1
|
Goudarzi S, Jones RM, Lee YHW, Hynynen K. Transducer module apodization to reduce bone heating during focused ultrasound uterine fibroid ablation with phased arrays: A numerical study. Med Phys 2024; 51:8670-8687. [PMID: 39341358 DOI: 10.1002/mp.17427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 08/29/2024] [Accepted: 09/05/2024] [Indexed: 10/01/2024] Open
Abstract
BACKGROUND During magnetic resonance-guided focused ultrasound (MRgFUS) surgery for uterine fibroids, ablation of fibrous tissues in proximity to the hips and spine is challenging due to heating within the bone that can cause patients to experience pain and potentially damage nerves. This far-field bone heating limits the volume of fibroid tissue that is treatable via MRgFUS. PURPOSE To investigate transducer module apodization for improving the ratio of focal-to-bone heating (Δ T ratio $\Delta T_{\mathrm{ratio}}$ ) when targeting fibroid tissue close to the hips and spine, to enable MRgFUS treatments closer to the bone. METHODS Acoustic and thermal simulations were performed using 3D magnetic resonance imaging (MRI)-derived anatomies of ten patients who underwent MRgFUS ablation for uterine fibroids using a low-frequency (0.5 MHz $0.5 \ \text{MHz}$ ) 6144-element flat fully-populated modular phased array system (Arrayus Technologies Inc., Burlington, Canada) at our institution as part of a larger clinical trial (NCT03323905). Transducer modules (64 elements $64 \ \text{elements}$ per module) whose beams intersected with no-pass zones delineated within the field were identified, their output power levels were reduced by varying blocking percentage levels, and the resulting temperature field distributions were evaluated across multiple sonications near the hip and spine bones in each patient. Acoustic and thermal simulations took approximately20 min $20 \ \text{min}$ (7 min $7 \ \text{min}$ ) and1 min $1 \ \text{min}$ (30 s $30 \ \text{s}$ ) to run for a single near-spine (near-hip) target, respectively. RESULTS For all simulated sonications, transducer module blocking improvedΔ T ratio $\Delta T_{\mathrm{ratio}}$ compared to the no blocking case. In just over half of sonications, full module blocking maximizedΔ T ratio $\Delta T_{\mathrm{ratio}}$ (increase of 82% ± $\pm$ 38% in 50% of hip targets and 49% ± $\pm$ 30% in 62% of spine targets vs. no blocking; mean ± SD), at the cost of more diffuse focusing (focal heating volumes increased by 13% ± 13% for hip targets and 39% ± 27% for spine targets) and thus requiring elevated total (hip: 6% ± 17%, spine: 37% ± 17%) and peak module-wise (hip: 65% ± 36%, spine: 101% ± 56%) acoustic power levels to achieve equivalent focal heating as the no blocking control case. In the remaining sonications, partial module blocking provided further improvements in bothΔ T ratio $\Delta T_{\mathrm{ratio}}$ (increased by 29% ± 25% in the hip and 15% ± 12% in the spine) and focal heating volume (decrease of 20% ± 10% in the hip and 34% ± 17% in the spine) relative to the full blocking case. The optimal blocking percentage value was dependent on the specific patient geometry and target location of interest. Although not all individual target locations saw the benefit, element-wise phase aberration corrections improved the averageΔ T ratio $\Delta T_{\mathrm{ratio}}$ compared to the no correction case (increase of 52% ± 47% in the hip, 35% ± 24% in the spine) and impacted the optimal blocking percentage value. Transducer module blocking enabled ablative treatments to be carried out closer to both hip and spine without overheating or damaging the bone (no blocking:42 ± 1 mm $42\pm 1 \ \text{mm}$ /17 ± 2 mm $17 \pm 2 \ \text{mm}$ , full blocking:38 ± 1 mm $38\pm 1 \ \text{mm}$ /8 ± 1 mm $8\pm 1 \ \text{mm}$ , optimal partial blocking:36 ± 1 mm $36\pm 1 \ \text{mm}$ /7 ± 1 mm $7\pm 1 \ \text{mm}$ for hip/spine). CONCLUSION The proposed transducer apodization scheme shows promise for improving MRgFUS treatments of uterine fibroids, and may ultimately increase the effective treatment envelope of MRgFUS surgery in the body by enabling tissue ablation closer to bony structures.
Collapse
Affiliation(s)
- Sobhan Goudarzi
- Physical Sciences Platform, Sunnybrook Research Institute, Toronto, Ontario, Canada
| | - Ryan Matthew Jones
- Physical Sciences Platform, Sunnybrook Research Institute, Toronto, Ontario, Canada
| | - Yin Hau Wallace Lee
- Physical Sciences Platform, Sunnybrook Research Institute, Toronto, Ontario, Canada
| | - Kullervo Hynynen
- Physical Sciences Platform, Sunnybrook Research Institute, Toronto, Ontario, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
- Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
2
|
Zubair M, Adams MS, Diederich CJ. An endoluminal cylindrical sectored-ring ultrasound phased-array applicator for minimally-invasive therapeutic ultrasound. Med Phys 2023; 50:1-19. [PMID: 36413363 PMCID: PMC9870260 DOI: 10.1002/mp.16113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 11/10/2022] [Accepted: 11/10/2022] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND The size of catheter-based ultrasound devices for delivering ultrasound energy to deep-seated tumors is constrained by the access pathway which limits their therapeutic capabilities. PURPOSE To devise and investigate a deployable applicator suitable for minimally-invasive delivery of therapeutic ultrasound, consisting of a 2D cylindrical sectored-ring ultrasound phased array, integrated within an expandable paraboloid-shaped balloon-based reflector. The balloon can be collapsed for compact delivery and expanded close to the target position to mimic a larger-diameter concentric-ring sector-vortex array for enhanced dynamic control of focal depth and volume. METHODS Acoustic and biothermal simulations were employed in 3D generalized homogeneous and patient-specific heterogeneous models, for three-phased array transducers with 32, 64, and 128 elements, composed of sectored 4, 8, and 16 tubular ring transducers, respectively. The applicator performance was characterized as a function of array configuration, focal depth, phasing modes, and balloon reflector geometry. A 16-element proof-of-concept phased array applicator assembly, consisting of four tubular transducers each divided into four sectors, was fabricated, and characterized with hydrophone measurements along and across the axis, and ablations in ex vivo tissue. RESULTS Simulation results indicated that transducer arrays (1.5 MHz, 9 mm OD × 20 mm long), balloon sizes (41-50 mm expanded diameter, 20-60 mm focal depth), phasing mode (0-4) and sonication duration (30 s) can produce spatially localized acoustic intensity focal patterns (focal length: 3-22 mm, focal width: 0.7-8.7 mm) and ablative thermal lesions (width: 2.7-16 mm, length: 6-46 mm) in pancreatic tissue across a 10-90 mm focal depth range. Patient-specific studies indicated that 0.1, 0.46, and 1.2 cm3 volume of tumor can be ablated in the body of the pancreas for 120 s sonications using a single axial focus (Mode 0), or four, and eight simultaneous foci in a toroidal pattern (Mode 2 and 4, respectively). Hydrophone measurements demonstrated good agreement with simulation. Experiments in which chicken meat was thermally ablated indicated that volumetric ablation can be produced using single or multiple foci. CONCLUSIONS The results of this study demonstrated the feasibility of a novel compact ultrasound applicator design capable of focusing, deep penetration, electronic steering, and volumetric thermal ablation. The proposed applicator can be used for compact endoluminal or laparoscopic delivery of localized ultrasound energy to deep-seated targets.
Collapse
Affiliation(s)
- Muhammad Zubair
- Department of Radiation Oncology University of California San Francisco USA
| | - Matthew S. Adams
- Department of Radiation Oncology University of California San Francisco USA
| | - Chris J. Diederich
- Department of Radiation Oncology University of California San Francisco USA
| |
Collapse
|
3
|
Pfannenstiel A, Iannuccilli J, Cornelis FH, Dupuy DE, Beard WL, Prakash P. Shaping the future of microwave tumor ablation: a new direction in precision and control of device performance. Int J Hyperthermia 2022; 39:664-674. [DOI: 10.1080/02656736.2021.1991012] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Affiliation(s)
- Austin Pfannenstiel
- Precision Microwave Inc, Manhattan, KS, USA
- Department of Electrical and Computer Engineering, Kansas State University, Manhattan, KS, USA
| | - Jason Iannuccilli
- Department of Diagnostic Imaging, Division of Interventional Oncology, Rhode Island Hospital, Providence, RI, USA
| | - Francois H. Cornelis
- Interventional Radiology Service, Memorial Sloan Kettering Cancer Center, NY, USA
| | - Damian E. Dupuy
- Diagnostic Imaging, Brown University, Radiology, Cape Cod Hospital, MA, USA
| | - Warren L. Beard
- Department of Clinical Sciences, Kansas State University, Manhattan, KS, USA
| | - Punit Prakash
- Department of Electrical and Computer Engineering, Kansas State University, Manhattan, KS, USA
| |
Collapse
|
4
|
Zubair M, Adams MS, Diederich CJ. Deployable ultrasound applicators for endoluminal delivery of volumetric hyperthermia. Int J Hyperthermia 2021; 38:1188-1204. [PMID: 34376103 DOI: 10.1080/02656736.2021.1936216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Abstract
PURPOSE To investigate the design of an endoluminal deployable ultrasound applicator for delivering volumetric hyperthermia to deep tissue sites as a possible adjunct to radiation and chemotherapy. METHOD This study considers an ultrasound applicator consisting of two tubular transducers situated at the end of a catheter assembly, encased within a distensible conical shaped balloon-based reflector that redirects acoustic energy distally into the tissue. The applicator assembly can be inserted endoluminally or laparoscopically in a compact form and expanded after delivery to the target site. Comprehensive acoustic and biothermal simulations and parametric studies were employed in generalized 3D and patient-specific pancreatic head and body tumor models to characterize the acoustic performance and evaluate heating capabilities of the applicator by investigating the device at a range of operating frequencies, tissue acoustic and thermal properties, transducer configurations, power modulation, applicator positioning, and by analyzing the resultant 40, 41, and 43 °C isothermal volumes and penetration depth of the heating volume. Intensity distributions and volumetric temperature contours were calculated to define moderate hyperthermia boundaries. RESULTS Parametric studies demonstrated the frequency selection to control volume and depth of therapeutic heating from 62 to 22 cm3 and 4 to 2.6 cm as frequency ranges from 1 MHz to 4.7 MHz, respectively. Width of the heating profile tracks closely with the aperture. Water cooling within the reflector balloon was effective in controlling temperature to 37 °C maximum within the luminal wall. Patient-specific studies indicated that applicators with extended OD in the range of 3.6-6.2 cm with 0.5-1 cm long and 1 cm OD transducers can heat volumes of 1.1-7 cm3, 3-26 cm3, and 3.3-37.4 cm3 of pancreatic body and head tumors above 43, 41, and 40 °C, respectively. CONCLUSION In silico studies demonstrated the feasibility of combining endoluminal ultrasound with an integrated expandable balloon reflector for delivering volumetric hyperthermia in regions adjacent to body lumens and cavities.
Collapse
Affiliation(s)
- Muhammad Zubair
- Thermal Therapy Research Group, Department of Radiation Oncology, University of California San Francisco, San Francisco, CA, USA
| | - Matthew S Adams
- Thermal Therapy Research Group, Department of Radiation Oncology, University of California San Francisco, San Francisco, CA, USA
| | - Chris J Diederich
- Thermal Therapy Research Group, Department of Radiation Oncology, University of California San Francisco, San Francisco, CA, USA
| |
Collapse
|
5
|
Double Slot Antenna for Microwave Thermal Ablation to Treat Bone Tumors: Modeling and Experimental Evaluation. ELECTRONICS 2021. [DOI: 10.3390/electronics10070761] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
According to statistics of the American Cancer Society, the number of young people diagnosed with bone tumors is growing. Surgery and radiotherapy are the common treatments, however they have several side effects which affect the patient’s life. Therefore, a cheaper and less side-effect therapy called thermal ablation has been explored. The goal of this paper is to measure the therapeutic temperatures and the viability of a double slot antenna designed to treat bone tissue by microwave ablation. The antenna (at an operating frequency of 2.45 GHz) was designed, modeled, constructed, and experimentally evaluated. The finite element method was used to predict the antenna performance by means of 2D axisymmetric models. The modeling parameters were used to build the antenna. The experimental evaluation shows that the antenna behavior is repeatable and the standing wave ratio (SWR) was around 1.5–1.8. Temperatures around 60–100 °C were achieved over the bone tissue. The antenna insertion modifies the antenna performance. An insertion lower than 3.5 cm is not recommended because the convection effects modified the tissue temperature. The thermal patterns showed a heat focus near to the slots, which makes it possible for use in the treatment of small tumors.
Collapse
|
6
|
Bitton RR, Webb TD, Pauly KB, Ghanouni P. Prolonged heating in nontargeted tissue during MR‐guided focused ultrasound of bone tumors. J Magn Reson Imaging 2019; 50:1526-1533. [DOI: 10.1002/jmri.26726] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Revised: 03/08/2019] [Accepted: 03/10/2019] [Indexed: 12/16/2022] Open
Affiliation(s)
- Rachel R. Bitton
- School of Medicine, Department of RadiologyStanford University Stanford California USA
| | - Taylor D. Webb
- Department of Electrical EngineeringStanford University Stanford California USA
| | - Kim Butts Pauly
- School of Medicine, Department of RadiologyStanford University Stanford California USA
| | - Pejman Ghanouni
- School of Medicine, Department of RadiologyStanford University Stanford California USA
| |
Collapse
|
7
|
Hudson TJ, Looi T, Pichardo S, Amaral J, Temple M, Drake JM, Waspe AC. Simulating thermal effects of MR-guided focused ultrasound in cortical bone and its surrounding tissue. Med Phys 2017; 45:506-519. [DOI: 10.1002/mp.12704] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Revised: 11/03/2017] [Accepted: 11/09/2017] [Indexed: 12/23/2022] Open
Affiliation(s)
- Thomas J. Hudson
- Centre for Image Guided Innovation and Therapeutic Intervention; Hospital for Sick Children; Toronto Ontario M5G 1X8 Canada
- Institute of Biomaterials and Biomedical Engineering; University of Toronto; Toronto Ontario M5S 3G9 Canada
| | - Thomas Looi
- Centre for Image Guided Innovation and Therapeutic Intervention; Hospital for Sick Children; Toronto Ontario M5G 1X8 Canada
- Institute of Biomaterials and Biomedical Engineering; University of Toronto; Toronto Ontario M5S 3G9 Canada
| | - Samuel Pichardo
- Thunder Bay Regional Health Research Institute; Thunder Bay Ontario P7B 6V4 Canada
- Electrical Engineering and Physics; Lakehead University; Thunder Bay Ontario P7B 5E1 Canada
| | - Joao Amaral
- Centre for Image Guided Innovation and Therapeutic Intervention; Hospital for Sick Children; Toronto Ontario M5G 1X8 Canada
- Department of Medical Imaging; University of Toronto; Toronto Ontario M5T 1W7 Canada
| | - Michael Temple
- Centre for Image Guided Innovation and Therapeutic Intervention; Hospital for Sick Children; Toronto Ontario M5G 1X8 Canada
- Department of Medical Imaging; University of Toronto; Toronto Ontario M5T 1W7 Canada
| | - James M. Drake
- Centre for Image Guided Innovation and Therapeutic Intervention; Hospital for Sick Children; Toronto Ontario M5G 1X8 Canada
- Institute of Biomaterials and Biomedical Engineering; University of Toronto; Toronto Ontario M5S 3G9 Canada
| | - Adam C. Waspe
- Centre for Image Guided Innovation and Therapeutic Intervention; Hospital for Sick Children; Toronto Ontario M5G 1X8 Canada
- Department of Medical Imaging; University of Toronto; Toronto Ontario M5T 1W7 Canada
| |
Collapse
|
8
|
Scott SJ, Adams MS, Salgaonkar V, Sommer FG, Diederich CJ. Theoretical investigation of transgastric and intraductal approaches for ultrasound-based thermal therapy of the pancreas. J Ther Ultrasound 2017; 5:10. [PMID: 28469915 PMCID: PMC5414307 DOI: 10.1186/s40349-017-0090-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Accepted: 02/07/2017] [Indexed: 02/07/2023] Open
Abstract
Background The goal of this study was to theoretically investigate the feasibility of intraductal and transgastric approaches to ultrasound-based thermal therapy of pancreatic tumors, and to evaluate possible treatment strategies. Methods This study considered ultrasound applicators with 1.2 mm outer diameter tubular transducers, which are inserted into the tissue to be treated by an endoscopic approach, either via insertion through the gastric wall (transgastric) or within the pancreatic duct lumen (intraductal). 8 patient-specific, 3D, transient, biothermal and acoustic finite element models were generated to model hyperthermia (n = 2) and ablation (n = 6), using sectored (210°–270°, n = 4) and 360° (n = 4) transducers for treatment of 3.3–17.0 cm3 tumors in the head (n = 5), body (n = 2), and tail (n = 1) of the pancreas. A parametric study was performed to determine appropriate treatment parameters as a function of tissue attenuation, blood perfusion rates, and distance to sensitive anatomy. Results Parametric studies indicated that pancreatic tumors up to 2.5 or 2.7 cm diameter can be ablated within 10 min with the transgastric and intraductal approaches, respectively. Patient-specific simulations demonstrated that 67.1–83.3% of the volumes of four sample 3.3–11.4 cm3 tumors could be ablated within 3–10 min using transgastric or intraductal approaches. 55.3–60.0% of the volume of a large 17.0 cm3 tumor could be ablated using multiple applicator positions within 20–30 min with either transgastric or intraductal approaches. 89.9–94.7% of the volume of two 4.4–11.4 cm3 tumors could be treated with intraductal hyperthermia. Sectored applicators are effective in directing acoustic output away from and preserving sensitive structures. When acoustic energy is directed towards sensitive structures, applicators should be placed at least 13.9–14.8 mm from major vessels like the aorta, 9.4–12.0 mm from other vessels, depending on the vessel size and flow rate, and 14 mm from the duodenum. Conclusions This study demonstrated the feasibility of generating shaped or conformal ablative or hyperthermic temperature distributions within pancreatic tumors using transgastric or intraductal ultrasound.
Collapse
Affiliation(s)
- Serena J Scott
- Department of Radiation Oncology, Thermal Therapy Research Group, University of California, San Francisco, 1600 Divisadero Street, Suite H1031, San Francisco, CA 94143-1708 USA
| | - Matthew S Adams
- Department of Radiation Oncology, Thermal Therapy Research Group, University of California, San Francisco, 1600 Divisadero Street, Suite H1031, San Francisco, CA 94143-1708 USA.,UC Berkeley - UC San Francisco Graduate Program in Bioengineering, California, USA
| | - Vasant Salgaonkar
- Department of Radiation Oncology, Thermal Therapy Research Group, University of California, San Francisco, 1600 Divisadero Street, Suite H1031, San Francisco, CA 94143-1708 USA
| | - F Graham Sommer
- Department of Radiology, Stanford University School of Medicine, Stanford, CA USA
| | - Chris J Diederich
- Department of Radiation Oncology, Thermal Therapy Research Group, University of California, San Francisco, 1600 Divisadero Street, Suite H1031, San Francisco, CA 94143-1708 USA.,UC Berkeley - UC San Francisco Graduate Program in Bioengineering, California, USA
| |
Collapse
|
9
|
ten Eikelder HMM, Bošnački D, Elevelt A, Donato K, Di Tullio A, Breuer BJT, van Wijk JH, van Dijk EVM, Modena D, Yeo SY, Grüll H. Modelling the temperature evolution of bone under high intensity focused ultrasound. Phys Med Biol 2016; 61:1810-28. [PMID: 26854572 DOI: 10.1088/0031-9155/61/4/1810] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Magnetic resonance-guided high intensity focused ultrasound (MR-HIFU) has been clinically shown to be effective for palliative pain management in patients suffering from skeletal metastasis. The underlying mechanism is supposed to be periosteal denervation caused by ablative temperatures reached through ultrasound heating of the cortex. The challenge is exact temperature control during sonication as MR-based thermometry approaches for bone tissue are currently not available. Thus, in contrast to the MR-HIFU ablation of soft tissue, a thermometry feedback to the HIFU is lacking, and the treatment of bone metastasis is entirely based on temperature information acquired in the soft tissue adjacent to the bone surface. However, heating of the adjacent tissue depends on the exact sonication protocol and requires extensive modelling to estimate the actual temperature of the cortex. Here we develop a computational model to calculate the spatial temperature evolution in bone and the adjacent tissue during sonication. First, a ray-tracing technique is used to compute the heat production in each spatial point serving as a source term for the second part, where the actual temperature is calculated as a function of space and time by solving the Pennes bio-heat equation. Importantly, our model includes shear waves that arise at the bone interface as well as all geometrical considerations of transducer and bone geometry. The model was compared with a theoretical approach based on the far field approximation and an MR-HIFU experiment using a bone phantom. Furthermore, we investigated the contribution of shear waves to the heat production and resulting temperatures in bone. The temperature evolution predicted by our model was in accordance with the far field approximation and agreed well with the experimental data obtained in phantoms. Our model allows the simulation of the HIFU treatments of bone metastasis in patients and can be extended to a planning tool prior to MR-HIFU treatments.
Collapse
|
10
|
Han M, Rieke V, Scott SJ, Ozhinsky E, Salgaonkar VA, Jones PD, Larson PEZ, Diederich CJ, Krug R. Quantifying temperature-dependent T1 changes in cortical bone using ultrashort echo-time MRI. Magn Reson Med 2015; 74:1548-55. [PMID: 26390357 DOI: 10.1002/mrm.25994] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Revised: 08/05/2015] [Accepted: 08/30/2015] [Indexed: 11/06/2022]
Abstract
PURPOSE To demonstrate the feasibility of using ultrashort echo-time MRI to quantify T1 changes in cortical bone due to heating. METHODS Variable flip-angle T1 mapping combined with 3D ultrashort echo-time imaging was used to measure T1 in cortical bone. A calibration experiment was performed to detect T1 changes with temperature in ex vivo cortical bone samples from a bovine femur. Ultrasound heating experiments were performed using an interstitial applicator in ex vivo bovine femur specimens, and heat-induced T1 changes were quantified. RESULTS The calibration experiment demonstrated that T1 increases with temperature in cortical bone. We observed a linear relationship between temperature and T1 with a linear coefficient between 0.67 and 0.84 ms/°C over a range of 25-70°C. The ultrasound heating experiments showed increased T1 changes in the heated regions, and the relationship between the temperature changes and T1 changes was similar to that of the calibration. CONCLUSION We demonstrated a temperature dependence of T1 in ex vivo cortical bone using a variable flip-angle ultrashort echo-time T1 mapping method.
Collapse
Affiliation(s)
- Misung Han
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, California, USA
| | - Viola Rieke
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, California, USA
| | - Serena J Scott
- Department of Radiation Oncology, University of California, San Francisco, San Francisco, California, USA
| | - Eugene Ozhinsky
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, California, USA
| | - Vasant A Salgaonkar
- Department of Radiation Oncology, University of California, San Francisco, San Francisco, California, USA
| | - Peter D Jones
- Department of Radiation Oncology, University of California, San Francisco, San Francisco, California, USA
| | - Peder E Z Larson
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, California, USA.,Joint Graduate Program in Bioengineering, University of California San Francisco/Berkeley, San Francisco, California, USA
| | - Chris J Diederich
- Department of Radiation Oncology, University of California, San Francisco, San Francisco, California, USA.,Joint Graduate Program in Bioengineering, University of California San Francisco/Berkeley, San Francisco, California, USA
| | - Roland Krug
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, San Francisco, California, USA
| |
Collapse
|
11
|
Bitton RR, Webb TD, Pauly KB, Ghanouni P. Improving thermal dose accuracy in magnetic resonance-guided focused ultrasound surgery: Long-term thermometry using a prior baseline as a reference. J Magn Reson Imaging 2015; 43:181-9. [PMID: 26119129 DOI: 10.1002/jmri.24978] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Accepted: 06/01/2015] [Indexed: 01/02/2023] Open
Abstract
PURPOSE To investigate thermal dose volume (TDV) and non-perfused volume (NPV) of magnetic resonance-guided focused ultrasound (MRgFUS) treatments in patients with soft tissue tumors, and describe a method for MR thermal dosimetry using a baseline reference. MATERIALS AND METHODS Agreement between TDV and immediate post treatment NPV was evaluated from MRgFUS treatments of five patients with biopsy-proven desmoid tumors. Thermometry data (gradient echo, 3T) were analyzed over the entire course of the treatments to discern temperature errors in the standard approach. The technique searches previously acquired baseline images for a match using 2D normalized cross-correlation and a weighted mean of phase difference images. Thermal dose maps and TDVs were recalculated using the matched baseline and compared to NPV. RESULTS TDV and NPV showed between 47%-91% disagreement, using the standard immediate baseline method for calculating TDV. Long-term thermometry showed a nonlinear local temperature accrual, where peak additional temperature varied between 4-13°C (mean = 7.8°C) across patients. The prior baseline method could be implemented by finding a previously acquired matching baseline 61% ± 8% (mean ± SD) of the time. We found 7%-42% of the disagreement between TDV and NPV was due to errors in thermometry caused by heat accrual. For all patients, the prior baseline method increased the estimated treatment volume and reduced the discrepancies between TDV and NPV (P = 0.023). CONCLUSION This study presents a mismatch between in-treatment and post treatment efficacy measures. The prior baseline approach accounts for local heating and improves the accuracy of thermal dose-predicted volume.
Collapse
Affiliation(s)
- Rachel R Bitton
- School of Medicine, Department of Radiology, Stanford University, Stanford, California, USA
| | - Taylor D Webb
- Department of Electrical Engineering, Stanford University, Stanford, California, USA
| | - Kim Butts Pauly
- School of Medicine, Department of Radiology, Stanford University, Stanford, California, USA
| | - Pejman Ghanouni
- School of Medicine, Department of Radiology, Stanford University, Stanford, California, USA
| |
Collapse
|
12
|
Scott SJ, Salgaonkar V, Prakash P, Burdette EC, Diederich CJ. Interstitial ultrasound ablation of vertebral and paraspinal tumours: parametric and patient-specific simulations. Int J Hyperthermia 2015; 30:228-44. [PMID: 25017322 DOI: 10.3109/02656736.2014.915992] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
PURPOSE Theoretical parametric and patient-specific models are applied to assess the feasibility of interstitial ultrasound ablation of tumours in and near the spine and to identify potential treatment delivery strategies. METHODS 3D patient-specific finite element models (n = 11) of interstitial ultrasound ablation of tumours associated with the spine were generated. Gaseous nerve insulation and various applicator configurations, frequencies (3 and 7 MHz), placement trajectories, and tumour locations were simulated. Parametric studies with multilayered models investigated the impacts of tumour attenuation, tumour dimension, and the thickness of bone insulating critical structures. Temperature and thermal dose were calculated to define ablation (>240 equivalent minutes at 43 °C (EM43 °C)) and safety margins (<45 °C and <6 EM43 °C), and to determine performance and required delivery parameters. RESULTS Osteolytic tumours (≤44 mm) encapsulated by bone could be successfully ablated with 7 MHz interstitial ultrasound (8.1-16.6 W/cm(2), 120-5900 J, 0.4-15 min). Ablation of tumours (94.6-100% volumetric) 0-14.5 mm from the spinal canal was achieved within 3-15 min without damaging critical nerves. 3 MHz devices provided faster ablation (390 versus 930 s) of an 18 mm diameter osteoblastic (high bone content) volume than 7 MHz devices. Critical anatomy in proximity to the tumour could be protected by selection of appropriate applicator configurations, active sectors, and applied power schemas, and through gaseous insulation. Preferential ultrasound absorption at bone surfaces facilitated faster, more effective ablations in osteolytic tumours and provided isolation of ablative energies and temperatures. CONCLUSIONS Parametric and patient-specific studies demonstrated the feasibility and potential advantages of interstitial ultrasound ablation treatment of paraspinal and osteolytic vertebral tumours.
Collapse
Affiliation(s)
- Serena J Scott
- Thermal Therapy Research Group, Department of Radiation Oncology, University of California , San Francisco , California
| | | | | | | | | |
Collapse
|
13
|
Salgaonkar VA, Diederich CJ. Catheter-based ultrasound technology for image-guided thermal therapy: current technology and applications. Int J Hyperthermia 2015; 31:203-15. [PMID: 25799287 DOI: 10.3109/02656736.2015.1006269] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Catheter-based ultrasound (CBUS) is applied to deliver minimally invasive thermal therapy to solid cancer tumours, benign tissue growth, vascular disease, and tissue remodelling. Compared to other energy modalities used in catheter-based surgical interventions, unique features of ultrasound result in conformable and precise energy delivery with high selectivity, fast treatment times, and larger treatment volumes. We present a concise review of CBUS technology being currently utilized in animal and clinical studies or being developed for future applications. CBUS devices have been categorised into interstitial, endoluminal and endovascular/cardiac applications. Basic applicator designs, site-specific evaluations and possible treatment applications have been discussed in brief. Particular emphasis has been given to ablation studies that incorporate image guidance for applicator placement, therapy monitoring, feedback control, and post-procedure assessment. Examples of devices included here span the entire spectrum of the development cycle from preliminary simulation-based design studies to implementation in clinical investigations. The use of CBUS under image guidance has the potential for significantly improving precision and applicability of thermal therapy delivery.
Collapse
Affiliation(s)
- Vasant A Salgaonkar
- Department of Radiation Oncology, University of California , San Francisco, California , USA
| | | |
Collapse
|
14
|
Goharrizi AY, Kwong R, Chopra R. Development of robust/predictive control strategies for image-guided ablative treatments using a minimally invasive ultrasound applicator. Int J Hyperthermia 2014; 30:438-46. [PMID: 25314227 DOI: 10.3109/02656736.2014.963702] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
PURPOSE One important challenge in image-guided ablative therapies is the effect of heat diffusion which can cause damage to surrounding organs and limit the ability to achieve a conformal pattern of thermal damage. Furthermore, tissue properties such as perfusion and energy absorption can be dynamic and difficult to measure. This paper attempts to address these problems by proposing new control methods. MATERIALS AND METHODS A novel predictive approach was developed to compensate for the effect of heat diffusion using a minimally invasive rotating ultrasound heating applicator for ablative therapy. This method can be merged into any closed-loop control strategy. A binary controller, a previously developed adaptive proportional-integral controller, and a model reference adaptive controller were employed and compared, all with the predictive element incorporated. The reason for choosing these controllers was that none of them needed a model of the tissue or exact values of their parameters. RESULTS The effectiveness of these controllers was demonstrated through both simulation and experimental studies. The results were consistent and demonstrated equivalent performance between controllers. CONCLUSIONS The dominant influence on radial targeting accuracy was the prediction element described in this paper. A binary controller with a predictive element may provide the best balance of performance and simplicity for this application.
Collapse
|