1
|
Synergic effects of nanoparticles-mediated hyperthermia in radiotherapy/chemotherapy of cancer. Life Sci 2021; 269:119020. [PMID: 33450258 DOI: 10.1016/j.lfs.2021.119020] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 12/05/2020] [Accepted: 01/02/2021] [Indexed: 12/15/2022]
Abstract
The conventional cancer treatment modalities such as radiotherapy and chemotherapy suffer from several limitations; hence, their efficiency needs to be improved with other complementary modalities. Hyperthermia, as an adjuvant therapeutic modality for cancer, can result in a synergistic effect on radiotherapy (radiosensitizer) and chemotherapy (chemosensitizer). Conventional hyperthermia methods affect both tumoral and healthy tissues and have low specificity. In addition, a temperature gradient generates in the tissues situated along the path of the heat source, which is a more serious for deep-seated tumors. Nanoparticles (NPs)-induced hyperthermia can resolve these drawbacks through localization around/within tumoral tissue and generating local hyperthermia. Although there are several review articles dealing with NPs-induced hyperthermia, lack of a paper discussing the combination of NPs-induced hyperthermia with the conventional chemotherapy or radiotherapy is tangible. Accordingly, the main focus of the current paper is to summarize the principles of NPs-induced hyperthermia and more importantly its synergic effects on the conventional chemotherapy or radiotherapy. The heat-producing nanostructures such as gold NPs, iron oxide NPs, and carbon NPs, as well as the non-heat-producing nanostructures, such as lipid-based, polymeric, and silica-based NPs, as the carrier for heat-producing NPs, are discussed and their pros and cons highlighted.
Collapse
|
2
|
Hao G, Xu ZP, Li L. Manipulating extracellular tumour pH: an effective target for cancer therapy. RSC Adv 2018; 8:22182-22192. [PMID: 35541713 PMCID: PMC9081285 DOI: 10.1039/c8ra02095g] [Citation(s) in RCA: 191] [Impact Index Per Article: 31.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Accepted: 06/07/2018] [Indexed: 12/12/2022] Open
Abstract
The pH in tumour cells and the tumour microenvironment has played important roles in cancer development and treatment. It was thought that both the extracellular and intracellular pH values in tumours are acidic and lower than in normal cells. However, recent progress in the measurement of pH in tumour tissue has disclosed that the intracellular pH (pHi) of cancer cells is neutral or even mildly alkaline compared to normal tissue cells. This review article has summarized the recent advancement in the measurement pHi and extracellular pH (pHe) in cancer cells, and the effect of pHi and pHe on proliferation, migration and biological functions of cancer cells. This paper has also elaborated recent treatment strategies to manipulate pHi and pHe for cancer treatment. Based on the recent progress in pHi and pHe manipulation in cancer treatment, we have proposed potential nanoparticle-based strategies to manipulate pHi and pHe to effectively treat cancer.
Collapse
Affiliation(s)
- Guanyu Hao
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland Brisbane Queensland Australia 4072
| | - Zhi Ping Xu
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland Brisbane Queensland Australia 4072
| | - Li Li
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland Brisbane Queensland Australia 4072
| |
Collapse
|
3
|
Spirou SV, Basini M, Lascialfari A, Sangregorio C, Innocenti C. Magnetic Hyperthermia and Radiation Therapy: Radiobiological Principles and Current Practice †. NANOMATERIALS 2018; 8:nano8060401. [PMID: 29865277 PMCID: PMC6027353 DOI: 10.3390/nano8060401] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 04/29/2018] [Revised: 05/30/2018] [Accepted: 06/01/2018] [Indexed: 02/07/2023]
Abstract
Hyperthermia, though by itself generally non-curative for cancer, can significantly increase the efficacy of radiation therapy, as demonstrated by in vitro, in vivo, and clinical results. Its limited use in the clinic is mainly due to various practical implementation difficulties, the most important being how to adequately heat the tumor, especially deep-seated ones. In this work, we first review the effects of hyperthermia on tissue, the limitations of radiation therapy and the radiobiological rationale for combining the two treatment modalities. Subsequently, we review the theory and evidence for magnetic hyperthermia that is based on magnetic nanoparticles, its advantages compared with other methods of hyperthermia, and how it can be used to overcome the problems associated with traditional techniques of hyperthermia.
Collapse
Affiliation(s)
- Spiridon V Spirou
- Department of Radiology, Sismanoglio General Hospital of Attica, Sismanogliou 1, Marousi 15126, Greece.
| | - Martina Basini
- Università degli Studi di Milano, Dipartimento di Fisica, Via Celoria 16, 20133 Milano, Italy.
| | - Alessandro Lascialfari
- Università degli Studi di Milano, Dipartimento di Fisica, Via Celoria 16, 20133 Milano, Italy.
| | - Claudio Sangregorio
- ICCOM-CNR via Madonna del Piano 10, 50019 Sesto Fiorentino, Italy.
- INSTM and Dept. Of Chemistry "U. Schiff", University of Florence, via della Lastruccia 3, 50019 Sesto Fiorentino, Italy.
| | - Claudia Innocenti
- ICCOM-CNR via Madonna del Piano 10, 50019 Sesto Fiorentino, Italy.
- INSTM and Dept. Of Chemistry "U. Schiff", University of Florence, via della Lastruccia 3, 50019 Sesto Fiorentino, Italy.
| |
Collapse
|
4
|
McMahon KM, Volpato M, Chi HY, Musiwaro P, Poterlowicz K, Peng Y, Scally AJ, Patterson LH, Phillips RM, Sutton CW. Characterization of Changes in the Proteome in Different Regions of 3D Multicell Tumor Spheroids. J Proteome Res 2012; 11:2863-75. [DOI: 10.1021/pr2012472] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- K. M. McMahon
- Institute
of Cancer Therapeutics, University of Bradford, Bradford, BD7 1DP, United Kingdom
| | - M. Volpato
- Institute
of Cancer Therapeutics, University of Bradford, Bradford, BD7 1DP, United Kingdom
| | - H. Y. Chi
- Institute
of Cancer Therapeutics, University of Bradford, Bradford, BD7 1DP, United Kingdom
| | - P. Musiwaro
- Institute
of Cancer Therapeutics, University of Bradford, Bradford, BD7 1DP, United Kingdom
| | - K. Poterlowicz
- Department of Computing, University of Bradford, Bradford, BD7 1DP, United Kingdom
| | - Y. Peng
- Department of Computing, University of Bradford, Bradford, BD7 1DP, United Kingdom
| | - A. J. Scally
- School of Health Studies, University of Bradford, Bradford, BD7 1DP, United Kingdom
| | - L. H. Patterson
- Institute
of Cancer Therapeutics, University of Bradford, Bradford, BD7 1DP, United Kingdom
| | - R. M. Phillips
- Institute
of Cancer Therapeutics, University of Bradford, Bradford, BD7 1DP, United Kingdom
| | - C. W. Sutton
- Institute
of Cancer Therapeutics, University of Bradford, Bradford, BD7 1DP, United Kingdom
| |
Collapse
|
5
|
Wismeth C, Dudel C, Pascher C, Ramm P, Pietsch T, Hirschmann B, Reinert C, Proescholdt M, Rümmele P, Schuierer G, Bogdahn U, Hau P. Transcranial electro-hyperthermia combined with alkylating chemotherapy in patients with relapsed high-grade gliomas: phase I clinical results. J Neurooncol 2009; 98:395-405. [PMID: 20033471 DOI: 10.1007/s11060-009-0093-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2009] [Accepted: 12/07/2009] [Indexed: 10/20/2022]
Abstract
Non-invasive loco-regional electro-hyperthermia (EHT) plus alkylating chemotherapy is occasionally used as salvage treatment in the relapse of patients with high-grade gliomas. Experimental data and retrospective studies suggest potential effects. However, no prospective clinical results are available. We performed a single-center prospective non-controlled single-arm Phase I trial. Main inclusion criteria were recurrent high-grade glioma WHO Grade III or IV, age 18-70, and Karnofsky performance score > or = 70. Primary endpoints were dose-limiting toxicities (DLT) and maximum tolerated dose (MTD) with the combined regimen. Groups of 3 or 4 patients were treated 2-5 times a week in a dose-escalation scheme with EHT. Alkylating chemotherapy (ACNU, nimustin) was administered at a dose of 90 mg/m(2) on day 1 of 42 days for up to six cycles or until tumor progression (PD) or DLT occurred. Fifteen patients with high-grade gliomas were included. Relevant toxicities were local pain and increased focal neurological signs or intracranial pressure. No DLT occurred. In some patients, the administration of mannitol during EHT or long-term use of corticosteroids was necessary to resolve symptoms. Although some patients showed responses in their primarily treated sites, the pattern of response was not well defined. EHT plus alkylating chemotherapy is tolerable in patients with relapse of high-grade gliomas. Episodes of intracranial pressure were, at least, possibly attributed to EHT but did not cause DLTs. A Phase II trial targeting treatment effects is warranted on the basis of the results raised in this trial.
Collapse
Affiliation(s)
- Caecilia Wismeth
- Department of Neurology, University of Regensburg Medical School (UKR), Universitätsstrasse 84, 93053, Regensburg, Germany
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
SREEDHAR AMERES. Hyperthermia and Pharmacological Intervention of Heat Shock Proteins in Anticancer Treatments. ACTA ACUST UNITED AC 2006. [DOI: 10.3191/thermalmedicine.22.211] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
7
|
van den Berg AP, van den Berg-Blok AE, Kal HB, Reinhold HS. A moderate elevation of blood glucose level increases the effectiveness of thermoradiotherapy in a rat tumor model. I. Relative contributions of glucose and heating to tumor acidification. Int J Radiat Oncol Biol Phys 2001; 50:783-92. [PMID: 11395248 DOI: 10.1016/s0360-3016(01)01498-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
PURPOSE To establish dose-effect relationships for tumor acidification induced by heat and glucose as a basis for testing the value of adding glucose administration to combined heat and x-ray treatment at clinically achievable glucose and temperature levels. METHODS AND MATERIALS Rhabdomyosarcoma BA1112 was grown s.c. in the upper leg of 16-20-week-old Wag/Rij rats. Animals were given 2 consecutive 100-min periods of saline (S) or glucose (G) infusion, while keeping tumor temperature at 37 degrees, 42 degrees, or 43 degrees C for 1 or 2 periods, in various combinations, each involving 6 animals. Glucose was infused i.v. as a 20% solution at 2.4-3 g/kg/h. Tumors were heated using 2,450-MHz electromagnetic radiation, and tumor pH was measured using a 0.7 mm fiberoptic probe. RESULTS Mean overall baseline pH was 7.00 (SD 0.10). The change induced by G37G43 (i.e., glucose infusion for a full 200 min, first 100 min at 37 degrees C, final 100 min at 43 degrees C) was -0.48 +/- 0.03 (SEM) pH units, and -0.17 +/- 0.03 for S37S43. The effect of G37G42 was -0.37 +/- 0.03 pH units, compared with -0.08 +/- 0.02 for S37S42 and -0.28 +/- 0.04 for glucose alone (G37G37). Glucose was less effective when given after or fully parallel to heating: -0.21 +/- 0.02 pH units for S43G37 and -0.37 +/- 0.02 for G43G43. CONCLUSION The glucose-induced tumor pH drop is much more pronounced than that induced by heat, both of which are dose dependent. The effects of glucose and heat seem additive if heating is started when glucose-induced acidification has reached its plateau level, but the overall effect is diminished if administration is fully simultaneous or in reversed order. Schedule G37G43 is optimal with respect to tumor acidification. Its predicted superiority in thermoradiotherapy as compared with S37S42, S37S43, and G37G42 treatment regimens was confirmed in a subsequent experimental tumor control study.
Collapse
Affiliation(s)
- A P van den Berg
- Department of Radiation Oncology, University Hospital Rotterdam-Daniel, Rotterdam, The Netherlands.
| | | | | | | |
Collapse
|
8
|
Hahn T, Barth S, Hofmann W, Reich O, Lang I, Desoye G. Hyperglycemia regulates the glucose-transport system of clonal choriocarcinoma cells in vitro. A potential molecular mechanism contributing to the adjunct effect of glucose in tumor therapy. Int J Cancer 1998; 78:353-60. [PMID: 9766571 DOI: 10.1002/(sici)1097-0215(19981029)78:3<353::aid-ijc16>3.0.co;2-7] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Glucose is taken up by tumor cells via sodium-independent facilitated diffusion along a concentration gradient. To examine the regulation of this process by substrate concentration, we investigated the effect of hyperglycemia on the glucose-transport system of choriocarcinoma-derived JAR and JEG-3 cells by culturing them for 24, 48 and 96 hr in medium containing either 5.5 (normoglycemia) or 25 (hyperglycemia) mM D-glucose, respectively. Immunocytochemically, choriocarcinoma cells expressed the high-affinity glucose transporter isoforms GLUT1 and GLUT3. Based on initial uptake measurements using 3-O-[14C]methyl-D-glucose, kinetic parameters were calculated as Km = 15 mM and Vmax = 95 fmol/sec per cell for JAR and Km = 9 mM and Vmax = 64 fmol/sec per cell for JEG-3 cells. In JAR cells cultured under hyperglycemic conditions, uptake rates were significantly increased at 15, 20 and 25 mM exogenous D-glucose concentrations as compared with normoglycemic conditions. This effect was due to an increase in Vmax, whereas Km remained unchanged. Using Northern blotting, GLUT1 mRNA levels were higher but GLUT3 transcripts were reduced upon hyperglycemia. Western blotting revealed elevated GLUT1 and GLUT3 expression under hyperglycemic conditions. Hyperglycemia did not significantly influence the glucose-transport system of JEG-3 cells. We conclude that sustained hyperglycemia stimulates the glucose-transport system of JAR, but not of JEG-3, choriocarcinoma cells in vitro due to changes in GLUT1 and GLUT3 expression levels. We speculate that this mechanism may contribute to the beneficial effects of induced hyperglycemia as an adjuvant in tumor therapy.
Collapse
Affiliation(s)
- T Hahn
- Department of Obstetrics and Gynecology, University of Graz, Austria.
| | | | | | | | | | | |
Collapse
|
9
|
Coss RA, Messinger JA, Wahl ML, Wachsberger PR, Leeper DB, Owen CS. Bicarbonate-dependent proton extrusion in Chinese hamster ovary (CHO) cells adapted to growth at pH 6.7. Int J Hyperthermia 1997; 13:325-36. [PMID: 9222815 DOI: 10.3109/02656739709023540] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
A CHO cell model is described for in vitro studies of the mechanisms underlying heat resistance in cells adapted to growth in acidic environments. Adaptation is defined as a loss of pH 6.7-induced sensitization to 42.0 degrees C cytotoxicity and it is accompanied with an elevation of steady-state intracellular pH (pHi). CHO cells cultured between 75 and 100 days at pH 6.7 became fully adapted (6.7G cells), and the adapted phenotype was maintained for at least 100 additional days of culture at pH 6.7. The surviving fraction (SF) of 6.7G cells heated (42.0 degrees C) at pH 6.7 was comparable with that of cells cultured at pH 7.3 (7.3G cells) and heated at pH 7.3, while the SF of 7.3G cells acutely acidified to pH 6.7 and heated was an order of magnitude less. Although this resistance of 6.7G cells to killing was observed at 42.0 degrees C, it was not observed at 43.0 and 45.0 degrees C. Both 6.7G and 7.3G cells were able to develop comparable levels of thermotolerance during 42.0 degrees C at their growth pHs. However, in agreement with the literature, development of thermotolerance was reduced in acutely acidified 7.3G cells. An acute acidification of only 0.2 pH unit from pH 6.7 to 6.5 also reduced the ability of 6.7G cells to develop thermotolerance during heating at 42.0 degrees C. The acquired 6.7G phenotype reverted to the 7.3G phenotype following 17 days of culture at pH 7.3. Amiloride (0.5 mM), an inhibitor of the Na+/H+ exchanger (NHE), did not sensitize 7.3G and 6.7G cells to 42.0 degrees at their growth pHs. However, sensitization was observed for acutely acidified 7.3G cells. This is consistent with the hypothesis that extracellular acute acidification causes a decrease in pHi, and that the recovery from that decrease is achieved in part by activation of the NHE. An elevation of steady-state pHi, measured by analysing intracellular BCECF excitation spectra, was documented in a suspension assay for cells grown at pH 6.7 for 180 days. The elevation was bicarbonate-dependent (negligible in the absence of HCO3-, +0.17 pH units in the presence of HCO3-). These results suggest that the altered regulation of pHi in CHO cells adapted to pHe 6.7 is maintained by bicarbonate-dependent processes.
Collapse
Affiliation(s)
- R A Coss
- Department of Radiation Oncology, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | | | | | | | | | | |
Collapse
|
10
|
Vaupel P. Effect of lactic acid in tumours on antitumour activity of hyperthermia. Int J Hyperthermia 1997; 13:247-8. [PMID: 9147150 DOI: 10.3109/02656739709012387] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
|