1
|
Rice CPJ, Chelakkot VS, Conohan NT, Hirasawa K. Cancer stem cell populations are resistant to 5-aminolevulinic acid-photodynamic therapy (5-ALA-PDT). Sci Rep 2025; 15:4367. [PMID: 39910203 PMCID: PMC11799205 DOI: 10.1038/s41598-025-88173-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Accepted: 01/24/2025] [Indexed: 02/07/2025] Open
Abstract
Photodynamic therapy (PDT) is a minimally invasive treatment approved for many types of cancers. PDT involves the administration of photoactive substances called photosensitizers (PS) that selectively accumulate in cancer cells and are subsequently excited/activated by irradiation with light at wavelengths of optimal absorbance. Activated PS leads to the generation of singlet oxygen and other reactive oxygen species (ROS), promoting cancer cell death. 5-aminolevulinic acid (5-ALA) is a naturally occurring PS precursor, which is metabolically converted to the PS, protoporphyrin IX (PPIX). Although 5-ALA-PDT is effective at killing cancer cells, in prior studies conducted by our group we normally observed in in vitro experiments that approximately 5-10% of cells survive 5-ALA-PDT, which served as an impetus for further investigation. Identifying the mechanisms of resistance to 5-ALA-PDT-mediated cell death is important to prevent tumor recurrence following 5-ALA-PDT. Previously, we reported that oncogenic activation of Ras/MEK promotes PPIX efflux and reduces cellular sensitivity to 5-ALA-PDT through increased expression of ABCB1 transporter. As cancer stem cells (CSCs) are known to drive resistance to other cancer treatments and have high efflux of chemotherapeutic agents via ABC-family transporters, we hypothesize that CSCs underlie 5-ALA-PDT resistance. In this study, we determined (1) if CSCs are resistant to 5-ALA-PDT and (2) if CSCs play roles in establishing resistant populations of 5-ALA-PDT. When we compared CSC populations before and after 5-ALA-PDT, we found that CSCs were less susceptible to 5-ALA-PDT. Moreover, we found that the CSC population was enriched in 5-ALA-PDT-resistant cell lines compared to the parental cell line. Our results indicate that CSCs are not sensitive to 5-ALA-PDT, which may contribute to establishment of 5-ALA-PDT resistance.
Collapse
Affiliation(s)
- Chantel P J Rice
- Division of BioMedical Sciences, Memorial University of Newfoundland, St. John's, Newfoundland, Canada
| | - Vipin Shankar Chelakkot
- Division of BioMedical Sciences, Memorial University of Newfoundland, St. John's, Newfoundland, Canada
| | - Noah T Conohan
- Division of BioMedical Sciences, Memorial University of Newfoundland, St. John's, Newfoundland, Canada
| | - Kensuke Hirasawa
- Division of BioMedical Sciences, Memorial University of Newfoundland, St. John's, Newfoundland, Canada.
| |
Collapse
|
2
|
Abbas A, Padmanabhan R, Eng C. Metabolic stress regulates genome-wide transcription in a PTEN-dependent manner. Hum Mol Genet 2021; 29:2736-2745. [PMID: 32744308 DOI: 10.1093/hmg/ddaa168] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 07/19/2020] [Accepted: 07/27/2020] [Indexed: 12/31/2022] Open
Abstract
PTEN is implicated in a wide variety of pathophysiological conditions and traditionally studied in the context of the PIK3-AKT-mTOR axis. Recent studies from our group and others have reported a novel role of PTEN in the regulation of transcription at the genome-wide scale. This emerging role of PTEN on global transcriptional regulation is providing a better understanding of various diseases, including cancer. Because cancer progression is an energy-demanding process and PTEN is known to regulate metabolic processes, we sought to understand the role of PTEN in transcriptional regulation under metabolic stress, a condition often developing in the tumor microenvironment. In the present study, we demonstrate that PTEN modulates genome-wide RNA Polymerase II occupancy in cells undergoing glucose deprivation. The glucose-deprived PTEN null cells were found to continue global gene transcription, which may activate a survival mode. However, cells with constitutive PTEN expression slow transcription, an evolutionary mechanism that may save cellular energy and activate programmed cell death pathways, in the absence of glucose. Interestingly, alternative exon usage by PTEN null cells is increased under metabolic stress in contrast to PTEN-expressing cells. Overall, our study demonstrates distinct mechanisms involved in PTEN-dependent genome-wide transcriptional control under metabolic stress. Our findings provide a new insight in understanding tumor pathology and how PTEN loss of function, whether by genetic or non-genetic mechanisms, can contribute to a favorable transcriptional program employed by tumor cells to escape apoptosis, hence developing more aggressive and metastatic phenotypes.
Collapse
Affiliation(s)
- Ata Abbas
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA.,Developmental Therapeutics Program, Case Comprehensive Cancer Center, Case Western Reserve University School of Medicine, Cleveland, OH 44116, USA
| | - Roshan Padmanabhan
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Charis Eng
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA.,Taussig Cancer Institute, Cleveland Clinic, Cleveland, OH 44195, USA.,Department of Genetics and Genome Sciences.,Germline High Risk Focus Group, Case Comprehensive Cancer Center, Case Western Reserve University School of Medicine, Cleveland, OH 44116, USA
| |
Collapse
|
3
|
Deep brain stimulation as a possible treatment of hyperthermia in patients with serotonin syndrome. Med Hypotheses 2020; 139:109704. [DOI: 10.1016/j.mehy.2020.109704] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 03/31/2020] [Indexed: 12/14/2022]
|
4
|
Jones LB, Kumar S, Curry AJ, Price JS, Krendelchtchikov A, Crenshaw BJ, Bell CR, Williams SD, Tolliver TA, Saldanha SN, Sims B, Matthews QL. Alcohol Exposure Impacts the Composition of HeLa-Derived Extracellular Vesicles. Biomedicines 2019; 7:biomedicines7040078. [PMID: 31574936 PMCID: PMC6966524 DOI: 10.3390/biomedicines7040078] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 09/11/2019] [Accepted: 09/27/2019] [Indexed: 12/11/2022] Open
Abstract
Extracellular vesicles are nanosized vesicles that are under intense investigation for their role in intercellular communication. Extracellular vesicles have begun to be examined for their role in disease protection and their role as disease biomarkers and/or vaccine agents. The goal of this study was to investigate the effects of alcohol exposure on the biogenesis and composition of extracellular vesicles derived from the cervical cancer line, HeLa. The HeLa cells were cultured in exosome-free media and were either mock-treated (control) or treated with 50 mM or 100 mM of alcohol for 24 h and 48 h. Our results demonstrated that alcohol significantly impacts HeLa cell viability and exosome biogenesis/composition. Importantly, our studies demonstrate the critical role of alcohol on HeLa cells, as well as HeLa-derived extracellular vesicle biogenesis and composition. Specifically, these results indicate that alcohol alters extracellular vesicles’ packaging of heat shock proteins and apoptotic proteins. Extracellular vesicles serve as communicators for HeLa cells, as well as biomarkers for the initiation and progression of disease.
Collapse
Affiliation(s)
- Leandra B Jones
- Microbiology Program, Department of Biological Sciences, College of Science, Technology, Engineering and Mathematics, Alabama State University, Montgomery, AL 36104, USA.
| | - Sanjay Kumar
- Departments of Pediatrics and Cell, Developmental and Integrative Biology, Division of Neonatology, University of Alabama at Birmingham, Birmingham, AL 35294, USA.
| | - Aliyah J Curry
- Department of Biological Sciences, College of Science, Technology, Engineering and Mathematics, Alabama State University, Montgomery, AL 36104, USA.
- Center for Nanobiotechnology Research (CNBR), Alabama State University, Montgomery, AL 36104, USA.
| | - Jayde S Price
- Department of Biological Sciences, College of Science, Technology, Engineering and Mathematics, Alabama State University, Montgomery, AL 36104, USA.
- Center for Nanobiotechnology Research (CNBR), Alabama State University, Montgomery, AL 36104, USA.
| | - Alexandre Krendelchtchikov
- Departments of Pediatrics and Cell, Developmental and Integrative Biology, Division of Neonatology, University of Alabama at Birmingham, Birmingham, AL 35294, USA.
| | - Brennetta J Crenshaw
- Microbiology Program, Department of Biological Sciences, College of Science, Technology, Engineering and Mathematics, Alabama State University, Montgomery, AL 36104, USA.
| | - Courtnee' R Bell
- Microbiology Program, Department of Biological Sciences, College of Science, Technology, Engineering and Mathematics, Alabama State University, Montgomery, AL 36104, USA.
| | - Sparkle D Williams
- Departments of Pediatrics and Cell, Developmental and Integrative Biology, Division of Neonatology, University of Alabama at Birmingham, Birmingham, AL 35294, USA.
| | - Tambre A Tolliver
- Department of Biological Sciences, College of Science, Technology, Engineering and Mathematics, Alabama State University, Montgomery, AL 36104, USA.
| | - Sabita N Saldanha
- Department of Biological Sciences, College of Science, Technology, Engineering and Mathematics, Alabama State University, Montgomery, AL 36104, USA.
| | - Brian Sims
- Departments of Pediatrics and Cell, Developmental and Integrative Biology, Division of Neonatology, University of Alabama at Birmingham, Birmingham, AL 35294, USA.
| | - Qiana L Matthews
- Microbiology Program, Department of Biological Sciences, College of Science, Technology, Engineering and Mathematics, Alabama State University, Montgomery, AL 36104, USA.
- Department of Biological Sciences, College of Science, Technology, Engineering and Mathematics, Alabama State University, Montgomery, AL 36104, USA.
| |
Collapse
|
5
|
Lettini G, Lepore S, Crispo F, Sisinni L, Esposito F, Landriscina M. Heat shock proteins in cancer stem cell maintenance: A potential therapeutic target? Histol Histopathol 2019; 35:25-37. [PMID: 31322279 DOI: 10.14670/hh-18-153] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Cancer stem cells (CSCs) are a subpopulation of tumor cells with unlimited self-renewal capability, multilineage differentiation potential and long-term tumor repopulation capacity. CSCs reside in anatomically distinct regions within the tumor microenvironment, called niches, and this favors the maintenance of CSC properties and preserves their phenotypic plasticity. Indeed, CSCs are characterized by a flexible state based on their capacity to interconvert between a differentiated and a stem-like phenotype, and this depends on the activation of adaptive mechanisms in response to different environmental conditions. Heat Shock Proteins (HSPs) are molecular chaperones, upregulated upon cell exposure to several stress conditions and are responsible for normal maturation, localization and activity of intra and extracellular proteins. Noteworthy, HSPs play a central role in several cellular processes involved in tumor initiation and progression (i.e. cell viability, resistance to apoptosis, stress conditions and drug therapy, EMT, bioenergetics, invasiveness, metastasis formation) and, thus, are widely considered potential molecular targets. Furthermore, much evidence suggests a key regulatory function for HSPs in CSC maintenance and their upregulation has been proposed as a mechanism used by CSCs to adapt to unfavorable environmental conditions, such as nutrient deprivation, hypoxia, inflammation. This review discusses the relevance of HSPs in CSC biology, highlighting their role as novel potential molecular targets to develop anticancer strategies aimed at CSC targeting.
Collapse
Affiliation(s)
- Giacomo Lettini
- Laboratory of Pre-Clinical and Translational Research, IRCCS, Referral Cancer Center of Basilicata, Rionero in Vulture, PZ, Italy
| | - Silvia Lepore
- Laboratory of Pre-Clinical and Translational Research, IRCCS, Referral Cancer Center of Basilicata, Rionero in Vulture, PZ, Italy
| | - Fabiana Crispo
- Laboratory of Pre-Clinical and Translational Research, IRCCS, Referral Cancer Center of Basilicata, Rionero in Vulture, PZ, Italy
| | - Lorenza Sisinni
- Laboratory of Pre-Clinical and Translational Research, IRCCS, Referral Cancer Center of Basilicata, Rionero in Vulture, PZ, Italy
| | - Franca Esposito
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy.
| | - Matteo Landriscina
- Laboratory of Pre-Clinical and Translational Research, IRCCS, Referral Cancer Center of Basilicata, Rionero in Vulture, PZ, Italy.,Medical Oncology Unit, Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy.
| |
Collapse
|
6
|
Yasuda K, Hirohashi Y, Mariya T, Murai A, Tabuchi Y, Kuroda T, Kusumoto H, Takaya A, Yamamoto E, Kubo T, Nakatsugawa M, Kanaseki T, Tsukahara T, Tamura Y, Hirano H, Hasegawa T, Saito T, Sato N, Torigoe T. Phosphorylation of HSF1 at serine 326 residue is related to the maintenance of gynecologic cancer stem cells through expression of HSP27. Oncotarget 2018; 8:31540-31553. [PMID: 28415561 PMCID: PMC5458228 DOI: 10.18632/oncotarget.16361] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Accepted: 03/10/2017] [Indexed: 12/20/2022] Open
Abstract
Cancer stem-like cells (CSCs)/ cancer-initiating cells (CICs) are defined by their higher tumor-initiating ability, self-renewal capacity and differentiation capacity. CSCs/CICs are resistant to several therapies including chemotherapy and radiotherapy. CSCs/CICs thus are thought to be responsible for recurrence and distant metastasis, and elucidation of the molecular mechanisms of CSCs/CICs are essential to design CSC/CIC-targeting therapy. In this study, we analyzed the molecular aspects of gynecological CSCs/CICs. Gynecological CSCs/CICs were isolated as ALDH1high cell by Aldefluor assay. The gene expression profile of CSCs/CICs revealed that several genes related to stress responses are preferentially expressed in gynecological CSCs/CICs. Among the stress response genes, a small heat shock protein HSP27 has a role in the maintenance of gynecological CSCs/CICs. The upstream transcription factor of HSP27, heat shock factior-1 (HSF1) was activated by phosphorylation at serine 326 residue (pSer326) in CSCs/CICs, and phosphorylation at serine 326 residue is essential for induction of HSP27. Immunohistochemical staining using clinical ovarian cancer samples revealed that higher expressions of HSF1 pSer326 was related to poorer prognosis. These findings indicate that activation of HSF1 at Ser326 residue and transcription of HSP27 is related to the maintenance of gynecological CSCs/CICs.
Collapse
Affiliation(s)
- Kazuyo Yasuda
- Department of Pathology, Sapporo Medical University School of Medicine, Chuo-Ku, Sapporo 060-8556, Japan
| | - Yoshihiko Hirohashi
- Department of Pathology, Sapporo Medical University School of Medicine, Chuo-Ku, Sapporo 060-8556, Japan
| | - Tasuku Mariya
- Department of Pathology, Sapporo Medical University School of Medicine, Chuo-Ku, Sapporo 060-8556, Japan.,Department of Obstetrics and Gynecology, Sapporo Medical University School of Medicine, Chuo-Ku, Sapporo 060-8556, Japan
| | - Aiko Murai
- Department of Pathology, Sapporo Medical University School of Medicine, Chuo-Ku, Sapporo 060-8556, Japan
| | - Yuta Tabuchi
- Department of Pathology, Sapporo Medical University School of Medicine, Chuo-Ku, Sapporo 060-8556, Japan.,Department of Obstetrics and Gynecology, Sapporo Medical University School of Medicine, Chuo-Ku, Sapporo 060-8556, Japan
| | - Takafumi Kuroda
- Department of Obstetrics and Gynecology, Sapporo Medical University School of Medicine, Chuo-Ku, Sapporo 060-8556, Japan
| | - Hiroki Kusumoto
- Department of Pathology, Sapporo Medical University School of Medicine, Chuo-Ku, Sapporo 060-8556, Japan
| | - Akari Takaya
- Department of Pathology, Sapporo Medical University School of Medicine, Chuo-Ku, Sapporo 060-8556, Japan
| | - Eri Yamamoto
- Department of Pathology, Sapporo Medical University School of Medicine, Chuo-Ku, Sapporo 060-8556, Japan
| | - Terufumi Kubo
- Department of Pathology, Sapporo Medical University School of Medicine, Chuo-Ku, Sapporo 060-8556, Japan
| | - Munehide Nakatsugawa
- Department of Pathology, Sapporo Medical University School of Medicine, Chuo-Ku, Sapporo 060-8556, Japan
| | - Takayuki Kanaseki
- Department of Pathology, Sapporo Medical University School of Medicine, Chuo-Ku, Sapporo 060-8556, Japan
| | - Tomohide Tsukahara
- Department of Pathology, Sapporo Medical University School of Medicine, Chuo-Ku, Sapporo 060-8556, Japan
| | - Yasuaki Tamura
- Department of Pathology, Sapporo Medical University School of Medicine, Chuo-Ku, Sapporo 060-8556, Japan
| | - Hiroshi Hirano
- Department of Surgical Pathology, Sapporo Medical University School of Medicine, Chuo-Ku, Sapporo 060-8556, Japan
| | - Tadashi Hasegawa
- Department of Surgical Pathology, Sapporo Medical University School of Medicine, Chuo-Ku, Sapporo 060-8556, Japan
| | - Tsuyoshi Saito
- Department of Obstetrics and Gynecology, Sapporo Medical University School of Medicine, Chuo-Ku, Sapporo 060-8556, Japan
| | - Noriyuki Sato
- Department of Pathology, Sapporo Medical University School of Medicine, Chuo-Ku, Sapporo 060-8556, Japan
| | - Toshihiko Torigoe
- Department of Pathology, Sapporo Medical University School of Medicine, Chuo-Ku, Sapporo 060-8556, Japan
| |
Collapse
|
7
|
Kusumoto H, Hirohashi Y, Nishizawa S, Yamashita M, Yasuda K, Murai A, Takaya A, Mori T, Kubo T, Nakatsugawa M, Kanaseki T, Tsukahara T, Kondo T, Sato N, Hara I, Torigoe T. Cellular stress induces cancer stem-like cells through expression of DNAJB8 by activation of heat shock factor 1. Cancer Sci 2018; 109:741-750. [PMID: 29316077 PMCID: PMC5834799 DOI: 10.1111/cas.13501] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Revised: 12/22/2017] [Accepted: 12/30/2017] [Indexed: 12/11/2022] Open
Abstract
In a previous study, we found that DNAJB8, a heat shock protein (HSP) 40 family member is expressed in kidney cancer stem‐like cells (CSC)/cancer‐initiating cells (CIC) and that it has a role in the maintenance of kidney CSC/CIC. Heat shock factor (HSF) 1 is a key transcription factor for responses to stress including heat shock, and it induces HSP family expression through activation by phosphorylation. In the present study, we therefore examined whether heat shock (HS) induces CSC/CIC. We treated the human kidney cancer cell line ACHN with HS, and found that HS increased side population (SP) cells. Western blot analysis and qRT‐PCR showed that HS increased the expression of DNAJB8 and SOX2. Gene knockdown experiments using siRNAs showed that the increase in SOX2 expression and SP cell ratio depends on DNAJB8 and that the increase in DNAJB8 and SOX2 depend on HSF1. Furthermore, treatment with a mammalian target of rapamycin (mTOR) inhibitor, temsirolimus, decreased the expression of DNAJB8 and SOX2 and the ratio of SP cells. Taken together, the results indicate that heat shock induces DNAJB8 by activation of HSF1 and induces cancer stem‐like cells.
Collapse
Affiliation(s)
- Hiroki Kusumoto
- Department of Pathology, Sapporo Medical University School of Medicine, Sapporo, Japan.,Department of Urology, Wakayama Medical University, Wakayama, Japan
| | - Yoshihiko Hirohashi
- Department of Pathology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Satoshi Nishizawa
- Department of Pathology, Sapporo Medical University School of Medicine, Sapporo, Japan.,Department of Urology, Wakayama Medical University, Wakayama, Japan
| | - Masamichi Yamashita
- Department of Pathology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Kazuyo Yasuda
- Department of Pathology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Aiko Murai
- Department of Pathology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Akari Takaya
- Department of Pathology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Takashi Mori
- Department of Pathology, Sapporo Medical University School of Medicine, Sapporo, Japan.,Department of Urology, Wakayama Medical University, Wakayama, Japan
| | - Terufumi Kubo
- Department of Pathology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Munehide Nakatsugawa
- Department of Pathology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Takayuki Kanaseki
- Department of Pathology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Tomohide Tsukahara
- Department of Pathology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Toru Kondo
- Division of Stem Cell Biology, Institute for Genetic Medicine, Hokkaido University, Sapporo, Japan
| | - Noriyuki Sato
- Department of Pathology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Isao Hara
- Department of Urology, Wakayama Medical University, Wakayama, Japan
| | - Toshihiko Torigoe
- Department of Pathology, Sapporo Medical University School of Medicine, Sapporo, Japan
| |
Collapse
|
8
|
van der Heijden AG, Dewhirst MW. Effects of hyperthermia in neutralising mechanisms of drug resistance in non-muscle-invasive bladder cancer. Int J Hyperthermia 2016; 32:434-45. [DOI: 10.3109/02656736.2016.1155761] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
9
|
MAPK13 is preferentially expressed in gynecological cancer stem cells and has a role in the tumor-initiation. Biochem Biophys Res Commun 2016; 472:643-7. [PMID: 26969274 DOI: 10.1016/j.bbrc.2016.03.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Accepted: 03/04/2016] [Indexed: 11/21/2022]
Abstract
Cancer stem-like cells (CSCs)/cancer-initiating cells (CICs) are defined as small subpopulation of cancer cells that are endowed with higher tumor-initiating ability. CSCs/CICs are resistant to standard cancer therapies including chemotherapy and radiotherapy, and they are thus thought to be responsible for cancer recurrence and metastasis. Therefore, elucidation of molecular mechanisms of CSCs/CICs is essential to cure cancer. In this study, we analyzed the gene expression profiles of gynecological CSCs/CICs isolated as aldehyde dehydrogenase high (ALDH(high)) cells, and found that MAPK13, PTTG1IP, CAPN1 and UBQLN2 were preferentially expressed in CSCs/CICs. MAPK13 is expressed in uterine, ovary, stomach, colon, liver and kidney cancer tissues at higher levels compared with adjacent normal tissues. MAPK13 gene knockdown using siRNA reduced the ALDH(high) population and abrogated the tumor-initiating ability. These results indicate that MAPK13 is expressed in gynecological CSCs/CICs and has roles in the maintenance of CSCs/CICs and tumor-initiating ability, and MAPK13 might be a novel molecular target for treatment-resistant CSCs/CICs.
Collapse
|
10
|
Combination of 5-fluorouracil and 2-morphilino-8-phenyl-4H-chromen-4-one may inhibit liver cancer stem cell activity. Tumour Biol 2016; 37:10943-58. [PMID: 26886287 DOI: 10.1007/s13277-016-4915-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Accepted: 01/25/2016] [Indexed: 01/27/2023] Open
Abstract
This work aims to evaluate the impact of 2-morpholino-8-phenyl-4H-chromen-4-one (LY294002) combined 5-fluorouracil (5-FU) for the activity of CD90+ liver cancer cells derived from the human liver cancer cell line MHCC97H. MHCC97H sphere-forming cells (MSFCs) were amplified in serum-free medium and CD90+ cells were isolated from bulk MSFCs using flow cytometry. The phenotype of these CD90+ cells which show liver cancer stem cells (LCSCs) behavior was validated in vitro and in a xenograft model in nude mice. MSFCs, CD90+ liver cancer cells (CD90+ LCCs), and parental MHCC97H cells were treated with no drug, LY294002 alone, 5-FU alone, or both drugs together and then compared in terms of stem cell-related gene expression, proliferation, and invasion. Stem cell phenotype increased with increasing proportion of CD90+ cells, in ascending order: parental MHCC97H cells, MSFCs, and CD90+ liver cancer cells. LY294002 reduced the expression of CD90, Nanog, SALL4, and SHP2 in a concentration-dependent manner in CD90+ LCCs and MSFCs, but not in parental cells. LY294002 blocked AKT phosphorylation via the PI3K/AKT signaling pathway and inhibited CD90+ LCCs proliferation and tumorigenicity in vitro and in vivo. CD90+ liver cancer cells can express liver cancer stem cell phenotype. LY294002 inhibits the proliferation and invasion of MHCC97H-derived CD90+ LCCs and sensitized CD90+ LCCs-derived tumors to 5-FU in the current study which may provide insight into the association between the LY294002 combined 5-FU and liver cancer stem cell (LCSCs).
Collapse
|
11
|
Calderwood SK, Gong J. Heat Shock Proteins Promote Cancer: It's a Protection Racket. Trends Biochem Sci 2016; 41:311-323. [PMID: 26874923 DOI: 10.1016/j.tibs.2016.01.003] [Citation(s) in RCA: 275] [Impact Index Per Article: 30.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Revised: 01/06/2016] [Accepted: 01/19/2016] [Indexed: 12/20/2022]
Abstract
Heat shock proteins (HSP) are expressed at high levels in cancer and form a fostering environment that is essential for tumor development. Here, we review the recent data in this area, concentrating mainly on Hsp27, Hsp70, and Hsp90. The overriding role of HSPs in cancer is to stabilize the active functions of overexpressed and mutated cancer genes. Thus, elevated HSPs are required for many of the traits that underlie the morbidity of cancer, including increased growth, survival, and formation of secondary cancers. In addition, HSPs participate in the evolution of cancer treatment resistance. HSPs are also released from cancer cells and influence malignant properties by receptor-mediated signaling. Current data strongly support efforts to target HSPs in cancer treatment.
Collapse
Affiliation(s)
- Stuart K Calderwood
- Department of Radiation Oncology, Harvard Medical School at Beth Israel Deaconess Medical Center. CLS610, 300 Brookline Avenue, Boston, MA 02215, USA.
| | - Jianlin Gong
- Department of Medicine, Boston University, Boston, MA 02118, USA
| |
Collapse
|
12
|
Dewhirst MW, Lee CT, Ashcraft KA. The future of biology in driving the field of hyperthermia. Int J Hyperthermia 2016; 32:4-13. [DOI: 10.3109/02656736.2015.1091093] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
|
13
|
Wang BK, Yu XF, Wang JH, Li ZB, Li PH, Wang H, Song L, Chu PK, Li C. Gold-nanorods-siRNA nanoplex for improved photothermal therapy by gene silencing. Biomaterials 2015; 78:27-39. [PMID: 26646625 DOI: 10.1016/j.biomaterials.2015.11.025] [Citation(s) in RCA: 150] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2015] [Revised: 10/26/2015] [Accepted: 11/12/2015] [Indexed: 11/28/2022]
Abstract
Nanomaterials-mediated photothermal therapy (PTT) often suffers from the fundamental cellular defense mechanism of heat shock response which leads to therapeutic resistance of cancer cells and reduces the therapeutic efficacy. Herein, a gold nanorods (GNRs)-siRNA platform with gene silencing capability is produced to improve the PTT efficiency. After surface modification, the GNRs show the ability to deliver siRNA oligos targeting BAG3 which is an efficient gene to block the heat-shock response. The synthesized GNRs-siRNA nanoplex exhibits excellent ability in the delivery of siRNA into cancer cells with high silencing efficiency which is even better than that of commercial Lipofectamine 2000. The in vitro and in vivo studies demonstrate the ability of the GNRs-siRNA nanoplex to sensitize the cancer cells to PTT under moderate laser irradiation by down-regulating the increased BAG3 expression and enhancing apoptosis. The GNRs-siRNA mediated PTT has large potential in clinical cancer therapy due to the elimination of therapeutic resistance and enhanced photothermal therapeutic efficacy by means of gene silencing. It also suggests an efficient platform for gene delivery and controllable gene therapy.
Collapse
Affiliation(s)
- Bei-Ke Wang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology, Hubei-MOST & Key, Laboratory of Oral Biomedicine of Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, 430079, PR China
| | - Xue-Feng Yu
- Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, PR China.
| | - Jia-Hong Wang
- School of Physics and Technology, Wuhan University, Wuhan, 430072, PR China
| | - Zhi-Bin Li
- Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, PR China
| | - Peng-Hui Li
- Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, PR China; Department of Physics and Materials Science, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China
| | - Huaiyu Wang
- Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, PR China
| | - Li Song
- Department of Stomatology, The Second Affiliated Hospital to Nanchang University, Nanchang, 330006, PR China
| | - Paul K Chu
- Department of Physics and Materials Science, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China
| | - Chengzhang Li
- The State Key Laboratory Breeding Base of Basic Science of Stomatology, Hubei-MOST & Key, Laboratory of Oral Biomedicine of Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, 430079, PR China.
| |
Collapse
|
14
|
Aravindan S, Ramraj SK, Somasundaram ST, Herman TS, Aravindan N. Polyphenols from marine brown algae target radiotherapy-coordinated EMT and stemness-maintenance in residual pancreatic cancer. Stem Cell Res Ther 2015; 6:182. [PMID: 26395574 PMCID: PMC4578749 DOI: 10.1186/s13287-015-0173-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Revised: 02/25/2015] [Accepted: 09/01/2015] [Indexed: 12/20/2022] Open
Abstract
INTRODUCTION Therapy-associated onset of stemness-maintenance in surviving tumor-cells dictates tumor relapse/recurrence. Recently, we recognized the anti-pancreatic cancer (PC) potential of seaweed polyphenol manifolds and narrowed down three superior drug-deliverables that could serve as adjuvants and benefit PC cure. Utilizing the PC- cancer stem cells (PC-CSCs) grown ex vivo and mouse model of residual-PC, we investigated the benefits of seaweed polyphenols in regulating stemness-maintenance. METHODS ALDH(+)CD44(+)CD24(+) PC-CSCs from Panc-1, Panc-3.27, MiaPaCa-2, or BxPC-3 cells-derived xenografts grown ex vivo were either mock-irradiated, exposed to fractionated irradiation (FIR, 2Gy/D for 5 days), treated with polyphenols (100 μg/ml) of Hormophysa triquerta (HT-EA), Spatoglossum asperum (SA-EA) or Padina tetrastromatica (PT-EA) with/without FIR were examined for cell viability, transcription of 93 stem-cell-related molecules (QPCR profiling). Polyphenol-dependent regulation of FIR-transactivated Oct4, Zic3, EIF4C, Nanog, and LIF (QPCR) and functional translation of Nanog, SOX2, and OCT3/4 (immunoblotting) were examined in Panc-1/Panc-3.27/MiaPaCa-2/BxPC-3-xenografts derived PC-CSCs. Effect of seaweed-polyphenols in the regulation of EMT (N-Cadherin), pluripotency- (SOX2, OCT3/4, Nanog) and stemness-maintenance (PI3KR1, LIF, CD44) in therapy (FIR, 2Gy/D for 5D/wk for 3-weeks) resistant residual tumors were examined by tissue microarray construction and automated immunohistochemistry. RESULTS Ex vivo exposure of PC-CSCs to SA-EA, PT-EA and HT-EA exhibit dose-dependent inhibition of cell viability. FIR amplified the transcription of 69, 80, 74 and 77 stem-cell related genes in MiaPaCa-2-, Panc-1-, Panc-3.27- and BXPC3-established xenograft-derived ALDH(+)CD44(+)CD24(+)PC-CSCs. Treatment with SA-EA, PT-EA, or HT-EA completely suppressed FIR-activated stem-cell transcriptional machinery in ALDH(+)CD44(+)CD24(+)PC-CSCs established from MiaPaCa-2, Panc-1, Panc-3.27 and BXPC3 xenografts. QPCR validated EIF4C, OCT3/4, Nanog, LIF, and ZIC3 transcriptional profile outcomes. Nanog, Sox2, and OCT3/4 immunoblotting affirmed the PC-CSC radiosensitizing benefit of seaweed polyphenols. Residual-PC tissues microarrayed and immunostained after in vivo treatments recognized complete regulation of FIR-induced SOX2, OCT3/4, Nanog, LIF, CD44, PIK3R1, N-Cadherin, and E-Cadherin with SA-EA, PT-EA, and HT-EA. CONCLUSIONS These data, for the first time, documented the EMT/stemness-maintenance in therapy-resistant PC-CSCs. Further, the data suggest that seaweed polyphenols may inhibit PC relapse/recurrence by targeting therapy-orchestrated stem-cell signaling in residual cells.
Collapse
Affiliation(s)
- Sheeja Aravindan
- Department of Marine Sciences, Center of Advance Study in Marine Biology, Annamalai University, Parangipettai, TN, 608 502, India.
- Stephenson Cancer Center, 975 NE 10th Street, Oklahoma City, OK, 73104-5419, USA.
| | - Satish Kumar Ramraj
- Department of Radiation Oncology, University of Oklahoma Health Sciences Center, 940 Stanton L. Young Boulevard, Oklahoma City, OK, 73104, USA.
| | - Somasundaram T Somasundaram
- Department of Marine Sciences, Center of Advance Study in Marine Biology, Annamalai University, Parangipettai, TN, 608 502, India.
| | - Terence S Herman
- Department of Radiation Oncology, University of Oklahoma Health Sciences Center, 940 Stanton L. Young Boulevard, Oklahoma City, OK, 73104, USA.
| | - Natarajan Aravindan
- Department of Radiation Oncology, University of Oklahoma Health Sciences Center, 940 Stanton L. Young Boulevard, Oklahoma City, OK, 73104, USA.
| |
Collapse
|
15
|
Campanella C, Rappa F, Sciumè C, Marino Gammazza A, Barone R, Bucchieri F, David S, Curcurù G, Caruso Bavisotto C, Pitruzzella A, Geraci G, Modica G, Farina F, Zummo G, Fais S, Conway de Macario E, Macario AJL, Cappello F. Heat shock protein 60 levels in tissue and circulating exosomes in human large bowel cancer before and after ablative surgery. Cancer 2015; 121:3230-9. [PMID: 26060090 DOI: 10.1002/cncr.29499] [Citation(s) in RCA: 114] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Revised: 04/24/2015] [Accepted: 05/12/2015] [Indexed: 12/18/2022]
Abstract
BACKGROUND Heat shock protein 60 (Hsp60) is a chaperonin involved in tumorigenesis, but its participation in tumor development and progression is not well understood and its value as a tumor biomarker has not been fully elucidated. In the current study, the authors presented evidence supporting the theory that Hsp60 has potential as a biomarker as well as a therapeutic target in patients with large bowel cancer. METHODS The authors studied a population of 97 subjects, including patients and controls. Immunomorphology, Western blot analysis, and quantitative real-time polymerase chain reaction were performed on tissue specimens. Exosomes were isolated from blood and characterized by electron microscopy, biochemical tests, and Western blot analysis. RESULTS Hsp60 was found to be increased in cancerous tissue, in which it was localized in the tumor cell plasma membrane, and in the interstitium associated with cells of the immune system, in which it was associated with exosomes liberated by tumor cells and, as such, circulated in the blood. An interesting finding was that these parameters returned to normal shortly after tumor removal. CONCLUSIONS The data from the current study suggested that Hsp60 is a good candidate for theranostics applied to patients with large bowel carcinoma and encourage similar research among patients with other tumors in which Hsp60 has been implicated.
Collapse
Affiliation(s)
- Claudia Campanella
- Department of Experimental Biomedicine and Clinical Neuroscience, University of Palermo, Palermo, Italy.,Euro-Mediterranean Institute of Science and Technology, Palermo, Italy
| | - Francesca Rappa
- Euro-Mediterranean Institute of Science and Technology, Palermo, Italy.,Department of Legal Science, Society and Sports, University of Palermo, Palermo, Italy
| | - Carmelo Sciumè
- Department of Oncological Surgery, University of Palermo, Palermo, Italy
| | - Antonella Marino Gammazza
- Department of Experimental Biomedicine and Clinical Neuroscience, University of Palermo, Palermo, Italy.,Euro-Mediterranean Institute of Science and Technology, Palermo, Italy
| | - Rosario Barone
- Department of Experimental Biomedicine and Clinical Neuroscience, University of Palermo, Palermo, Italy.,Euro-Mediterranean Institute of Science and Technology, Palermo, Italy
| | - Fabio Bucchieri
- Department of Experimental Biomedicine and Clinical Neuroscience, University of Palermo, Palermo, Italy.,Euro-Mediterranean Institute of Science and Technology, Palermo, Italy
| | - Sabrina David
- Department of Experimental Biomedicine and Clinical Neuroscience, University of Palermo, Palermo, Italy
| | - Giuseppe Curcurù
- Department of Chemical, Management, Informatics and Mechanical Engineering, University of Palermo, Palermo, Italy
| | - Celeste Caruso Bavisotto
- Department of Experimental Biomedicine and Clinical Neuroscience, University of Palermo, Palermo, Italy.,Euro-Mediterranean Institute of Science and Technology, Palermo, Italy
| | - Alessandro Pitruzzella
- Department of Experimental Biomedicine and Clinical Neuroscience, University of Palermo, Palermo, Italy.,Euro-Mediterranean Institute of Science and Technology, Palermo, Italy
| | - Girolamo Geraci
- Department of Oncological Surgery, University of Palermo, Palermo, Italy
| | - Giuseppe Modica
- Department of Oncological Surgery, University of Palermo, Palermo, Italy
| | - Felicia Farina
- Department of Experimental Biomedicine and Clinical Neuroscience, University of Palermo, Palermo, Italy
| | - Giovanni Zummo
- Department of Experimental Biomedicine and Clinical Neuroscience, University of Palermo, Palermo, Italy
| | - Stefano Fais
- Department of Therapeutic Research and Medicines Evaluation, National Institute of Health, Rome, Italy
| | - Everly Conway de Macario
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland.,Institute of Marine and Environmental Technology, Baltimore, Maryland
| | - Alberto J L Macario
- Euro-Mediterranean Institute of Science and Technology, Palermo, Italy.,Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, Maryland.,Institute of Marine and Environmental Technology, Baltimore, Maryland
| | - Francesco Cappello
- Department of Experimental Biomedicine and Clinical Neuroscience, University of Palermo, Palermo, Italy.,Euro-Mediterranean Institute of Science and Technology, Palermo, Italy
| |
Collapse
|
16
|
Non-lethal heat treatment of cells results in reduction of tumor initiation and metastatic potential. Biochem Biophys Res Commun 2015; 464:51-6. [PMID: 26032500 DOI: 10.1016/j.bbrc.2015.05.093] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Accepted: 05/28/2015] [Indexed: 11/21/2022]
Abstract
Non-lethal hyperthermia is used clinically as adjuvant treatment to radiation, with mixed results. Denaturation of protein during hyperthermia treatment is expected to synergize with radiation damage to cause cell cycle arrest and apoptosis. Alternatively, hyperthermia is known to cause tissue level changes in blood flow, increasing the oxygenation and radiosensitivity of often hypoxic tumors. In this study, we elucidate a third possibility, that hyperthermia alters cellular adhesion and mechanotransduction, with particular impact on the cancer stem cell population. We demonstrate that cell heating results in a robust but temporary loss of cancer cell aggressiveness and metastatic potential in mouse models. In vitro, this heating results in a temporary loss in cell mobility, adhesion, and proliferation. Our hypothesis is that the loss of cellular adhesion results in suppression of cancer stem cells and loss of tumor virulence and metastatic potential. Our study suggests that the metastatic potential of cancer is particularly reduced by the effects of heat on cellular adhesion and mechanotransduction. If true, this could help explain both the successes and failures of clinical hyperthermia, and suggest ways to target treatments to those who would most benefit.
Collapse
|
17
|
Pandian V, Ramraj S, Khan FH, Azim T, Aravindan N. Metastatic neuroblastoma cancer stem cells exhibit flexible plasticity and adaptive stemness signaling. Stem Cell Res Ther 2015; 6:2. [PMID: 25888913 PMCID: PMC4396071 DOI: 10.1186/s13287-015-0002-8] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2014] [Revised: 02/03/2015] [Accepted: 02/03/2015] [Indexed: 12/28/2022] Open
Abstract
Introduction High-risk neuroblastoma (HR-NB) presenting with hematogenous metastasis is one of the most difficult cancers to cure. Patient survival is poor. Aggressive tumors contain populations of rapidly proliferating clonogens that exhibit stem cell properties, cancer stem cells (CSCs). Conceptually, CSCs that evade intensive multimodal therapy dictate tumor progression, relapse/recurrence, and poor clinical outcomes. Herein, we investigated the plasticity and stem-cell related molecular response of aggressive metastatic neuroblastoma cells that fit the CSC model. Methods Well-characterized clones of metastatic site-derived aggressive cells (MSDACs) from a manifold of metastatic tumors of clinically translatable HR-NB were characterized for their CSC fit by examining epithelial-to-mesenchymal transition (EMT) (E-cadherin, N-Cadherin), survival (NFκB P65, p50, IκB and pIκB) and drug resistance (ABCG2) by immunoblotting; pluripotency maintenance (Nanog, SOX2) by immunofluorescence; and EMT and stemness related transcription of 93 genes by QPCR profiling. Plasticity of MSDACs under sequential alternation of culture conditions with serum and serum-free stem-cell conditions was assessed by clonal expansion (BrdU incorporation), tumorosphere formation (anchorage independent growth), EMT and stemness related transcriptome (QPCR profiling) and validated with MYC, SOX2, EGFR, NOTCH1 and CXCL2 immunoblotting. Results HR-NB MSDACs maintained in alternated culture conditions, serum-free stem cell medium to growth medium with serum and vice versa identified its flexible revocable plasticity characteristics. We observed signatures of stem cell-related molecular responses consistent with phenotypic conversions. Successive reintroduction to the favorable niche not only regained identical EMT, self-renewal capacity, pluripotency maintenance, and other stem cell-related signaling events, but also instigated additional events depicting aggressive adaptive plasticity. Conclusions Together, these results demonstrated the flexible plasticity of HR-NB MSDACs that typically fit the CSC model, and further identified the intrinsic adaptiveness of the successive phenotype switching that clarifies the heterogeneity of HR-NB. Moreover, the continuous ongoing acquisition of stem cell-related molecular rearrangements may hold the key to the switch from favorable disease to HR-NB. Electronic supplementary material The online version of this article (doi:10.1186/s13287-015-0002-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Vijayabaskar Pandian
- Department of Radiation Oncology, University of Oklahoma Health Sciences Center, 940 Stanton L. Young Blvd., BMSB 737, Oklahoma City, OK, 73104, USA.
| | - Satishkumar Ramraj
- Department of Radiation Oncology, University of Oklahoma Health Sciences Center, 940 Stanton L. Young Blvd., BMSB 737, Oklahoma City, OK, 73104, USA.
| | - Faizan H Khan
- Department of Radiation Oncology, University of Oklahoma Health Sciences Center, 940 Stanton L. Young Blvd., BMSB 737, Oklahoma City, OK, 73104, USA.
| | - Tasfia Azim
- Department of Radiation Oncology, University of Oklahoma Health Sciences Center, 940 Stanton L. Young Blvd., BMSB 737, Oklahoma City, OK, 73104, USA.
| | - Natarajan Aravindan
- Department of Radiation Oncology, University of Oklahoma Health Sciences Center, 940 Stanton L. Young Blvd., BMSB 737, Oklahoma City, OK, 73104, USA.
| |
Collapse
|
18
|
Evolution of Thermal Dosimetry for Application of Hyperthermia to Treat Cancer. ADVANCES IN HEAT TRANSFER 2015. [DOI: 10.1016/bs.aiht.2015.09.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
19
|
Zhao J, Wallace M, Melancon MP. Cancer theranostics with gold nanoshells. Nanomedicine (Lond) 2014; 9:2041-57. [DOI: 10.2217/nnm.14.136] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Gold nanoshells (AuNSs) present a vivid example of integrating nanoscience in order to solve a biomedical problem. AuNSs exhibit tunable surface plasmon resonance, which can be tuned to the near-infrared region in order to realize optimal tissue penetration. The highly efficient light-to-heat transformation by AuNSs during laser irradiation causes thermal damage to the tumor without damaging healthy organs. Transient nanobubbles can form around AuNSs during laser treatment and induce mechanical stress specifically in tumor cells. AuNSs also serve as a versatile platform for the delivery of various diagnostic and therapeutic agents. In this article, we describe the physicochemical properties of AuNSs in the context of their design, preparation and application in cancer theranostics. Ultimately, we look beyond the current research on AuNSs and discussed future challenges to their successful translation into clinical use.
Collapse
Affiliation(s)
- Jun Zhao
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA
| | - Michael Wallace
- Department of Interventional Radiology – Unit 1471, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA
| | - Marites P Melancon
- Department of Interventional Radiology – Unit 1471, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX 77030, USA
- Graduate School for Biomedical Science, The University of Texas at Houston, 6767 Bertner Avenue, Houston, TX 77030, USA
| |
Collapse
|
20
|
Repasky EA. Progress in development of biomedical applications of heat shock proteins and thermal stress. Int J Hyperthermia 2013; 29:359-61. [DOI: 10.3109/02656736.2013.825015] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|