which plays a crucial role for an optimal outcome: the removal of the whole neoplastic tissue, whilst preventing damage to the surrounding healthy tissue. Although feedback concerning tissue temperature could be useful to drive the physician in the adjustment of laser settings and treatment duration, LITT is usually performed without real-time monitoring of tissue temperature. During recent decades, many thermometric techniques have been developed to be used during thermal therapies. This paper provides an overview of techniques and sensors employed for temperature measurement during tissue hyperthermia, focusing on LITT, and an investigation of their performances in this application. The paper focuses on the most promising and widespread temperature monitoring techniques, splitting them into two groups: the former includes invasive techniques based on the use of thermocouples and fibre-optic sensors; the second analyses non-invasive methods, i.e. magnetic resonance imaging-, computerised tomography- and ultrasound-based thermometry. Background information on measuring principle, medical applications, advantages and weaknesses of each method are provided and discussed.
Collapse
Affiliation(s)
- Paola Saccomandi
- Unit of Measurements and Biomedical Instrumentation, Centre for Integrated Research, University Campus Bio-Medico , Rome , Italy
| | | | | |
Collapse
|
19
|
Petrusca L, Ngo J, Brasset L, Blanc E, Murillo A, Auboiroux V, Cotton F, Chapelon JY, Salomir R. Experimental investigation of MRgHIFU sonication with interleaved electronic and mechanical displacement of the focal point for transrectal prostate application. Phys Med Biol 2012; 57:4805-25. [DOI: 10.1088/0031-9155/57/15/4805] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|