1
|
Diwan D, Mehla J, Nelson JW, Quirk JD, Song SK, Cao S, Meron B, Mostofa A, Zipfel GJ. Development and Validation of a Prechiasmatic Mouse Model of Subarachnoid Hemorrhage to Measure Long-Term Cognitive Deficits. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024:e2403977. [PMID: 39443821 DOI: 10.1002/advs.202403977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 09/17/2024] [Indexed: 10/25/2024]
Abstract
Controllable and reproducible animal models of aneurysmal subarachnoid hemorrhage (SAH) are crucial for the systematic study of the pathophysiology and treatment of this debilitating condition. However, current animal models have not been successful in replicating the pathology and disabilities seen in SAH patients, especially the long-term neurocognitive deficits that affect the survivor's quality of life. Therefore, there is an unmet need to develop experimental models that reliably replicate the long-term clinical ramifications of SAH - especially in mice where genetic manipulations are straightforward and readily available. To address this need, a standardized mouse SAH model is developed that reproducibly produced significant and trackable long-term cognitive deficits. SAH is induced by performing double blood injections into the prechiasmatic cistern - a simple modification to the well-characterized single prechiasmatic injection mouse model of SAH. Following SAH, mice recapitulated key characteristics of SAH patients, including cerebral edema measured by MRI - an indicator of early brain injury (EBI), neuroinflammation, apoptosis, and long-term cognitive impairment. This newly developed SAH mouse model is considered an ideal paradigm for investigating the complex SAH pathophysiology and identifying novel druggable therapeutic targets for treating SAH severity and SAH-associated long-term neurocognitive deficits in patients.
Collapse
Affiliation(s)
- Deepti Diwan
- Department of Neurological Surgery, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Jogender Mehla
- Department of Neurological Surgery, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - James W Nelson
- Department of Neurological Surgery, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - James D Quirk
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Sheng-Kwei Song
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Sarah Cao
- Department of Neurological Surgery, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Benjamin Meron
- Department of Neurological Surgery, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Aminah Mostofa
- Department of Neurological Surgery, Washington University School of Medicine, St. Louis, MO, 63110, USA
| | - Gregory J Zipfel
- Department of Neurological Surgery, Washington University School of Medicine, St. Louis, MO, 63110, USA
| |
Collapse
|
2
|
Chen Z, Fan L, Chen S, Zhao H, Zhang Q, Qu Y, Huang Y, Yu X, Sun D. Artificial Vascular with Pressure-Responsive Property based on Deformable Microfluidic Channels. Adv Healthc Mater 2024; 13:e2304532. [PMID: 38533604 DOI: 10.1002/adhm.202304532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 03/18/2024] [Indexed: 03/28/2024]
Abstract
In vitro blood vessel models are significant for disease modeling, drug assays, and therapeutic development. Microfluidic technologies allow to create physiologically relevant culture models reproducing the features of the in vivo vascular microenvironment. However, current microfluidic technologies are limited by impractical rectangular cross-sections and single or nonsynchronous compound mechanical stimuli. This study proposes a new strategy for creating round-shaped deformable soft microfluidic channels to serve as artificial in vitro vasculature for developing in vitro models with vascular physio-mechanical microenvironments. Endothelial cells seeded into vascular models are used to assess the effects of a remodeled in vivo mechanical environment. Furthermore, a 3D stenosis model is constructed to recapitulate the flow disturbances in atherosclerosis. Soft microchannels can also be integrated into traditional microfluidics to realize multifunctional composite systems. This technology provides new insights into applying microfluidic chips and a prospective approach for constructing in vitro blood vessel models.
Collapse
Affiliation(s)
- Zhenlin Chen
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, 999077, China
- Hong Kong Center for Cerebra-Cardiovascular Health Engineering, Hong Kong Science Park, New Territories, Hong Kong, 999077, China
| | - Lei Fan
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, 999077, China
- Centre for Robotics and Automation, Shenzhen Research Institute of City University of Hong Kong, Shenzhen, 518057, China
| | - Shuxun Chen
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, 999077, China
| | - Han Zhao
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, 999077, China
| | - Qiang Zhang
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, 999077, China
| | - Yun Qu
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, 999077, China
| | - Ya Huang
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, 999077, China
| | - Xinge Yu
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, 999077, China
- Hong Kong Center for Cerebra-Cardiovascular Health Engineering, Hong Kong Science Park, New Territories, Hong Kong, 999077, China
| | - Dong Sun
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, 999077, China
- Hong Kong Center for Cerebra-Cardiovascular Health Engineering, Hong Kong Science Park, New Territories, Hong Kong, 999077, China
| |
Collapse
|
3
|
Joya A, Plaza-García S, Padro D, Aguado L, Iglesias L, Garbizu M, Gómez-Vallejo V, Laredo C, Cossío U, Torné R, Amaro S, Planas AM, Llop J, Ramos-Cabrer P, Justicia C, Martín A. Multimodal imaging of the role of hyperglycemia following experimental subarachnoid hemorrhage. J Cereb Blood Flow Metab 2024; 44:726-741. [PMID: 37728631 PMCID: PMC11197138 DOI: 10.1177/0271678x231197946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 07/27/2023] [Accepted: 08/06/2023] [Indexed: 09/21/2023]
Abstract
Hyperglycemia has been linked to worsening outcomes after subarachnoid hemorrhage (SAH). Nevertheless, the mechanisms involved in the pathogenesis of SAH have been scarcely evaluated so far. The role of hyperglycemia was assessed in an experimental model of SAH by T2 weighted, dynamic contrast-enhanced magnetic resonance imaging (T2W and DCE-MRI), [18F]BR-351 PET imaging and immunohistochemistry. Measures included the volume of bleeding, the extent of cerebral infarction and brain edema, blood brain barrier disruption (BBBd), neutrophil infiltration and matrix metalloprotease (MMP) activation. The neurofunctional outcome, neurodegeneration and myelinization were also investigated. The induction of hyperglycemia increased mortality, the size of the ischemic lesion, brain edema, neurodegeneration and worsened neurological outcome during the first 3 days after SAH in rats. In addition, these results show for the first time the exacerbating effect of hyperglycemia on in vivo MMP activation, Intercellular Adhesion Molecule 1 (ICAM-1) expression and neutrophil infiltration together with increased BBBd, bleeding volume and fibrinogen accumulation at days 1 and 3 after SAH. Notably, these data provide valuable insight into the detrimental effect of hyperglycemia on early BBB damage mediated by neutrophil infiltration and MMP activation that could explain the worse prognosis in SAH.
Collapse
Affiliation(s)
- Ana Joya
- Achucarro Basque Center for Neuroscience, Leioa, Spain
- CIC biomaGUNE, Basque Research and Technology Alliance, San Sebastian, Spain
| | - Sandra Plaza-García
- CIC biomaGUNE, Basque Research and Technology Alliance, San Sebastian, Spain
| | - Daniel Padro
- CIC biomaGUNE, Basque Research and Technology Alliance, San Sebastian, Spain
| | - Laura Aguado
- Achucarro Basque Center for Neuroscience, Leioa, Spain
- CIC biomaGUNE, Basque Research and Technology Alliance, San Sebastian, Spain
| | - Leyre Iglesias
- Achucarro Basque Center for Neuroscience, Leioa, Spain
- Neurovascular Group, Biocruces Health Research Institute, Barakaldo, Spain
| | - Maider Garbizu
- Achucarro Basque Center for Neuroscience, Leioa, Spain
- CIC biomaGUNE, Basque Research and Technology Alliance, San Sebastian, Spain
| | | | - Carlos Laredo
- Institute of Neuroscience, Comprehensive Stroke Center, Hospital Clinic of Barcelona, Barcelona, Spain
| | - Unai Cossío
- CIC biomaGUNE, Basque Research and Technology Alliance, San Sebastian, Spain
| | - Ramon Torné
- Institute of Neuroscience, Neurosurgery Department, Hospital Clinic of Barcelona, Spain
| | - Sergio Amaro
- Institute of Neuroscience, Comprehensive Stroke Center, Hospital Clinic of Barcelona, Barcelona, Spain
| | - Anna M Planas
- Area of Neurosciences. Institut d'Investigacions Biomèdiques Agustí Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Department of Neuroscience and Experimental Therapeutics, Institut d'Investigacions Biomèdiques de Barcelona (IIBB), Consejo Superior de Investigaciones Científicas (CSIC), Barcelona, Spain
| | - Jordi Llop
- CIC biomaGUNE, Basque Research and Technology Alliance, San Sebastian, Spain
- Centro de Investigación Biomédica en Red - Enfermedades Respiratorias, CIBERES, Madrid, Spain
| | - Pedro Ramos-Cabrer
- CIC biomaGUNE, Basque Research and Technology Alliance, San Sebastian, Spain
- Ikerbasque Basque Foundation for Science, Bilbao, Spain
| | - Carles Justicia
- Area of Neurosciences. Institut d'Investigacions Biomèdiques Agustí Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Department of Neuroscience and Experimental Therapeutics, Institut d'Investigacions Biomèdiques de Barcelona (IIBB), Consejo Superior de Investigaciones Científicas (CSIC), Barcelona, Spain
| | - Abraham Martín
- Achucarro Basque Center for Neuroscience, Leioa, Spain
- Ikerbasque Basque Foundation for Science, Bilbao, Spain
| |
Collapse
|
4
|
Dreier JP, Joerk A, Uchikawa H, Horst V, Lemale CL, Radbruch H, McBride DW, Vajkoczy P, Schneider UC, Xu R. All Three Supersystems-Nervous, Vascular, and Immune-Contribute to the Cortical Infarcts After Subarachnoid Hemorrhage. Transl Stroke Res 2024:10.1007/s12975-024-01242-z. [PMID: 38689162 DOI: 10.1007/s12975-024-01242-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 03/12/2024] [Accepted: 03/14/2024] [Indexed: 05/02/2024]
Abstract
The recently published DISCHARGE-1 trial supports the observations of earlier autopsy and neuroimaging studies that almost 70% of all focal brain damage after aneurysmal subarachnoid hemorrhage are anemic infarcts of the cortex, often also affecting the white matter immediately below. The infarcts are not limited by the usual vascular territories. About two-fifths of the ischemic damage occurs within ~ 48 h; the remaining three-fifths are delayed (within ~ 3 weeks). Using neuromonitoring technology in combination with longitudinal neuroimaging, the entire sequence of both early and delayed cortical infarct development after subarachnoid hemorrhage has recently been recorded in patients. Characteristically, cortical infarcts are caused by acute severe vasospastic events, so-called spreading ischemia, triggered by spontaneously occurring spreading depolarization. In locations where a spreading depolarization passes through, cerebral blood flow can drastically drop within a few seconds and remain suppressed for minutes or even hours, often followed by high-amplitude, sustained hyperemia. In spreading depolarization, neurons lead the event, and the other cells of the neurovascular unit (endothelium, vascular smooth muscle, pericytes, astrocytes, microglia, oligodendrocytes) follow. However, dysregulation in cells of all three supersystems-nervous, vascular, and immune-is very likely involved in the dysfunction of the neurovascular unit underlying spreading ischemia. It is assumed that subarachnoid blood, which lies directly on the cortex and enters the parenchyma via glymphatic channels, triggers these dysregulations. This review discusses the neuroglial, neurovascular, and neuroimmunological dysregulations in the context of spreading depolarization and spreading ischemia as critical elements in the pathogenesis of cortical infarcts after subarachnoid hemorrhage.
Collapse
Affiliation(s)
- Jens P Dreier
- Center for Stroke Research Berlin, Campus Charité Mitte, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Charitéplatz 1, 10117, Berlin, Germany.
- Department of Experimental Neurology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.
- Department of Neurology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.
- Bernstein Center for Computational Neuroscience Berlin, Berlin, Germany.
- Einstein Center for Neurosciences Berlin, Berlin, Germany.
| | - Alexander Joerk
- Department of Neurology, Jena University Hospital, Jena, Germany
| | - Hiroki Uchikawa
- Barrow Aneurysm & AVM Research Center, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ, USA
| | - Viktor Horst
- Center for Stroke Research Berlin, Campus Charité Mitte, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Charitéplatz 1, 10117, Berlin, Germany
- Institute of Neuropathology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Coline L Lemale
- Center for Stroke Research Berlin, Campus Charité Mitte, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Charitéplatz 1, 10117, Berlin, Germany
- Department of Experimental Neurology, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Helena Radbruch
- Institute of Neuropathology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Devin W McBride
- The Vivian L. Smith Department of Neurosurgery, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Peter Vajkoczy
- Department of Neurosurgery, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Ulf C Schneider
- Department of Neurosurgery, Cantonal Hospital of Lucerne and University of Lucerne, Lucerne, Switzerland
| | - Ran Xu
- Department of Neurosurgery, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
- DZHK, German Centre for Cardiovascular Research, Berlin, Germany
| |
Collapse
|
5
|
Diwan D, Mehla J, Nelson JW, Zipfel GJ. Development and validation of prechiasmatic mouse model of subarachnoid hemorrhage to measure long-term neurobehavioral impairment. RESEARCH SQUARE 2024:rs.3.rs-4176908. [PMID: 38645258 PMCID: PMC11030500 DOI: 10.21203/rs.3.rs-4176908/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
Controllable and reproducible animal models of aneurysmal subarachnoid hemorrhage (SAH) are crucial for the systematic study of the pathophysiology and treatment of this debilitating condition. Despite the variety of animal models of SAH currently available, attempts to translate promising therapeutic strategies from preclinical studies to humans have largely failed. This failure is likely due, at least in part, to poor replication of pathology and disabilities in these preclinical models, especially the long-term neurocognitive deficits that drive poor quality of life / return to work in SAH survivors. Therefore, there is an unmet need to develop experimental models that reliably replicate the long-term clinical ramifications of SAH - especially in mice where genetic manipulations are straightforward and readily available. To address this need, we developed a standardized mouse model of SAH that reproducibly produced significant and trackable long-term neurobehavioral deficits. SAH was induced by performing double blood injections into the prechiasmatic cistern - a simple modification to the well-characterized single prechiasmatic injection mouse model of SAH. Following SAH, mice recapitulated key characteristics of SAH patients including long-term cognitive impairment as observed by a battery of behavioral testing and delayed pathophysiologic processes assayed by neuroinflammatory markers. We believe that this new SAH mouse model will be an ideal paradigm for investigating the complex pathophysiology of SAH and identifying novel druggable therapeutic targets for treating SAH-associated long-term neurocognitive deficits in patients.
Collapse
|
6
|
Fürstenau E, Lindauer U, Koch H, Höllig A. Secondary Ischemia Assessment in Murine and Rat Preclinical Subarachnoid Hemorrhage Models: A Systematic Review. J Am Heart Assoc 2024; 13:e032694. [PMID: 38420758 PMCID: PMC10944078 DOI: 10.1161/jaha.123.032694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 01/11/2024] [Indexed: 03/02/2024]
Abstract
BACKGROUND Delayed cerebral ischemia represents a significant contributor to death and disability following aneurysmal subarachnoid hemorrhage. Although preclinical models have shown promising results, clinical trials have consistently failed to replicate the success of therapeutic strategies. The lack of standardized experimental setups and outcome assessments, particularly regarding secondary vasospastic/ischemic events, may be partly responsible for the translational failure. The study aims to delineate the procedural characteristics and assessment modalities of secondary vasospastic and ischemic events, serving as surrogates for clinically relevant delayed cerebral ischemia, in recent rat and murine subarachnoid hemorrhage models. METHODS AND RESULTS We conducted a systematic review of rat and murine in vivo subarachnoid hemorrhage studies (published: 2016-2020) using delayed cerebral ischemia/vasospasm as outcome parameters. Our analysis included 102 eligible studies. In murine studies (n=30), the endovascular perforation model was predominantly used, while rat studies primarily employed intracisternal blood injection to mimic subarachnoid hemorrhage. Particularly, the injection models exhibited considerable variation in injection volume, rate, and cerebrospinal fluid withdrawal. Peri-interventional monitoring was generally inadequately reported across all models, with body temperature and blood pressure being the most frequently documented parameters (62% and 34%, respectively). Vasospastic events were mainly assessed through microscopy of large cerebral arteries. In 90% of the rat and 86% of the murine studies, only male animals were used. CONCLUSIONS Our study underscores the substantial heterogeneity in procedural characteristics and outcome assessments of experimental subarachnoid hemorrhage research. To address these challenges, drafting guidelines for standardization and ensuring rigorous control of methodological and experimental quality by funders and journals are essential. REGISTRATION URL: https://www.crd.york.ac.uk/prospero/; Unique identifier: CRD42022337279.
Collapse
Affiliation(s)
- Elias Fürstenau
- Department of NeurosurgeryUniversity Hospital Aachen, RWTH Aachen UniversityAachenGermany
| | - Ute Lindauer
- Department of NeurosurgeryUniversity Hospital Aachen, RWTH Aachen UniversityAachenGermany
- Translational Neurosurgery and Neurobiology, Department of NeurosurgeryUniversity Hospital Aachen, RWTH Aachen UniversityAachenGermany
| | - Henner Koch
- Department of Epileptology and NeurologyRWTH Aachen UniversityAachenGermany
| | - Anke Höllig
- Department of NeurosurgeryUniversity Hospital Aachen, RWTH Aachen UniversityAachenGermany
| |
Collapse
|
7
|
Ernst L, Kümmecke AM, Zieglowski L, Liu W, Schulz M, Czigany Z, Tolba RH. Severity Assessment in Rats Undergoing Subarachnoid Hemorrhage Induction by Endovascular Perforation or Corresponding Sham Surgery. Eur Surg Res 2022; 64:120-138. [PMID: 35385845 PMCID: PMC9808704 DOI: 10.1159/000524432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 03/29/2022] [Indexed: 11/19/2022]
Abstract
INTRODUCTION Animal models for preclinical research of subarachnoid hemorrhage (SAH) are widely used as much of the pathophysiology remains unknown. However, the burden of these models inflicted on the animals is not well characterized. The European directive requires severity assessment-based allocation to categories. Up to now, the classification into predefined categories is rather subjective and often without underlying scientific knowledge. We therefore aimed at assessing the burden of rats after SAH or the corresponding sham surgery to provide a scientific assessment. METHODS We performed a multimodal approach, using different behavior tests, clinical and neurological scoring, and biochemical markers using the common model for SAH of intracranial endovascular filament perforation in male Wistar rats. Up to 7 days after surgery, animals with SAH were compared to sham surgery and to a group receiving only anesthesia and analgesia. RESULTS Sham surgery (n = 15) and SAH (n = 16) animals showed an increase in the clinical score the first days after surgery, indicating clinical deterioration, while animals receiving only anesthesia without surgery (n = 5) remained unaffected. Body weight loss occurred in all groups but was more pronounced and statistically significant only after surgery. The analysis of burrowing, open field (total distance, erections), balance beam, and neuroscore showed primarily an effect of the surgery itself in sham surgery and SAH animals. Only concerning balance beam and neuroscore, a difference was visible between sham surgery and SAH. The outcome of the analysis of systemic and local inflammatory parameters and of corticosterone in blood and its metabolites in feces was only robust in animals suffering from larger bleedings. Application of principal component analysis resulted in a clear separation of sham surgery and SAH animals from their respective baseline as well as from the anesthesia-only group at days 1 and 3, with the difference between sham surgery and SAH being not significant. DISCUSSION/CONCLUSION To our knowledge, we are the first to publish detailed clinical score sheet data combined with advanced behavioral assessment in the endovascular perforation model for SAH in rats. The tests chosen here clearly depict an impairment of the animals within the first days after surgery and are consequently well suited for assessment of the animals' suffering in the model. A definitive classification into one of the severity categories named by the EU directive is yet pending and has to be performed in the future by including the assessment data from different neurological and nonneurological disease models.
Collapse
Affiliation(s)
- Lisa Ernst
- Institute for Laboratory Animal Science & Experimental Surgery, Faculty of Medicine, University Hospital RWTH Aachen, Aachen, Germany
| | - Anna Maria Kümmecke
- Institute for Laboratory Animal Science & Experimental Surgery, Faculty of Medicine, University Hospital RWTH Aachen, Aachen, Germany
| | - Leonie Zieglowski
- Institute for Laboratory Animal Science & Experimental Surgery, Faculty of Medicine, University Hospital RWTH Aachen, Aachen, Germany
| | - Wenjia Liu
- Department of Surgery and Transplantation, Faculty of Medicine, University Hospital RWTH Aachen, Aachen, Germany
| | - Mareike Schulz
- Institute for Laboratory Animal Science & Experimental Surgery, Faculty of Medicine, University Hospital RWTH Aachen, Aachen, Germany
| | - Zoltan Czigany
- Department of Surgery and Transplantation, Faculty of Medicine, University Hospital RWTH Aachen, Aachen, Germany
| | - René H. Tolba
- Institute for Laboratory Animal Science & Experimental Surgery, Faculty of Medicine, University Hospital RWTH Aachen, Aachen, Germany
| |
Collapse
|
8
|
In Vivo Vasospasm Induction by Ultrasound Application in the Chicken Chorioallantoic Membrane Model. Transl Stroke Res 2022; 13:616-624. [PMID: 35061211 PMCID: PMC9232457 DOI: 10.1007/s12975-021-00960-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 10/01/2021] [Accepted: 10/26/2021] [Indexed: 11/29/2022]
Abstract
Cerebral vasospasm is a highly investigated phenomenon in neurovascular research. Experimental vasospasm models are irreplaceable for the evaluation of new antivasospastic drugs. In this study, we assessed the reliability of in vivo vasospasm induction by ultrasound application in the chicken chorioallantoic membrane (CAM) model. After incubation of fertilized chicken eggs for four days, a fenestration was performed to enable examination of the CAM vessels. On the thirteenth day, continuous-wave ultrasound (3 MHz, 1 W/cm2) was applied on the CAM vessels for 60 s. The ultrasound effect on the vessels was recorded by life imaging (5-MP HD-microscope camera, Leica®). The induced vessel diameter changes were evaluated in a defined time interval of 20 min using a Fiji macro. The vessel diameter before and after sonication was measured and the relative diameter reduction was determined. A first reduction of vessel diameter was observed after three minutes with an average vessel-diameter decrease to 77%. The maximum reduction in vessel diameter was reached eight minutes after sonication with an average vessel diameter decrease to 57% (mean relative diameter reduction of 43%, range 44–61%), ANOVA, p = 0.0002. The vasospasm persisted for all 20 recorded minutes post induction. Vasospasm can be reliably induced by short application of 3 MHz-ultrasound to the CAM vessels. This might be a suitable in vivo model for the evaluation of drug effects on vasospasm in an experimental setting as intermediary in the transition process from in vitro to in vivo assessment using animal models.
Collapse
|
9
|
Goursaud S, Martinez de Lizarrondo S, Grolleau F, Chagnot A, Agin V, Maubert E, Gauberti M, Vivien D, Ali C, Gakuba C. Delayed Cerebral Ischemia After Subarachnoid Hemorrhage: Is There a Relevant Experimental Model? A Systematic Review of Preclinical Literature. Front Cardiovasc Med 2021; 8:752769. [PMID: 34869659 PMCID: PMC8634441 DOI: 10.3389/fcvm.2021.752769] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 10/21/2021] [Indexed: 12/14/2022] Open
Abstract
Delayed cerebral ischemia (DCI) is one of the main prognosis factors for disability after aneurysmal subarachnoid hemorrhage (SAH). The lack of a consensual definition for DCI had limited investigation and care in human until 2010, when a multidisciplinary research expert group proposed to define DCI as the occurrence of cerebral infarction (identified on imaging or histology) associated with clinical deterioration. We performed a systematic review to assess whether preclinical models of SAH meet this definition, focusing on the combination of noninvasive imaging and neurological deficits. To this aim, we searched in PUBMED database and included all rodent SAH models that considered cerebral ischemia and/or neurological outcome and/or vasospasm. Seventy-eight publications were included. Eight different methods were performed to induce SAH, with blood injection in the cisterna magna being the most widely used (n = 39, 50%). Vasospasm was the most investigated SAH-related complication (n = 52, 67%) compared to cerebral ischemia (n = 30, 38%), which was never investigated with imaging. Neurological deficits were also explored (n = 19, 24%). This systematic review shows that no preclinical SAH model meets the 2010 clinical definition of DCI, highlighting the inconsistencies between preclinical and clinical standards. In order to enhance research and favor translation to humans, pertinent SAH animal models reproducing DCI are urgently needed.
Collapse
Affiliation(s)
- Suzanne Goursaud
- CHU de Caen Normandie, Service de Réanimation Médicale, Caen, France.,Normandie University, UNICAEN, INSERM, U1237, PhIND ≪ Physiopathology and Imaging of Neurological Disorders ≫, Institut Blood and Brain @ Caen-Normandie, Cyceron, Caen, France
| | - Sara Martinez de Lizarrondo
- Normandie University, UNICAEN, INSERM, U1237, PhIND ≪ Physiopathology and Imaging of Neurological Disorders ≫, Institut Blood and Brain @ Caen-Normandie, Cyceron, Caen, France
| | - François Grolleau
- Centre d'Epidémiologie Clinique, AP-HP (Assistance Publique des Hôpitaux de Paris), Hôpital Hôtel Dieu, Paris, France
| | - Audrey Chagnot
- Normandie University, UNICAEN, INSERM, U1237, PhIND ≪ Physiopathology and Imaging of Neurological Disorders ≫, Institut Blood and Brain @ Caen-Normandie, Cyceron, Caen, France
| | - Véronique Agin
- Normandie University, UNICAEN, INSERM, U1237, PhIND ≪ Physiopathology and Imaging of Neurological Disorders ≫, Institut Blood and Brain @ Caen-Normandie, Cyceron, Caen, France
| | - Eric Maubert
- Normandie University, UNICAEN, INSERM, U1237, PhIND ≪ Physiopathology and Imaging of Neurological Disorders ≫, Institut Blood and Brain @ Caen-Normandie, Cyceron, Caen, France
| | - Maxime Gauberti
- Normandie University, UNICAEN, INSERM, U1237, PhIND ≪ Physiopathology and Imaging of Neurological Disorders ≫, Institut Blood and Brain @ Caen-Normandie, Cyceron, Caen, France
| | - Denis Vivien
- Normandie University, UNICAEN, INSERM, U1237, PhIND ≪ Physiopathology and Imaging of Neurological Disorders ≫, Institut Blood and Brain @ Caen-Normandie, Cyceron, Caen, France.,CHU Caen, Department of Clinical Research, CHU Caen Côte de Nacre, Caen, France
| | - Carine Ali
- Normandie University, UNICAEN, INSERM, U1237, PhIND ≪ Physiopathology and Imaging of Neurological Disorders ≫, Institut Blood and Brain @ Caen-Normandie, Cyceron, Caen, France
| | - Clément Gakuba
- Normandie University, UNICAEN, INSERM, U1237, PhIND ≪ Physiopathology and Imaging of Neurological Disorders ≫, Institut Blood and Brain @ Caen-Normandie, Cyceron, Caen, France.,CHU de Caen Normandie, Service d'Anesthésie-Réanimation Chirurgicale, Caen, France
| |
Collapse
|
10
|
Marbacher S, Bircher B, Vogt DR, Diepers M, Remonda L, Fandino J. Periinterventional Vasospasm in Patients With Aneurysmal Subarachnoid Hemorrhage Predicts an Unfavorable Clinical Course. NEUROSURGERY OPEN 2021. [DOI: 10.1093/neuopn/okaa021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
11
|
Hosseini V, Mallone A, Nasrollahi F, Ostrovidov S, Nasiri R, Mahmoodi M, Haghniaz R, Baidya A, Salek MM, Darabi MA, Orive G, Shamloo A, Dokmeci MR, Ahadian S, Khademhosseini A. Healthy and diseased in vitro models of vascular systems. LAB ON A CHIP 2021; 21:641-659. [PMID: 33507199 DOI: 10.1039/d0lc00464b] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Irregular hemodynamics affects the progression of various vascular diseases, such atherosclerosis or aneurysms. Despite the extensive hemodynamics studies on animal models, the inter-species differences between humans and animals hamper the translation of such findings. Recent advances in vascular tissue engineering and the suitability of in vitro models for interim analysis have increased the use of in vitro human vascular tissue models. Although the effect of flow on endothelial cell (EC) pathophysiology and EC-flow interactions have been vastly studied in two-dimensional systems, they cannot be used to understand the effect of other micro- and macro-environmental parameters associated with vessel wall diseases. To generate an ideal in vitro model of the vascular system, essential criteria should be included: 1) the presence of smooth muscle cells or perivascular cells underneath an EC monolayer, 2) an elastic mechanical response of tissue to pulsatile flow pressure, 3) flow conditions that accurately mimic the hemodynamics of diseases, and 4) geometrical features required for pathophysiological flow. In this paper, we review currently available in vitro models that include flow dynamics and discuss studies that have tried to address the criteria mentioned above. Finally, we critically review in vitro fluidic models of atherosclerosis, aneurysm, and thrombosis.
Collapse
Affiliation(s)
- Vahid Hosseini
- Center for Minimally Invasive Therapeutics (C-MIT), University of California-Los Angeles, CA 90095, USA and California NanoSystems Institute and Department of Bioengineering, University of California-Los Angeles, CA 90095, USA and Terasaki Institute for Biomedical Innovation, Los Angeles, CA 90024, USA.
| | - Anna Mallone
- Institute of Regenerative Medicine, University of Zurich, Zurich CH-8952, Switzerland
| | - Fatemeh Nasrollahi
- Center for Minimally Invasive Therapeutics (C-MIT), University of California-Los Angeles, CA 90095, USA and California NanoSystems Institute and Department of Bioengineering, University of California-Los Angeles, CA 90095, USA and Terasaki Institute for Biomedical Innovation, Los Angeles, CA 90024, USA.
| | - Serge Ostrovidov
- Center for Minimally Invasive Therapeutics (C-MIT), University of California-Los Angeles, CA 90095, USA and Department of Radiological Sciences, University of California-Los Angeles, CA 90095, USA
| | - Rohollah Nasiri
- Center for Minimally Invasive Therapeutics (C-MIT), University of California-Los Angeles, CA 90095, USA and California NanoSystems Institute and Department of Bioengineering, University of California-Los Angeles, CA 90095, USA and Department of Mechanical Engineering, Sharif University of Technology, Tehran 1136511155, Iran
| | - Mahboobeh Mahmoodi
- Center for Minimally Invasive Therapeutics (C-MIT), University of California-Los Angeles, CA 90095, USA and California NanoSystems Institute and Department of Bioengineering, University of California-Los Angeles, CA 90095, USA and Department of Biomedical Engineering, Yazd Branch, Islamic Azad University, Yazd 8915813135, Iran
| | - Reihaneh Haghniaz
- Center for Minimally Invasive Therapeutics (C-MIT), University of California-Los Angeles, CA 90095, USA and California NanoSystems Institute and Department of Bioengineering, University of California-Los Angeles, CA 90095, USA and Terasaki Institute for Biomedical Innovation, Los Angeles, CA 90024, USA.
| | - Avijit Baidya
- Center for Minimally Invasive Therapeutics (C-MIT), University of California-Los Angeles, CA 90095, USA and California NanoSystems Institute and Department of Bioengineering, University of California-Los Angeles, CA 90095, USA
| | - M Mehdi Salek
- School of Engineering, Massachusetts Institute of Technology (MIT), Cambridge, MA 02139, USA
| | - Mohammad Ali Darabi
- Center for Minimally Invasive Therapeutics (C-MIT), University of California-Los Angeles, CA 90095, USA and California NanoSystems Institute and Department of Bioengineering, University of California-Los Angeles, CA 90095, USA and Terasaki Institute for Biomedical Innovation, Los Angeles, CA 90024, USA.
| | - Gorka Orive
- NanoBioCel Group, Laboratory of Pharmaceutics, School of Pharmacy, University of the Basque Country UPV/EHU, Paseo de la Universidad 7, Vitoria-Gasteiz 01006, Spain and Biomedical Research Networking Centre in Bioengineering, Biomaterials, and Nanomedicine (CIBER-BBN), Vitoria-Gasteiz 01007, Spain
| | - Amir Shamloo
- Department of Mechanical Engineering, Sharif University of Technology, Tehran 1136511155, Iran
| | - Mehmet R Dokmeci
- Center for Minimally Invasive Therapeutics (C-MIT), University of California-Los Angeles, CA 90095, USA and California NanoSystems Institute and Department of Bioengineering, University of California-Los Angeles, CA 90095, USA and Terasaki Institute for Biomedical Innovation, Los Angeles, CA 90024, USA.
| | - Samad Ahadian
- Center for Minimally Invasive Therapeutics (C-MIT), University of California-Los Angeles, CA 90095, USA and California NanoSystems Institute and Department of Bioengineering, University of California-Los Angeles, CA 90095, USA and Terasaki Institute for Biomedical Innovation, Los Angeles, CA 90024, USA.
| | - Ali Khademhosseini
- Center for Minimally Invasive Therapeutics (C-MIT), University of California-Los Angeles, CA 90095, USA and California NanoSystems Institute and Department of Bioengineering, University of California-Los Angeles, CA 90095, USA and Terasaki Institute for Biomedical Innovation, Los Angeles, CA 90024, USA.
| |
Collapse
|
12
|
Lim J, Cho YD, Kwon HJ, Byoun SH, Koh HS, Park B, Choi SW. Duration of Vasodilatory Action After Intra-arterial Infusions of Calcium Channel Blockers in Animal Model of Cerebral Vasospasm. Neurocrit Care 2020; 34:867-875. [PMID: 32978731 DOI: 10.1007/s12028-020-01112-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 09/09/2020] [Indexed: 11/29/2022]
Abstract
BACKGROUND In medically refractory vasospasm, invasive intervention may be required. A commonly used approach is intra-arterial (IA) drug infusion. Although calcium channel blockers (CCBs) have been widely applied in this setting, studies comparing their efficacies and durations of action have been few. This study was performed to compare attributes of three CCBs (nicardipine, nimodipine, and verapamil), focusing on duration of the vasodilatory action based on angiography. METHODS Vasospasm was produced in New Zealand white rabbits (N = 22) through experimentally induced subarachnoid hemorrhage and confirmed in each via conventional angiography, grouping them by IA-infused drug. After chemoangioplasty, angiography was performed hourly for 5 h to compare dilated and vasospastic arterial diameters. Drug efficacy, duration of action, and changes in mean arterial pressure (relative to baseline) were analyzed by group. RESULTS Effective vasodilation was evident in all three groups immediately after IA drug infusion. The vasodilative effects of nimodipine and nicardipine peaked at 1 h and were sustained at 2 h, returning to initial vasospastic states at 3 h. In verapamil recipients, effects were more transient by comparison, entirely dissipating at 1 h. Only the nicardipine group showed a significant 3-h period of lowered blood pressure. CONCLUSIONS Although nimodipine and nicardipine proved longer acting than verapamil in terms of vasodilation, their effects were not sustained beyond 2 h after IA infusion. Further study is required to confirm the vasodilatory duration of IA CCB based on perfusion status, and an effort should be made to find new alternative to extend the duration.
Collapse
Affiliation(s)
- Jeongwook Lim
- Department of Neurosurgery, School of Medicine, Chungnam National University Hospital, Daejeon, Korea
| | - Young Dae Cho
- Department of Radiology, Seoul National University Hospital, Seoul National University College of Medicine, 101 Daehak-ro, Jongno-gu, Seoul, 03080, Korea.
| | - Hyon-Jo Kwon
- Department of Neurosurgery, School of Medicine, Chungnam National University Hospital, Daejeon, Korea
| | - Soo Hyoung Byoun
- Department of Neurosurgery, School of Medicine, Chungnam National University Hospital, Daejeon, Korea
| | - Hyeon-Song Koh
- Department of Neurosurgery, School of Medicine, Chungnam National University Hospital, Daejeon, Korea
| | - Bumsoo Park
- Department of Neurosurgery, School of Medicine, Chungnam National University Hospital, Daejeon, Korea
| | - Seung-Won Choi
- Department of Neurosurgery, School of Medicine, Chungnam National University Hospital, Daejeon, Korea
| |
Collapse
|
13
|
Grüter BE, Croci D, Schöpf S, Nevzati E, d’Allonzo D, Lattmann J, Roth T, Bircher B, Muroi C, Dutilh G, Widmer HR, Plesnila N, Fandino J, Marbacher S. Systematic Review and Meta-analysis of Methodological Quality in In Vivo Animal Studies of Subarachnoid Hemorrhage. Transl Stroke Res 2020; 11:1175-1184. [DOI: 10.1007/s12975-020-00801-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 02/27/2020] [Accepted: 03/03/2020] [Indexed: 02/08/2023]
|
14
|
van Lieshout JH, Marbacher S, Muhammad S, Boogaarts HD, Bartels RHMA, Dibué M, Steiger HJ, Hänggi D, Kamp MA. Proposed Definition of Experimental Secondary Ischemia for Mouse Subarachnoid Hemorrhage. Transl Stroke Res 2020; 11:1165-1170. [PMID: 32152960 PMCID: PMC7496000 DOI: 10.1007/s12975-020-00796-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Revised: 02/17/2020] [Accepted: 02/21/2020] [Indexed: 01/01/2023]
Abstract
Inconsistency in outcome parameters for delayed cerebral ischemia (DCI) makes it difficult to compare results between mouse studies, in the same way inconsistency in outcome parameters in human studies has for long obstructed adequate comparison. The absence of an established definition may in part be responsible for the failed translational results. The present article proposes a standardized definition for DCI in experimental mouse models, which can be used as outcome measure in future animal studies. We used a consensus-building approach to propose a definition for "experimental secondary ischemia" (ESI) in experimental mouse subarachnoid hemorrhage that can be used as an outcome measure in preclinical studies. We propose that the outcome measure should be as follows: occurrence of focal neurological impairment or a general neurological impairment compared with a control group and that neurological impairment should occur secondarily following subarachnoid hemorrhage (SAH) induction compared with an initial assessment following SAH induction. ESI should not be used if the condition can be explained by general anesthesia or if other means of assessments sufficiently explain function impairment. If neurological impairment cannot reliably be evaluated, due to scientific setup. Verification of a significant secondary impairment of the cerebral perfusion compared with a control group is mandatory. This requires longitudinal examination in the same animal. The primary aim is that ESI should be distinguished from intervention-related ischemia or neurological deficits, in order establish a uniform definition for experimental SAH in mice that is in alignment with outcome measures in human studies.
Collapse
Affiliation(s)
- Jasper Hans van Lieshout
- Department of Neurosurgery, Medical Faculty, Heinrich-Heine-University Düsseldorf, Moorenstraße 5, D-40225, Düsseldorf, Germany. .,Department of Neurosurgery, Radboudumc Medical Center, Geert Grooteplein Zuid 10, 6525, GA, Nijmegen, the Netherlands.
| | - Serge Marbacher
- Department of Neurosurgery c/o Neuro Research Office, Kantonsspital Aarau, Tellstrasse 1, 5001, Aarau, Switzerland
| | - Sajjad Muhammad
- Department of Neurosurgery, Medical Faculty, Heinrich-Heine-University Düsseldorf, Moorenstraße 5, D-40225, Düsseldorf, Germany
| | - Hieronymus D Boogaarts
- Department of Neurosurgery, Radboudumc Medical Center, Geert Grooteplein Zuid 10, 6525, GA, Nijmegen, the Netherlands
| | - Ronald H M A Bartels
- Department of Neurosurgery, Radboudumc Medical Center, Geert Grooteplein Zuid 10, 6525, GA, Nijmegen, the Netherlands
| | - Maxine Dibué
- Department of Neurosurgery, Medical Faculty, Heinrich-Heine-University Düsseldorf, Moorenstraße 5, D-40225, Düsseldorf, Germany
| | - Hans-Jakob Steiger
- Department of Neurosurgery, Medical Faculty, Heinrich-Heine-University Düsseldorf, Moorenstraße 5, D-40225, Düsseldorf, Germany
| | - Daniel Hänggi
- Department of Neurosurgery, Medical Faculty, Heinrich-Heine-University Düsseldorf, Moorenstraße 5, D-40225, Düsseldorf, Germany
| | - Marcel A Kamp
- Department of Neurosurgery, Medical Faculty, Heinrich-Heine-University Düsseldorf, Moorenstraße 5, D-40225, Düsseldorf, Germany
| |
Collapse
|
15
|
Oka F, Chung DY, Suzuki M, Ayata C. Delayed Cerebral Ischemia After Subarachnoid Hemorrhage: Experimental-Clinical Disconnect and the Unmet Need. Neurocrit Care 2020; 32:238-251. [PMID: 30671784 PMCID: PMC7387950 DOI: 10.1007/s12028-018-0650-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
BACKGROUND Delayed cerebral ischemia (DCI) is among the most dreaded complications following aneurysmal subarachnoid hemorrhage (SAH). Despite advances in neurocritical care, DCI remains a significant cause of morbidity and mortality, prolonged intensive care unit and hospital stay, and high healthcare costs. Large artery vasospasm has classically been thought to lead to DCI. However, recent failure of clinical trials targeting vasospasm to improve outcomes has underscored the disconnect between large artery vasospasm and DCI. Therefore, interest has shifted onto other potential mechanisms such as microvascular dysfunction and spreading depolarizations. Animal models can be instrumental in dissecting pathophysiology, but clinical relevance can be difficult to establish. METHODS Here, we performed a systematic review of the literature on animal models of SAH, focusing specifically on DCI and neurological deficits. RESULTS We find that dog, rabbit and rodent models do not consistently lead to DCI, although some degree of delayed vascular dysfunction is common. Primate models reliably recapitulate delayed neurological deficits and ischemic brain injury; however, ethical issues and cost limit their translational utility. CONCLUSIONS To facilitate translation, clinically relevant animal models that reproduce the pathophysiology and cardinal features of DCI after SAH are urgently needed.
Collapse
Affiliation(s)
- Fumiaki Oka
- Neurovascular Research Lab, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA.
- Department of Neurosurgery, Yamaguchi University School of Medicine, 1-1-1, Minami-Kogushi, Ube, Yamaguchi, 755-8505, Japan.
| | - David Y Chung
- Neurovascular Research Lab, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
- Stroke Service and Neuroscience Intensive Care Unit, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| | - Michiyasu Suzuki
- Department of Neurosurgery, Yamaguchi University School of Medicine, 1-1-1, Minami-Kogushi, Ube, Yamaguchi, 755-8505, Japan
| | - Cenk Ayata
- Neurovascular Research Lab, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
- Stroke Service and Neuroscience Intensive Care Unit, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA, USA
| |
Collapse
|
16
|
Wang Q, Luo Q, Zhao YH, Chen X. Toll-like receptor-4 pathway as a possible molecular mechanism for brain injuries after subarachnoid hemorrhage. Int J Neurosci 2020; 130:953-964. [PMID: 31903827 DOI: 10.1080/00207454.2019.1709845] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Subarachnoid hemorrhage (SAH) is known as an acute catastrophic neurological disease that continues to be a serious and significant health problem worldwide. The mechanisms contributing to brain injury after SAH remain unclear despite decades of study focusing on early brain injury (EBI) and delayed brain injury (DBI). Neuroinflammation is a well-recognized consequence of SAH and may be responsible for EBI, cerebral vasospasm, and DBI. Toll-like receptors (TLRs) play a crucial role in the inflammatory response by recognizing damage-associated molecular patterns derived from the SAH. TLR4 is the most studied Toll-like receptor and is widely expressed in the central nervous system (CNS). It can be activated by the extravasated blood components in myeloid differentiation primary response-88/Toll/interleukin-1 receptor-domain-containing adapter-inducing interferon-β (MyD88/TRIF)-dependent pathway after SAH. Transcription factors, such as nuclear factor-κB (NF-κB), mitogen-activated protein kinase (MAPK) and interferon regulatory factor (IRF), that regulate the expression of proinflammatory cytokine genes are initiated by the activation of TLR4, which cause the brain damage after SAH. TLR4 may therefore be a useful therapeutic target for overcoming EBI and DBI in post-SAH neuroinflammation, thereby improving SAH outcome. In the present review, we summarized recent findings from basic and clinical studies of SAH, with a primary focus on the biological characteristics and functions of TLR4 and discussed the mechanisms associated with TLR4 signaling pathway in EBI and DBI following SAH.
Collapse
Affiliation(s)
- Qunhui Wang
- Department of Neurosurgery, The First Hospital of Jilin University, Changchun, Jilin, P. R. China
| | - Qi Luo
- Department of Neurosurgery, The First Hospital of Jilin University, Changchun, Jilin, P. R. China
| | - Yu-Hao Zhao
- Department of Neurosurgery, The First Hospital of Jilin University, Changchun, Jilin, P. R. China
| | - Xuan Chen
- Department of Neurosurgery, The First Hospital of Jilin University, Changchun, Jilin, P. R. China
| |
Collapse
|
17
|
Garland P, Morton MJ, Haskins W, Zolnourian A, Durnford A, Gaastra B, Toombs J, Heslegrave AJ, More J, Okemefuna AI, Teeling JL, Graversen JH, Zetterberg H, Moestrup SK, Bulters DO, Galea I. Haemoglobin causes neuronal damage in vivo which is preventable by haptoglobin. Brain Commun 2020; 2:fcz053. [PMID: 32346673 PMCID: PMC7188517 DOI: 10.1093/braincomms/fcz053] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
After subarachnoid haemorrhage, prolonged exposure to toxic extracellular haemoglobin occurs in the brain. Here, we investigate the role of haemoglobin neurotoxicity in vivo and its prevention. In humans after subarachnoid haemorrhage, haemoglobin in cerebrospinal fluid was associated with neurofilament light chain, a marker of neuronal damage. Most haemoglobin was not complexed with haptoglobin, an endogenous haemoglobin scavenger present at very low concentration in the brain. Exogenously added haptoglobin bound most uncomplexed haemoglobin, in the first 2 weeks after human subarachnoid haemorrhage, indicating a wide therapeutic window. In mice, the behavioural, vascular, cellular and molecular changes seen after human subarachnoid haemorrhage were recapitulated by modelling a single aspect of subarachnoid haemorrhage: prolonged intrathecal exposure to haemoglobin. Haemoglobin-induced behavioural deficits and astrocytic, microglial and synaptic changes were attenuated by haptoglobin. Haptoglobin treatment did not attenuate large-vessel vasospasm, yet improved clinical outcome by restricting diffusion of haemoglobin into the parenchyma and reducing small-vessel vasospasm. In summary, haemoglobin toxicity is of clinical importance and preventable by haptoglobin, independent of large-vessel vasospasm.
Collapse
Affiliation(s)
- Patrick Garland
- Clinical Neurosciences, Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, SO16 6YD, UK
| | - Matthew J Morton
- Clinical Neurosciences, Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, SO16 6YD, UK
| | - William Haskins
- Clinical Neurosciences, Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, SO16 6YD, UK
| | - Ardalan Zolnourian
- Department of Neurosurgery, Wessex Neurological Centre, University Hospital Southampton NHS Foundation Trust, Southampton, SO16 6YD, UK
| | - Andrew Durnford
- Department of Neurosurgery, Wessex Neurological Centre, University Hospital Southampton NHS Foundation Trust, Southampton, SO16 6YD, UK
| | - Ben Gaastra
- Department of Neurosurgery, Wessex Neurological Centre, University Hospital Southampton NHS Foundation Trust, Southampton, SO16 6YD, UK
| | - Jamie Toombs
- UK Dementia Research Institute, University College London, London, WC1E 6BT, UK.,Department of Neurodegenerative Disease, Institute of Neurology, London, WC1N 3BG, UK
| | - Amanda J Heslegrave
- UK Dementia Research Institute, University College London, London, WC1E 6BT, UK.,Department of Neurodegenerative Disease, Institute of Neurology, London, WC1N 3BG, UK
| | - John More
- Research & Development Department, Bio Products Laboratory Limited, Elstree, Hertfordshire, WD6 3BX, UK
| | - Azubuike I Okemefuna
- Research & Development Department, Bio Products Laboratory Limited, Elstree, Hertfordshire, WD6 3BX, UK
| | - Jessica L Teeling
- School of Biological Sciences, Faculty of Environmental and Life Sciences, University of Southampton, Southampton, SO16 6YD, UK
| | - Jonas H Graversen
- Department of Molecular Medicine, University of Southern Denmark, 5000 Odense C, Denmark
| | - Henrik Zetterberg
- UK Dementia Research Institute, University College London, London, WC1E 6BT, UK.,Department of Neurodegenerative Disease, Institute of Neurology, London, WC1N 3BG, UK.,Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Mo¨ lndal, S-431 80, Sweden.,Clinical Neurochemistry Laboratory, Sahlgrenska University Hospital, Mo¨ lndal, S-431 80, Sweden
| | - Soren K Moestrup
- Department of Molecular Medicine, University of Southern Denmark, 5000 Odense C, Denmark.,Department of Clinical Biochemistry, Aarhus University Hospital, 8200 Aarhus N, Denmark.,Department of Biomedicine, Aarhus University, 8000 Aarhus C, Denmark
| | - Diederik O Bulters
- Department of Neurosurgery, Wessex Neurological Centre, University Hospital Southampton NHS Foundation Trust, Southampton, SO16 6YD, UK
| | - Ian Galea
- Clinical Neurosciences, Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton, SO16 6YD, UK.,Department of Neurosurgery, Wessex Neurological Centre, University Hospital Southampton NHS Foundation Trust, Southampton, SO16 6YD, UK
| |
Collapse
|
18
|
Daou BJ, Koduri S, Thompson BG, Chaudhary N, Pandey AS. Clinical and experimental aspects of aneurysmal subarachnoid hemorrhage. CNS Neurosci Ther 2019; 25:1096-1112. [PMID: 31583833 PMCID: PMC6776745 DOI: 10.1111/cns.13222] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 08/30/2019] [Accepted: 09/01/2019] [Indexed: 11/30/2022] Open
Abstract
Aneurysmal subarachnoid hemorrhage (aSAH) continues to be associated with significant morbidity and mortality despite advances in care and aneurysm treatment strategies. Cerebral vasospasm continues to be a major source of clinical worsening in patients. We intended to review the clinical and experimental aspects of aSAH and identify strategies that are being evaluated for the treatment of vasospasm. A literature review on aSAH and cerebral vasospasm was performed. Available treatments for aSAH continue to expand as research continues to identify new therapeutic targets. Oral nimodipine is the primary medication used in practice given its neuroprotective properties. Transluminal balloon angioplasty is widely utilized in patients with symptomatic vasospasm and ischemia. Prophylactic "triple-H" therapy, clazosentan, and intraarterial papaverine have fallen out of practice. Trials have not shown strong evidence supporting magnesium or statins. Other calcium channel blockers, milrinone, tirilazad, fasudil, cilostazol, albumin, eicosapentaenoic acid, erythropoietin, corticosteroids, minocycline, deferoxamine, intrathecal thrombolytics, need to be further investigated. Many of the current experimental drugs may have significant roles in the treatment algorithm, and further clinical trials are needed. There is growing evidence supporting that early brain injury in aSAH may lead to significant morbidity and mortality, and this needs to be explored further.
Collapse
Affiliation(s)
- Badih J. Daou
- Department of Neurological SurgeryUniversity of MichiganAnn ArborMichigan
| | - Sravanthi Koduri
- Department of Neurological SurgeryUniversity of MichiganAnn ArborMichigan
| | | | - Neeraj Chaudhary
- Department of Neurological SurgeryUniversity of MichiganAnn ArborMichigan
| | - Aditya S. Pandey
- Department of Neurological SurgeryUniversity of MichiganAnn ArborMichigan
| |
Collapse
|
19
|
Hartings JA, York J, Carroll CP, Hinzman JM, Mahoney E, Krueger B, Winkler MKL, Major S, Horst V, Jahnke P, Woitzik J, Kola V, Du Y, Hagen M, Jiang J, Dreier JP. Subarachnoid blood acutely induces spreading depolarizations and early cortical infarction. Brain 2019; 140:2673-2690. [PMID: 28969382 DOI: 10.1093/brain/awx214] [Citation(s) in RCA: 91] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Accepted: 07/10/2017] [Indexed: 01/05/2023] Open
Abstract
See Ghoshal and Claassen (doi:10.1093/brain/awx226) for a scientific commentary on this article.
Early cortical infarcts are common in poor-grade patients after aneurysmal subarachnoid haemorrhage. There are no animal models of these lesions and mechanisms are unknown, although mass cortical spreading depolarizations are hypothesized as a requisite mechanism and clinical marker of infarct development. Here we studied acute sequelae of subarachnoid haemorrhage in the gyrencephalic brain of propofol-anaesthetized juvenile swine using subdural electrode strips (electrocorticography) and intraparenchymal neuromonitoring probes. Subarachnoid infusion of 1–2 ml of fresh blood at 200 µl/min over cortical sulci caused clusters of spreading depolarizations (count range: 12–34) in 7/17 animals in the ipsilateral but not contralateral hemisphere in 6 h of monitoring, without meaningful changes in other variables. Spreading depolarization clusters were associated with formation of sulcal clots (P < 0.01), a high likelihood of adjacent cortical infarcts (5/7 versus 2/10, P < 0.06), and upregulation of cyclooxygenase-2 in ipsilateral cortex remote from clots/infarcts. In a second cohort, infusion of 1 ml of clotted blood into a sulcus caused spreading depolarizations in 5/6 animals (count range: 4–20 in 6 h) and persistent thick clots with patchy or extensive infarction of circumscribed cortex in all animals. Infarcts were significantly larger after blood clot infusion compared to mass effect controls using fibrin clots of equal volume. Haematoxylin and eosin staining of infarcts showed well demarcated zones of oedema and hypoxic-ischaemic neuronal injury, consistent with acute infarction. The association of spreading depolarizations with early brain injury was then investigated in 23 patients [14 female; age (median, quartiles): 57 years (47, 63)] after repair of ruptured anterior communicating artery aneurysms by clip ligation (n = 14) or coiling (n = 9). Frontal electrocorticography [duration: 54 h (34, 66)] from subdural electrode strips was analysed over Days 0–3 after initial haemorrhage and magnetic resonance imaging studies were performed at ∼ 24–48 h after aneurysm treatment. Patients with frontal infarcts only and those with frontal infarcts and/or intracerebral haemorrhage were both significantly more likely to have spreading depolarizations (6/7 and 10/12, respectively) than those without frontal brain lesions (1/11, P’s < 0.05). These results suggest that subarachnoid clots in sulci/fissures are sufficient to induce spreading depolarizations and acute infarction in adjacent cortex. We hypothesize that the cellular toxicity and vasoconstrictive effects of depolarizations act in synergy with direct ischaemic effects of haemorrhage as mechanisms of infarct development. Results further validate spreading depolarizations as a clinical marker of early brain injury and establish a clinically relevant model to investigate causal pathologic sequences and potential therapeutic interventions.
Collapse
Affiliation(s)
- Jed A Hartings
- Department of Neurosurgery, University of Cincinnati College of Medicine, Cincinnati, OH, USA.,UC Gardner Neuroscience Institute and Mayfield Clinic, Cincinnati, OH, USA
| | - Jonathan York
- Department of Neurosurgery, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Christopher P Carroll
- Department of Neurosurgery, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Jason M Hinzman
- Department of Neurosurgery, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Eric Mahoney
- Department of Neurosurgery, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Bryan Krueger
- Department of Neurosurgery, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Maren K L Winkler
- Center for Stroke Research Berlin, Charité University Medicine Berlin, Germany
| | - Sebastian Major
- Center for Stroke Research Berlin, Charité University Medicine Berlin, Germany.,Department of Neurology, Charité University Medicine Berlin, Germany.,Department of Experimental Neurology, Charité University Medicine Berlin, Germany
| | - Viktor Horst
- Center for Stroke Research Berlin, Charité University Medicine Berlin, Germany
| | - Paul Jahnke
- Department of Radiology Charité University Medicine Berlin, Germany
| | - Johannes Woitzik
- Department of Neurosurgery, Charité University Medicine Berlin, Germany
| | - Vasilis Kola
- Center for Stroke Research Berlin, Charité University Medicine Berlin, Germany
| | - Yifeng Du
- Division of Pharmaceutical Sciences, University of Cincinnati College of Pharmacy, Cincinnati, OH, USA
| | - Matthew Hagen
- Department of Pathology and Laboratory Medicine, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Jianxiong Jiang
- Division of Pharmaceutical Sciences, University of Cincinnati College of Pharmacy, Cincinnati, OH, USA
| | - Jens P Dreier
- Center for Stroke Research Berlin, Charité University Medicine Berlin, Germany.,Department of Neurology, Charité University Medicine Berlin, Germany.,Department of Experimental Neurology, Charité University Medicine Berlin, Germany
| |
Collapse
|
20
|
Muroi C, Hugelshofer M, Seehusen F, Keller E. Natural Cerebral Aneurysm and Spontaneous Subarachnoid Hemorrhage in Mammals Other Than Man: Is There a Scope for Comparative Medicine? World Neurosurg 2018; 122:384-389. [PMID: 30447438 DOI: 10.1016/j.wneu.2018.11.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 10/31/2018] [Accepted: 11/02/2018] [Indexed: 10/27/2022]
Abstract
BACKGROUND Concepts that showed substantial efficacy in animal models of subarachnoid hemorrhage (SAH) often failed to improve outcome in humans with aneurysmal SAH. The concept of "comparative medicine," an open-minded comparison across species, might offer an alternative to the "constructed" animal models' approach. Naturally occurring diseases in animals might bear more similarity to human diseases than models. In this context, the question arises whether spontaneous intracranial aneurysms exist in animals or not, and whether they cause SAH or not. METHODS A systematic literature search was performed. Only articles dealing with natural aneurysms and/or SAH of mammals other than man were included. All articles dealing with induced aneurysms and/or SAH were removed. RESULTS Of 2812 screened articles, 9 articles describing natural intracranial aneurysms and/or SAH were found. In total 1979 individual animals of 29 species were examined. Natural intracranial aneurysms were described in 7 individual animals of 6 species. Spontaneous SAH was described in 3 species. In 1 chimpanzee, a ruptured intracranial aneurysm caused an SAH. Histological descriptions of the aneurysms were strikingly similar to those of humans. CONCLUSIONS Although interesting and innovative, the concept of "comparative medicine" seems to be impracticable due to the seemingly ultralow incidence of natural aneurysmal SAH in mammals other than man. The answer to the question "why intracranial aneurysms are less common in animals despite the strong histological similarity of cerebral arteries" might be a key issue. Last but not least, primates likely matter in SAH-related research, as aneurysmal SAH occurs in primates.
Collapse
Affiliation(s)
- Carl Muroi
- Neurocritical Care Unit, University Hospital Zurich, Zurich, Switzerland.
| | | | - Frauke Seehusen
- Institute for Veterinary Pathology, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| | - Emanuela Keller
- Neurocritical Care Unit, University Hospital Zurich, Zurich, Switzerland
| |
Collapse
|
21
|
Marbacher S, Grüter B, Schöpf S, Croci D, Nevzati E, D'Alonzo D, Lattmann J, Roth T, Bircher B, Wolfert C, Muroi C, Dutilh G, Widmer HR, Fandino J. Systematic Review of In Vivo Animal Models of Subarachnoid Hemorrhage: Species, Standard Parameters, and Outcomes. Transl Stroke Res 2018; 10:10.1007/s12975-018-0657-4. [PMID: 30209798 DOI: 10.1007/s12975-018-0657-4] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Revised: 08/16/2018] [Accepted: 08/19/2018] [Indexed: 10/28/2022]
Abstract
In preclinical models, modification of experimental parameters associated with techniques of inducing subarachnoid hemorrhage (SAH) can greatly affect outcomes. To analyze how parameter choice affects the relevance and comparability of findings, we systematically reviewed 765 experimental studies of in vivo animal SAH models (2000-2014). During the last decade, we found marked increases in publications using smaller species and models for simulating acute events after SAH. Overall, the fewer types of species and models used did not correlate with an increased standardization in the experimental characteristics and procedures. However, by species, commonly applied, reliable parameters for each experimental SAH technique were identified in mouse, rat, rabbit, and dog models. Our findings can serve as a starting point for discussion toward a more uniform performance of SAH experiments, development of preclinical SAH common data elements, and establishment of standardized protocols for multicenter preclinical trials.
Collapse
Affiliation(s)
- Serge Marbacher
- Department of Neurosurgery c/o Neuro Research Office, Kantonsspital Aarau, Tellstrasse 1, 5001, Aarau, Switzerland.
- Cerebrovascular Research Group, Department for BioMedical Research, University of Bern, Bern, Switzerland.
| | - Basil Grüter
- Department of Neurosurgery c/o Neuro Research Office, Kantonsspital Aarau, Tellstrasse 1, 5001, Aarau, Switzerland
- Cerebrovascular Research Group, Department for BioMedical Research, University of Bern, Bern, Switzerland
| | - Salome Schöpf
- Department of Neurosurgery c/o Neuro Research Office, Kantonsspital Aarau, Tellstrasse 1, 5001, Aarau, Switzerland
- Cerebrovascular Research Group, Department for BioMedical Research, University of Bern, Bern, Switzerland
| | - Davide Croci
- Department of Neurosurgery c/o Neuro Research Office, Kantonsspital Aarau, Tellstrasse 1, 5001, Aarau, Switzerland
- Cerebrovascular Research Group, Department for BioMedical Research, University of Bern, Bern, Switzerland
| | - Edin Nevzati
- Department of Neurosurgery c/o Neuro Research Office, Kantonsspital Aarau, Tellstrasse 1, 5001, Aarau, Switzerland
- Cerebrovascular Research Group, Department for BioMedical Research, University of Bern, Bern, Switzerland
| | - Donato D'Alonzo
- Department of Neurosurgery c/o Neuro Research Office, Kantonsspital Aarau, Tellstrasse 1, 5001, Aarau, Switzerland
| | - Jacqueline Lattmann
- Department of Neurosurgery c/o Neuro Research Office, Kantonsspital Aarau, Tellstrasse 1, 5001, Aarau, Switzerland
| | - Tabitha Roth
- Department of Neurosurgery c/o Neuro Research Office, Kantonsspital Aarau, Tellstrasse 1, 5001, Aarau, Switzerland
| | - Benjamin Bircher
- Department of Neurosurgery c/o Neuro Research Office, Kantonsspital Aarau, Tellstrasse 1, 5001, Aarau, Switzerland
| | - Christina Wolfert
- Department of Neurosurgery c/o Neuro Research Office, Kantonsspital Aarau, Tellstrasse 1, 5001, Aarau, Switzerland
| | - Carl Muroi
- Department of Neurosurgery c/o Neuro Research Office, Kantonsspital Aarau, Tellstrasse 1, 5001, Aarau, Switzerland
- Cerebrovascular Research Group, Department for BioMedical Research, University of Bern, Bern, Switzerland
| | - Gilles Dutilh
- Department of Clinical Research, Clinical Trial Unit, University of Basel Hospital, Basel, Switzerland
| | | | - Javier Fandino
- Department of Neurosurgery c/o Neuro Research Office, Kantonsspital Aarau, Tellstrasse 1, 5001, Aarau, Switzerland
- Cerebrovascular Research Group, Department for BioMedical Research, University of Bern, Bern, Switzerland
| |
Collapse
|
22
|
Neulen A, Kosterhon M, Pantel T, Kirschner S, Goetz H, Brockmann MA, Kantelhardt SR, Thal SC. A Volumetric Method for Quantification of Cerebral Vasospasm in a Murine Model of Subarachnoid Hemorrhage. J Vis Exp 2018. [PMID: 30102288 PMCID: PMC6126573 DOI: 10.3791/57997] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Subarachnoid hemorrhage (SAH) is a subtype of hemorrhagic stroke. Cerebral vasospasm that occurs in the aftermath of the bleeding is an important factor determining patient outcome and is therefore frequently taken as a study endpoint. However, in small animal studies on SAH, quantification of cerebral vasospasm is a major challenge. Here, an ex vivo method is presented that allows quantification of volumes of entire vessel segments, which can be used as an objective measure to quantify cerebral vasospasm. In a first step, endovascular casting of the cerebral vasculature is performed using a radiopaque casting agent. Then, cross-sectional imaging data are acquired by micro computed tomography. The final step involves 3-dimensional reconstruction of the virtual vascular tree, followed by an algorithm to calculate center lines and volumes of the selected vessel segments. The method resulted in a highly accurate virtual reconstruction of the cerebrovascular tree shown by a diameter-based comparison of anatomical samples with their virtual reconstructions. Compared with vessel diameters alone, the vessel volumes highlight the differences between vasospastic and non-vasospastic vessels shown in a series of SAH and sham-operated mice.
Collapse
Affiliation(s)
- Axel Neulen
- Department of Neurosurgery, Medical Center of the Johannes Gutenberg - University;
| | - Michael Kosterhon
- Department of Neurosurgery, Medical Center of the Johannes Gutenberg - University
| | - Tobias Pantel
- Department of Neurosurgery, Medical Center of the Johannes Gutenberg - University
| | - Stefanie Kirschner
- Department of Neuroradiology, Medical Center of the Johannes Gutenberg - University
| | - Hermann Goetz
- Platform for Biomaterial Research, Medical Center of the Johannes Gutenberg - University
| | - Marc A Brockmann
- Department of Neuroradiology, Medical Center of the Johannes Gutenberg - University
| | - Sven R Kantelhardt
- Department of Neurosurgery, Medical Center of the Johannes Gutenberg - University
| | - Serge C Thal
- Department of Anesthesiology, Medical Center of the Johannes Gutenberg - University;
| |
Collapse
|
23
|
A rabbit model of aneurysmal subarachnoid hemorrhage by ear central artery-suprasellar cistern shunt. J Clin Neurosci 2017. [PMID: 28625587 DOI: 10.1016/j.jocn.2017.05.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Aneurysmal subarachnoid hemorrhage (aSAH) is a life-threatening hemorrhagic cerebrovascular disease. The concept of early brain injury (EBI), induced by sharply increased intracranial pressure (ICP) and low cerebral perfusion pressure (CPP) with cerebral global ischemia following aneurysm rupture, has been increasingly accepted. However, EBI has not been well studied partly due to lack of an ideal animal model. The purpose of this study was to establish a new aSAH model which can mimic the pathophysiological damage of EBI. Right frontal craniotomy was performed on New Zealand rabbits for placing a PE-50 tube at the suprasella cistern and an ICP probe at the anterior cranial fossa. The central ear artery was punctured and blood was shunted into the suprasellar cistern through the PE-50 tube. ICP, blood pressure, CPP and heart rate peri-aSAH were monitored throughout the experiments. The rabbits were examined for neurological deficits at 24h post-SAH. Brain coronal sections near the optic chiasma were assessed by HE and Cresyl violet staining. Three minutes after SAH induction, the ICP peaked to 61.7±9.8mmHg while CPP decreased to nadir 23.5±8.9mmHg, and both were gradually restored in 15min. At 24h post-SAH, significant neurological deficits were found in SAH rabbits as compared to the sham-operated animals. In addition, neuronal degeneration and loss were also detected. Our results indicate that a new rabbit model of aSAH with EBI is successfully established. Moreover, this model is controllable, economical, and no side-injury to the main artery.
Collapse
|
24
|
Affiliation(s)
- Hidenori Suzuki
- Department of Neurosurgery, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu, Mie, 514-8507, Japan.
| | - Fumi Nakano
- Department of Neurosurgery, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu, Mie, 514-8507, Japan
| |
Collapse
|
25
|
Aladag MA, Turkoz Y, Parlakpinar H, Gul M. Nebivolol attenuates cerebral vasospasm both by increasing endothelial nitric oxide and by decreasing oxidative stress in an experimental subarachnoid haemorrhage. Br J Neurosurg 2017; 31:439-445. [DOI: 10.1080/02688697.2017.1297367] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Mehmet Arif Aladag
- Department of Neurosurgery, Inonu University School of Medicine, Malatya, Turkey
| | - Yusuf Turkoz
- Department of Biochemistry, Inonu University School of Medicine, Malatya, Turkey
| | - Hakan Parlakpinar
- Department of Pharmacology, Inonu University School of Medicine, Malatya, Turkey
| | - Mehmet Gul
- Department of Histology, Inonu University School of Medicine, Malatya, Turkey
| |
Collapse
|
26
|
Lv T, Miao YF, Jin YC, Yang SF, Wu H, Dai J, Zhang XH. Ethyl Pyruvate Attenuates Early Brain Injury Following Subarachnoid Hemorrhage in the Endovascular Perforation Rabbit Model Possibly Via Anti-inflammation and Inhibition of JNK Signaling Pathway. Neurochem Res 2017; 42:1044-1056. [PMID: 28236213 DOI: 10.1007/s11064-016-2138-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2016] [Revised: 11/30/2016] [Accepted: 12/08/2016] [Indexed: 12/16/2022]
Abstract
Early brain injury (EBI) following subarachnoid hemorrhage (SAH) is the main cause to poor outcomes of SAH patients, and early inflammation plays an important role in the acute pathophysiological events. It has been demonstrated that ethyl pyruvate (EP) has anti-inflammatory and neuroprotective effects in various critical diseases, however, the role of EP on EBI following SAH remains to be elucidated. Our study aimed to evaluate the effects of EP on EBI following SAH in the endovascular perforation rabbit model. All rabbits were randomly divided into three groups: sham, SAH + Vehicle (equal volume) and SAH + EP (30 mg/kg/day). MRI was performed to estimate the reliability of the EBI at 24 and 72 h after SAH. Neurological scores were recorded to evaluate the neurological deficit, ELISA kit was used to measure the level of tumor necrosis factor-α (TNF-α), and western blot was used to detect the expression of TNF-α, tJNK, pJNK, bax and bcl-2 at 24 and 72 h after SAH. Terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) and Fluoro-jade B (FJB) staining were used to detect neuronal apoptosis and neurodegeneration respectively, meanwhile hematoxylin and eosin (H&E) staining was used to assess the degree of vasospasm. Our results demonstrated that EP alleviated brain tissue injury (characterized by diffusion weighted imaging and T2 sequence in MRI scan), and significantly improved neurological scores at 72 h after SAH. EP decreased the level of TNF-α and downregulated pJNK/tJNK and bax/bcl-2 in cerebral cortex and hippocampus effectively both at 24 and 72 h after SAH. Furthermore, EP reduced TUNEL and FJB positive cells significantly. In conclusion, the present study supported that EP afforded neuroprotective effects possibly via reducing TNF-α expression and inhibition of the JNK signaling pathway. Therefore, EP may be a potent therapeutic agent to attenuate EBI following SAH.
Collapse
Affiliation(s)
- Tao Lv
- Department of Neurosurgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, No. 160 Pujian Road, Shanghai, 200127, China
| | - Yi-Feng Miao
- Department of Neurosurgery, Ren Ji Hospital South Campus, School of Medicine, Shanghai Jiao Tong University, No. 2000 Jiangyue Road, Shanghai, 201112, China
| | - Yi-Chao Jin
- Department of Neurosurgery, Ren Ji Hospital South Campus, School of Medicine, Shanghai Jiao Tong University, No. 2000 Jiangyue Road, Shanghai, 201112, China
| | - Shao-Feng Yang
- Department of Neurosurgery, Ren Ji Hospital South Campus, School of Medicine, Shanghai Jiao Tong University, No. 2000 Jiangyue Road, Shanghai, 201112, China
| | - Hui Wu
- Department of Neurosurgery, Ren Ji Hospital South Campus, School of Medicine, Shanghai Jiao Tong University, No. 2000 Jiangyue Road, Shanghai, 201112, China
| | - Jiong Dai
- Department of Neurosurgery, Ren Ji Hospital South Campus, School of Medicine, Shanghai Jiao Tong University, No. 2000 Jiangyue Road, Shanghai, 201112, China.
| | - Xiao-Hua Zhang
- Department of Neurosurgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, No. 160 Pujian Road, Shanghai, 200127, China.
| |
Collapse
|
27
|
Pinkernell S, Becker K, Lindauer U. Severity assessment and scoring for neurosurgical models in rodents. Lab Anim 2016; 50:442-452. [DOI: 10.1177/0023677216675010] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The most important acute neurological diseases seen at neurosurgery departments are traumatic brain injuries (TBI) and subarachnoid hemorrhages (SAH). In both diseases the pathophysiological sequela are complex and have not been fully understood up to now, and rodent models using rats and mice are most suitable for the investigation of the pathophysiological details. In both models, surgery is performed under anesthesia, followed by assessment of their functional outcome and behavioral testing before brain tissue analysis after euthanasia. Postoperative analgesia is mandatory, and supplementary care is highly recommended for refinement purposes. Pain and stress assessment is mainly based on clinical and behavioral signs, and further research is needed to improve the evaluation of severity in these models.
Collapse
Affiliation(s)
- Sarah Pinkernell
- Translational Neurosurgery, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Katrin Becker
- Translational Neurosurgery, Medical Faculty, RWTH Aachen University, Aachen, Germany
| | - Ute Lindauer
- Translational Neurosurgery, Medical Faculty, RWTH Aachen University, Aachen, Germany
| |
Collapse
|
28
|
Xiong Y, Wang XM, Zhong M, Li ZQ, Wang Z, Tian ZF, Zheng K, Tan XX. Alterations of caveolin-1 expression in a mouse model of delayed cerebral vasospasm following subarachnoid hemorrhage. Exp Ther Med 2016; 12:1993-2002. [PMID: 27703494 PMCID: PMC5038886 DOI: 10.3892/etm.2016.3568] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2014] [Accepted: 01/13/2016] [Indexed: 12/15/2022] Open
Abstract
The aim of the present study was to evaluate the expression levels of caveolin-1 in the basilar artery following delayed cerebral vasospasm (DCVS) in a rat model of subarachnoid hemorrhage (SAH), in order to investigate the association between caveolin-1 and DCVS, and its potential as a treatment for DCVS of SAH. A total of 150 Sprague Dawley rats were randomly allocated into blank, saline and SAH groups. The SAH and saline groups were subdivided into days 3, 5, 7 and 14 following the establishment of the model. The murine model of SAH was established by double injection of autologous arterial blood into the cisterna magana and DCVS was detected using Bederson neurological severity scores. Hematoxylin and eosin (HE) staining was used to observe the inner perimeter of the basilar artery pipe and variations in the thickness of the basilar artery wall. Alterations in the levels of caveolin-1 protein in the basilar artery were measured using immunofluorescence and western blot analysis; whereas alterations in the mRNA expression levels of caveolin-1 were detected by reverse transcription-quantitative polymerase chain reaction. In the present study, 15 mice succumbed to SAH-induced DCVS in the day 3 (n=3), 5 (n=5) and 7 (n=2) groups. No mortality was observed in the blank control and saline groups during the process of observation in the SAH group, All mice in the SAH groups exhibited Bederson neurological severity scores ≥1; whereas no neurological impairment was detected in the blank and normal saline groups, demonstrating the success of the model. HE staining was used to assess vasospasm and the results demonstrated that the inner perimeter of the basal artery pipe decreased at day 3 in the SAH group; whereas values peaked in the day 7 group. The thickness of the basal artery wall significantly increased (P<0.05), as compared with the blank and saline groups, in which no significant alterations in the wall thickness and the inner perimeter of the basal artery pipe were detected. As detected by immunofluorescence and western blot analysis, the expression levels of caveolin-1 protein significantly decreased in the day 7 of SAH group, as compared with the blank and saline groups (P<0.01), in which no significant alterations were detected. Caveolin-1 mRNA expression levels significantly increased at the day 7 in the SAH group, as compared with the blank and the saline groups (P<0.01), as detected by RT-qPCR. Furthermore, significant differences were detected at day 14 in the SAH group, as compared with the blank and the saline groups (P>0.05), in which no significant alterations were detected. Therefore, the results of the present study demonstrated that caveolin-1 protein was downregulated in the basilar artery of a rat modeling SAH, which may be associated with DCVS. This suggested that caveolin-1 may be a potential target for the treatment of DCVS.
Collapse
Affiliation(s)
- Ye Xiong
- Department of Neurosurgery, First Affiliated Hospital of Wenzhou Medical College, Wenzhou, Zhejiang 325000, P.R. China
| | - Xue-Min Wang
- Department of Neurosurgery, First Affiliated Hospital of Wenzhou Medical College, Wenzhou, Zhejiang 325000, P.R. China
| | - Ming Zhong
- Department of Neurosurgery, First Affiliated Hospital of Wenzhou Medical College, Wenzhou, Zhejiang 325000, P.R. China
| | - Ze-Qun Li
- Department of Neurosurgery, First Affiliated Hospital of Wenzhou Medical College, Wenzhou, Zhejiang 325000, P.R. China
| | - Zhi Wang
- Department of Neurosurgery, First Affiliated Hospital of Wenzhou Medical College, Wenzhou, Zhejiang 325000, P.R. China
| | - Zuo-Fu Tian
- Department of Neurosurgery, First Affiliated Hospital of Wenzhou Medical College, Wenzhou, Zhejiang 325000, P.R. China
| | - Kuang Zheng
- Department of Neurosurgery, First Affiliated Hospital of Wenzhou Medical College, Wenzhou, Zhejiang 325000, P.R. China
| | - Xian-Xi Tan
- Department of Neurosurgery, First Affiliated Hospital of Wenzhou Medical College, Wenzhou, Zhejiang 325000, P.R. China
| |
Collapse
|
29
|
Glial cell response after aneurysmal subarachnoid hemorrhage — Functional consequences and clinical implications. Biochim Biophys Acta Mol Basis Dis 2016; 1862:492-505. [DOI: 10.1016/j.bbadis.2015.10.013] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Revised: 10/12/2015] [Accepted: 10/15/2015] [Indexed: 12/17/2022]
|
30
|
Chen Y, Zhu Y, Zhang Y, Zhang Z, Lian J, Luo F, Deng X, Wong KKL. Ultrasound guided double injection of blood into cisterna magna: a rabbit model for treatment of cerebral vasospasm. Biomed Eng Online 2016; 15:19. [PMID: 26851937 PMCID: PMC4744401 DOI: 10.1186/s12938-016-0123-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Accepted: 01/06/2016] [Indexed: 11/10/2022] Open
Abstract
Background Double injection of blood into cisterna magna using a rabbit model results in cerebral vasospasm. An unacceptably high mortality rate tends to limit the application of model. Ultrasound guided puncture can provide real-time imaging guidance for operation. The aim of this paper is to establish a safe and effective rabbit model of cerebral vasospasm after subarachnoid hemorrhage with the assistance of ultrasound medical imaging. Methods A total of 160 New Zealand white rabbits were randomly divided into four groups of 40 each: (1) manual control group, (2) manual model group, (3) ultrasound guided control group, and (4) ultrasound guided model group. The subarachnoid hemorrhage was intentionally caused by double injection of blood into their cisterna magna. Then, basilar artery diameters were measured using magnetic resonance angiography before modeling and 5 days after modeling. Results The depth of needle entering into cisterna magna was determined during the process of ultrasound guided puncture. The mortality rates in manual control group and model group were 15 and 23 %, respectively. No rabbits were sacrificed in those two ultrasound guided groups. We found that the mortality rate in ultrasound guided groups decreased significantly compared to manual groups. Compared with diameters before modeling, the basilar artery diameters after modeling were significantly lower in manual and ultrasound guided model groups. The vasospasm aggravated and the proportion of severe vasospasms was greater in ultrasound guided model group than that of manual group. In manual model group, no vasospasm was found in 8 % of rabbits. Conclusions The ultrasound guided double injection of blood into cisterna magna is a safe and effective rabbit model for treatment of cerebral vasospasm.
Collapse
Affiliation(s)
- Yongchao Chen
- Ultrasound Center, The 105th Hospital of PLA, Hefei, China.
| | - Youzhi Zhu
- Department of Radiology, The 105th Hospital of PLA, Hefei, China.
| | - Yu Zhang
- Department of Radiology, The 105th Hospital of PLA, Hefei, China.
| | - Zixuan Zhang
- Department of Anatomy, Anhui Medical University, Hefei, China.
| | - Juan Lian
- Ultrasound Center, The 105th Hospital of PLA, Hefei, China.
| | - Fucheng Luo
- Ultrasound Center, The 105th Hospital of PLA, Hefei, China.
| | - Xuefei Deng
- Department of Anatomy, Anhui Medical University, Hefei, China.
| | - Kelvin K L Wong
- School of Medicine, Western Sydney University, Sydney, Australia.
| |
Collapse
|
31
|
Marbacher S. Animal Models for the Study of Subarachnoid Hemorrhage: Are We Moving Towards Increased Standardization? Transl Stroke Res 2016; 7:1-2. [PMID: 26754973 DOI: 10.1007/s12975-015-0442-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2015] [Accepted: 12/13/2015] [Indexed: 12/29/2022]
Affiliation(s)
- Serge Marbacher
- Kantonsspital Aarau, Aarau, Switzerland. .,University of Bern, Bern, Switzerland.
| |
Collapse
|
32
|
Backer-Grøndahl A, Lindal S, Lorentzen MA, Eldevik P, Vorren T, Kristiansen B, Vangberg T, Ytrebø LM. A new non-craniotomy model of subarachnoid hemorrhage in the pig: a pilot study. Lab Anim 2015; 50:379-89. [PMID: 26643281 DOI: 10.1177/0023677215619806] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Subarachnoid hemorrhage (SAH) from rupture of an intracranial arterial aneurysm is a devastating disease affecting young people, with serious lifelong disability or death as a frequent outcome. Large animal models that exhibit all the cardinal clinical features of human SAH are highly warranted. In this pilot study we aimed to develop a non-craniotomy model of SAH in pigs suitable for acute intervention studies. Six Norwegian Landrace pigs received advanced invasive hemodynamic and intracranial pressure (ICP) monitoring. The subarachnoid space, confirmed by a clear cerebrospinal fluid (CSF) tap, was reached by advancing a needle below the ocular bulb through the superior orbital fissure and into the interpeduncular cistern. SAH was induced by injecting 15 mL of autologous arterial blood into the subarachnoid space. Macro- and microanatomical investigations of the pig brain showed a typical blood distribution consistent with human aneurysmal SAH (aSAH) autopsy data. Immediately after SAH induction ICP sharply increased with a concomitant reduction in cerebral perfusion pressure (CPP). ICP returned to near normal values after 30 min, but increased subsequently during the experimental period. Signs of brain edema were confirmed by light microscopy post-mortem. None of the animals died during the experimental period. This new transorbital injection model of SAH in the pig mimics human aSAH and may be suitable for acute intervention studies. However, the model is technically challenging and needs further validation.
Collapse
Affiliation(s)
- Anders Backer-Grøndahl
- Department of Anesthesiology, University Hospital of North Norway, Tromsø, Norway Institute of Clinical Medicine, UiT-The Arctic University of Norway, Tromsø, Norway
| | - Sigurd Lindal
- Institute of Clinical Medicine, UiT-The Arctic University of Norway, Tromsø, Norway Department of Pathology, University Hospital of North Norway, Tromsø, Norway
| | | | - Petter Eldevik
- Institute of Clinical Medicine, UiT-The Arctic University of Norway, Tromsø, Norway Department of Radiology, University Hospital of North Norway, Tromsø, Norway
| | - Torgrim Vorren
- Department of Radiology, University Hospital of North Norway, Tromsø, Norway
| | - Bente Kristiansen
- Department of Radiology, University Hospital of North Norway, Tromsø, Norway
| | - Torgil Vangberg
- Institute of Clinical Medicine, UiT-The Arctic University of Norway, Tromsø, Norway Department of Radiology, University Hospital of North Norway, Tromsø, Norway
| | - Lars Marius Ytrebø
- Department of Anesthesiology, University Hospital of North Norway, Tromsø, Norway Institute of Clinical Medicine, UiT-The Arctic University of Norway, Tromsø, Norway
| |
Collapse
|
33
|
Experimental animal models and inflammatory cellular changes in cerebral ischemic and hemorrhagic stroke. Neurosci Bull 2015; 31:717-34. [PMID: 26625873 DOI: 10.1007/s12264-015-1567-z] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2015] [Accepted: 09/25/2015] [Indexed: 01/04/2023] Open
Abstract
Stroke, including cerebral ischemia, intracerebral hemorrhage, and subarachnoid hemorrhage, is the leading cause of long-term disability and death worldwide. Animal models have greatly contributed to our understanding of the risk factors and the pathophysiology of stroke, as well as the development of therapeutic strategies for its treatment. Further development and investigation of experimental models, however, are needed to elucidate the pathogenesis of stroke and to enhance and expand novel therapeutic targets. In this article, we provide an overview of the characteristics of commonly-used animal models of stroke and focus on the inflammatory responses to cerebral stroke, which may provide insights into a framework for developing effective therapies for stroke in humans.
Collapse
|
34
|
Qin Y, Gu JW, Li GL, Xu XH, Yu K, Gao FB. Cerebral vasospasm and corticospinal tract injury induced by a modified rat model of subarachnoid hemorrhage. J Neurol Sci 2015; 358:193-200. [PMID: 26363925 DOI: 10.1016/j.jns.2015.08.1536] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Revised: 08/17/2015] [Accepted: 08/26/2015] [Indexed: 02/05/2023]
Abstract
OBJECTIVE Double-hemorrhage rat models of subarachnoid hemorrhages (SAH) are most effective at simulating delayed cerebral vasospasms (CVS). The present study modified the models to minimize additional trauma and investigated injury of the corticospinal tract (CST) using diffusion tensor imaging (DTI). METHODS On the first day, 0.3ml of autologous arterial blood was collected by puncturing the caudal artery and injected into the cisterna magna via percutaneous puncture; and the operation was repeated on the third day. The diameters of the basilar artery (BA), middle cerebral artery (MCA), and anterior cerebral artery (ACA) were measured by magnetic resonance angiography on days 3, 5, 7, 9, and 11 post-SAH. Meanwhile, on days 3, 7, 11, 15 and 19, DTI was performed to evaluate the injury of the CST at cerebral peduncle (CP) and pyramidal tract (Py) by measuring fractional anisotropy (FA) value. RESULTS Blood was deposited mainly in the basal cistern. Diameters of BA, MCA, and ACA were significantly reduced. FA value of the CP was lower in the SAH group than in the control group; but FA value of Py wasn't different between the two groups. CONCLUSION This is a minimally-invasive and high performance rat model of SAH. Additionally, the occurrence of CVS is firm and the axons in CP are injured.
Collapse
Affiliation(s)
- Yang Qin
- Department of Postgraduate, Third Military Medical University, Chongqing, China; Department of Neurosurgery, Chengdu Military General Hospital, Chengdu, China
| | - Jian-wen Gu
- Department of Neurosurgery, Chengdu Military General Hospital, Chengdu, China.
| | - Gai-li Li
- Department of Geriatrics, Chengdu Military General Hospital, Chengdu, China
| | - Xian-Hua Xu
- Department of Geriatrics, Chengdu Military General Hospital, Chengdu, China
| | - Ke Yu
- Department of Neurology, Chengdu Military General Hospital, Chengdu, China
| | - Fa-bao Gao
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
35
|
Nikitina T, Zavaritskaya O, Semenyutin V, Persson PB, Patzak A, Sendeski M. Effects of iodinated contrast media in a novel model for cerebral vasospasm. ARQUIVOS DE NEURO-PSIQUIATRIA 2015; 73:125-31. [PMID: 25742582 DOI: 10.1590/0004-282x20140222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2014] [Accepted: 11/10/2014] [Indexed: 11/22/2022]
Abstract
OBJECTIVE We developed an in vitro model for vasospasm post subarachnoid hemorrhage that was suitable for investigating brain vessel autoregulation. We further investigated the effects of iodinated contrast medium on the vascular tone and the myogenic response of spastic cerebral vessels. METHOD We isolated and perfused the superior cerebellar arteries of rats. The vessels were pressurized and studied under isobaric conditions. Coagulated blood was used to simulate subarachnoid hemorrhage. The contrast medium iodixanol was applied intraluminally. RESULTS Vessels exposed to blood developed significantly stronger myogenic tone (65.7 ± 2.0% vs 77.1 ± 1.2% of the maximum diameter, for the blood and the control group, respectively) and significantly decreased myogenic response, compared with the control groups. The contrast medium did not worsen the myogenic tone or the myogenic response in any group. CONCLUSION Our results show that deranged myogenic response may contribute to cerebral blood flow disturbances subsequent to subarachnoid hemorrhage. The contrast medium did not have any negative influence on vessel tone or myogenic response in this experimental setting.
Collapse
Affiliation(s)
- Tatiana Nikitina
- Charité-Universitaetsmedizin Berlin, Institut fuer Vegetative Physiologie, Berlin, Germany
| | - Olga Zavaritskaya
- Medical Faculty Mannheim, Research Division Cardiovascular Physiology, Mannheim, Germany
| | - Vladimir Semenyutin
- Russian Polenov Neurosurgical Institute, Laboratory of Brain Circulation Pathology, Saint-Petersburg, Russia
| | - Pontus B Persson
- Charité-Universitaetsmedizin Berlin, Institut fuer Vegetative Physiologie, Berlin, Germany
| | - Andreas Patzak
- Charité-Universitaetsmedizin Berlin, Institut fuer Vegetative Physiologie, Berlin, Germany
| | - Mauricio Sendeski
- Charité-Universitaetsmedizin Berlin, Institut fuer Vegetative Physiologie, Berlin, Germany
| |
Collapse
|
36
|
Riordan MA, Kyle M, Dedeo C, Villwock MR, Bauer M, Vallano ML, Deshaies EM. Mild exercise reduces cerebral vasospasm after aneurysm subarachnoid hemorrhage: a retrospective clinical study and correlation with laboratory investigation. ACTA NEUROCHIRURGICA. SUPPLEMENT 2015; 120:55-61. [PMID: 25366600 DOI: 10.1007/978-3-319-04981-6_10] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
BACKGROUND Aneurysmal subarachnoid hemorrhage (SAH) is a leading cause of death and disability and is often complicated by cerebral vasospasm (CV). Conventional management to prevent CV includes bedrest; however, inactivity places the patient at risk for nonneurological complications. We investigated the effect of mild exercise after SAH in clinical and laboratory settings. METHODS Clinical: Data from 80 patients with SAH were analyzed retrospectively. After aneurysms were secured, physical therapy was initiated as tolerated. CV and complications were compared by the timing of active physical therapy. Laboratory: 18 Rodents were divided into three groups: (1) control, (2) SAH without exercise, and (3) SAH plus mild exercise. On day 5, brainstems were removed and analyzed for the injury marker inducible nitric oxide synthase (iNOS). RESULTS Clinical: Mild exercise before day 4 significantly lowered the incidence of symptomatic CV compared with the nonexercised group. There was no difference in the incidence of additional complications based upon exercise. Laboratory: Staining for iNOS was significantly higher in the SAH group than the control group, but there was no difference between exercised and nonexercised SAH groups, confirming that exercise did not promote neuronal injury. CONCLUSION Early mobilization significantly reduced clinical CV. The relationship should be studied further in a prospective trial with defined exercise regimens.
Collapse
Affiliation(s)
- Margaret A Riordan
- Department of Neurosurgery, SUNY Upstate Medical University, Syracuse, NY, USA
| | | | | | | | | | | | | |
Collapse
|
37
|
Marbacher S, Fathi AR, Muroi C, Coluccia D, Andereggen L, Neuschmelting V, Widmer HR, Jakob SM, Fandino J. The rabbit blood shunt subarachnoid haemorrhage model. ACTA NEUROCHIRURGICA. SUPPLEMENT 2015; 120:337-42. [PMID: 25366648 DOI: 10.1007/978-3-319-04981-6_58] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The recently introduced rabbit blood shunt subarachnoid haemorrhage model is based on the two standard procedures of subclavian artery cannulation and transcutaneous cisterna magna puncture. An extracorporeal shunt placed in between the arterial system and the subarachnoid space allows examiner-independent SAH in a closed cranium. Despite its straightforwardness, it is worth examining some specific features and characteristics of the model. We outline technical considerations to successfully perform the model with minimal mortality and morbidity. In addition, we discuss outcome measures, advantages and limitations, and the applicability of the model for the study of early brain injury and delayed cerebral vasospasm after SAH.
Collapse
Affiliation(s)
- Serge Marbacher
- Department of Neurosurgery, Kantonsspital Aarau, Aarau, Switzerland,
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Kikkawa Y, Kurogi R, Sasaki T. The single and double blood injection rabbit subarachnoid hemorrhage model. Transl Stroke Res 2014; 6:88-97. [PMID: 25381219 DOI: 10.1007/s12975-014-0375-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2014] [Revised: 09/25/2014] [Accepted: 10/22/2014] [Indexed: 12/27/2022]
Abstract
Over the past 30 years, the rabbit subarachnoid hemorrhage model (SAH) has been used for investigating the post-hemorrhage pathology, especially with respect to understanding of the mechanisms of cerebral vasospasm. However, the molecular mechanisms of cerebral vasospasm remain to be elucidated. Furthermore, it is not clear whether the rabbit SAH model is suitable for the investigation of pathological conditions other than cerebral vasospasm, such as early brain injury. Therefore, the properties of the rabbit SAH model need to be validated, and the reasons for using the rabbit should be clarified. This review explores the settings and technical issues of establishing a rabbit cisterna magna single and double blood injection SAH model and discusses the characteristics and feasibilities of the models.
Collapse
Affiliation(s)
- Yuichiro Kikkawa
- Department of Neurosurgery, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan,
| | | | | |
Collapse
|
39
|
Kikkawa Y. A rabbit cisterna magna double-injection subarachnoid hemorrhage model. ACTA NEUROCHIRURGICA. SUPPLEMENT 2014; 120:331-5. [PMID: 25366647 DOI: 10.1007/978-3-319-04981-6_57] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
In recent years, the shift of research interest in the pathological condition after subarachnoid hemorrhage (SAH) from delayed cerebral vasospasm to early brain injury and the development of molecular genetic approaches in animal experiments has resulted in a diversification of animal SAH models. The properties of each animal SAH model thus need to be validated and the purpose of using each animal model should be clarified. This study presents the settings and technical procedures for a rabbit cisterna magna double-injection SAH model and discusses the advantages and limitations of using this model.
Collapse
Affiliation(s)
- Yuichiro Kikkawa
- Department of Neurosurgery, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan,
| |
Collapse
|
40
|
Marbacher S, Nevzati E, Croci D, Erhardt S, Muroi C, Jakob SM, Fandino J. The rabbit shunt model of subarachnoid haemorrhage. Transl Stroke Res 2014; 5:669-80. [PMID: 25326333 DOI: 10.1007/s12975-014-0369-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2014] [Revised: 08/15/2014] [Accepted: 09/01/2014] [Indexed: 12/21/2022]
Abstract
Aneurysmal subarachnoid haemorrhage (SAH) is a disease with devastating complications that leads to stroke, permanent neurological deficits and death. Clinical and ex-perimental work has demonstrated the importance of the contribution of delayed cerebral vasospasm (DCVS) indepen-dent early events to mortality, morbidity and functional out-come after SAH. In order to elucidate processes involved in early brain injury (EBI), animal models that reflect acute events of aneurysmal bleeding, such as increase in intracranial pressure (ICP) and decrease in cerebral perfusion pressure, are needed. In the presented arterial shunt model, bleeding is initially driven by the pressure gradient between mean arterial blood pressure and ICP. SAH dynamics (flow rate, volume and duration) depend on physiological reactions and local anatomical intrathecal (cistern) conditions. During SAH, ICP reaches a plateau close to diastolic arterial blood pressure and the blood flow stops. Historical background, anaesthesia, perioperative care and monitoring, SAH induction, technical considerations and advantages and limitations of the rabbit blood shunt SAH model are discussed in detail. Awareness of technical details, physiological characteristics and appropriate monitoring methods guarantees successful implementation of the rabbit blood shunt model and allows the study of both EBI and DCVS after SAH.
Collapse
Affiliation(s)
- Serge Marbacher
- Cerebrovascular Research Laboratory of the Department of Intensive Care Medicine, University Hospital and University of Bern, Bern, Switzerland,
| | | | | | | | | | | | | |
Collapse
|
41
|
Rat endovascular perforation model. Transl Stroke Res 2014; 5:660-8. [PMID: 25213427 DOI: 10.1007/s12975-014-0368-4] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2014] [Revised: 08/18/2014] [Accepted: 08/21/2014] [Indexed: 12/31/2022]
Abstract
Experimental animal models of aneurysmal subarachnoid hemorrhage (SAH) have provided a wealth of information on the mechanisms of brain injury. The rat endovascular perforation (EVP) model replicates the early pathophysiology of SAH and hence is frequently used to study early brain injury following SAH. This paper presents a brief review of historical development of the EVP model and details the technique used to create SAH and considerations necessary to overcome technical challenges.
Collapse
|
42
|
The role of microclot formation in an acute subarachnoid hemorrhage model in the rabbit. BIOMED RESEARCH INTERNATIONAL 2014; 2014:161702. [PMID: 25110658 PMCID: PMC4109416 DOI: 10.1155/2014/161702] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/13/2014] [Accepted: 06/02/2014] [Indexed: 12/21/2022]
Abstract
Background. Microvascular dysfunction and microthrombi formation are believed to contribute to development of early brain injury (EBI) after aneurysmal subarachnoid hemorrhage (SAH). Objective. This study aimed to determine (i) extent of microthrombus formation and neuronal apoptosis in the brain parenchyma using a blood shunt SAH model in rabbits; (ii) correlation of structural changes in microvessels with EBI characteristics. Methods. Acute SAH was induced using a rabbit shunt cisterna magna model. Extent of microthrombosis was detected 24 h post-SAH (n = 8) by fibrinogen immunostaining, compared to controls (n = 4). We assessed apoptosis by terminal deoxynucleotidyl transferase nick end labeling (TUNEL) in cortex and hippocampus. Results. Our results showed significantly more TUNEL-positive cells (SAH: 115 ± 13; controls: 58 ± 10; P = 0.016) and fibrinogen-positive microthromboemboli (SAH: 9 ± 2; controls: 2 ± 1; P = 0.03) in the hippocampus after aneurysmal SAH. Conclusions. We found clear evidence of early microclot formation in a rabbit model of acute SAH. The extent of microthrombosis did not correlate with early apoptosis or CPP depletion after SAH; however, the total number of TUNEL positive cells in the cortex and the hippocampus significantly correlated with mean CPP reduction during the phase of maximum depletion after SAH induction. Both microthrombosis and neuronal apoptosis may contribute to EBI and subsequent DCI.
Collapse
|
43
|
Mori K. Double cisterna magna blood injection model of experimental subarachnoid hemorrhage in dogs. Transl Stroke Res 2014; 5:647-52. [PMID: 24986149 DOI: 10.1007/s12975-014-0356-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2014] [Revised: 06/12/2014] [Accepted: 06/24/2014] [Indexed: 11/24/2022]
Abstract
Several animal subarachnoid hemorrhage (SAH) models have been proposed to study the etiology and treatment for cerebral vasospasm. We describe the experimental procedures of a canine double-hemorrhage model of SAH and discuss the pathophysiological parameters and occurrence of angiographic delayed cerebral vasospasm using magnetic resonance (MR) imaging and digital subtraction angiography. Autologous blood was injected twice on days 1 and 3 into the cerebellomedullary cistern of 36 female beagles. All animals showed delayed angiographic vasospasm in the vertebrobasilar arteries on day 7. The degree of vasospasm was 29-42 % of the arterial diameter. However, this model showed no symptomatic vasospasm or ischemic changes detected by MR imaging. This animal model can produce reproducible delayed vasospasm without detectable cerebral infarction on MR imaging. This model allows evaluation of the effect of treatment on delayed vasospasm in the same animals. The canine double-hemorrhage model of SAH is suitable for the quantitative and chronological study of delayed angiographic vasospasm, but not for investigating early brain injury and delayed cerebral ischemia.
Collapse
Affiliation(s)
- Kentaro Mori
- Department of Neurosurgery, National Defense Medical College, 3-2 Namiki, Tokorozawa, Saitama, 359-8513, Japan,
| |
Collapse
|
44
|
Inflammation, vasospasm, and brain injury after subarachnoid hemorrhage. BIOMED RESEARCH INTERNATIONAL 2014; 2014:384342. [PMID: 25105123 PMCID: PMC4106062 DOI: 10.1155/2014/384342] [Citation(s) in RCA: 122] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Revised: 05/14/2014] [Accepted: 05/26/2014] [Indexed: 12/15/2022]
Abstract
Subarachnoid hemorrhage (SAH) can lead to devastating neurological outcomes, and there are few pharmacologic treatments available for treating this condition. Both animal and human studies provide evidence of inflammation being a driving force behind the pathology of SAH, leading to both direct brain injury and vasospasm, which in turn leads to ischemic brain injury. Several inflammatory mediators that are elevated after SAH have been studied in detail. While there is promising data indicating that blocking these factors might benefit patients after SAH, there has been little success in clinical trials. One of the key factors that complicates clinical trials of SAH is the variability of the initial injury and subsequent inflammatory response. It is likely that both genetic and environmental factors contribute to the variability of patients' post-SAH inflammatory response and that this confounds trials of anti-inflammatory therapies. Additionally, systemic inflammation from other conditions that affect patients with SAH could contribute to brain injury and vasospasm after SAH. Continuing work on biomarkers of inflammation after SAH may lead to development of patient-specific anti-inflammatory therapies to improve outcome after SAH.
Collapse
|
45
|
Nyberg C, Karlsson T, Hillered L, Engström ER. Metabolic pattern of the acute phase of subarachnoid hemorrhage in a novel porcine model: studies with cerebral microdialysis with high temporal resolution. PLoS One 2014; 9:e99904. [PMID: 24940881 PMCID: PMC4062436 DOI: 10.1371/journal.pone.0099904] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2014] [Accepted: 05/19/2014] [Indexed: 12/30/2022] Open
Abstract
Background Aneurysmal subarachnoid hemorrhage (SAH) may produce cerebral ischemia and systemic responses including stress. To study immediate cerebral and systemic changes in response to aneurysm rupture, animal models are needed. Objective To study early cerebral energy changes in an animal model. Methods Experimental SAH was induced in 11 pigs by autologous blood injection to the anterior skull base, with simultaneous control of intracranial and cerebral perfusion pressures. Intracerebral microdialysis was used to monitor concentrations of glucose, pyruvate and lactate. Results In nine of the pigs, a pattern of transient ischemia was produced, with a dramatic reduction of cerebral perfusion pressure soon after blood injection, associated with a quick glucose and pyruvate decrease. This was followed by a lactate increase and a delayed pyruvate increase, producing a marked but short elevation of the lactate/pyruvate ratio. Glucose, pyruvate, lactate and lactate/pyruvate ratio thereafter returned toward baseline. The two remaining pigs had a more severe metabolic reaction with glucose and pyruvate rapidly decreasing to undetectable levels while lactate increased and remained elevated, suggesting persisting ischemia. Conclusion The animal model simulates the conditions of SAH not only by deposition of blood in the basal cisterns, but also creating the transient global ischemic impact of aneurysmal SAH. The metabolic cerebral changes suggest immediate transient substrate failure followed by hypermetabolism of glucose upon reperfusion. The model has features that resemble spontaneous bleeding, and is suitable for future research of the early cerebral and systemic responses to SAH that are difficult to study in humans.
Collapse
Affiliation(s)
- Christoffer Nyberg
- Department of Neuroscience, section of Neurosurgery, Uppsala University, Uppsala, Sweden
- * E-mail:
| | - Torbjörn Karlsson
- Department of Surgical Sciences, section of Anesthesiology and Intensive care, Uppsala University, Uppsala, Sweden
| | - Lars Hillered
- Department of Neuroscience, section of Neurosurgery, Uppsala University, Uppsala, Sweden
| | | |
Collapse
|
46
|
Kertmen H, Gürer B, Yilmaz ER, Arikok AT, Kanat MA, Ergüder BI, Sekerci Z. The comparative effects of recombinant human erythropoietin and darbepoetin-alpha on cerebral vasospasm following experimental subarachnoid hemorrhage in the rabbit. Acta Neurochir (Wien) 2014; 156:951-62. [PMID: 24497025 DOI: 10.1007/s00701-014-2008-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2013] [Accepted: 01/18/2014] [Indexed: 01/24/2023]
Abstract
BACKGROUND Darbepoetin alpha is a hypersialylated analogue of erythropoietin effective for activating erythropoietin-receptors. This study investigated the vasodilator and neuroprotective effects of darbepoetin alpha on an experimental subarachnoid hemorrhage model and compared it with erythropoietin. METHODS Forty adult male New Zealand white rabbits were randomly divided into four groups of ten rabbits each: group 1 (control), group 2 (subarachnoid hemorrhage), group 3 (erythropoietin), and group 4 (darbepoetin alpha). Recombinant human erythropoietin was administered at a dose of 1,000 U/kg intraperitoneally after the induction of subarachnoid hemorrhage and continued every 8 h up to 72 h. Darbepoetin alpha was administered at a single intraperitoneal dose of 30 μg/kg. Animals were killed 72 h after subarachnoid hemorrhage. Basilar artery cross-sectional areas, arterial wall thicknesses, hippocampal degeneration scores and biochemical analyses were measured in all groups. RESULTS Both erythropoietin and darbepoetin alpha treatments were found to attenuate cerebral vasospasm and provide neuroprotection after subarachnoid hemorrhage in rabbits. Darbepoetin alpha revealed better morphometric and histopathological results than erythropoietin among experimental subarachnoid hemorrhage-induced vasospasm. CONCLUSIONS Our findings, for the first time, showed that darbepoetin alpha can prevent vasospasm and provides neuroprotection following experimental subarachnoid hemorrhage. Moreover, darbepoetin alpha showed better results when compared with erythropoietin.
Collapse
Affiliation(s)
- Hayri Kertmen
- Neurosurgery Clinic, Ministry of Health, Diskapi Yildirim Beyazit Education and Research Hospital, Ankara, Turkey
| | | | | | | | | | | | | |
Collapse
|
47
|
Chen S, Feng H, Sherchan P, Klebe D, Zhao G, Sun X, Zhang J, Tang J, Zhang JH. Controversies and evolving new mechanisms in subarachnoid hemorrhage. Prog Neurobiol 2014; 115:64-91. [PMID: 24076160 PMCID: PMC3961493 DOI: 10.1016/j.pneurobio.2013.09.002] [Citation(s) in RCA: 270] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2013] [Revised: 09/07/2013] [Accepted: 09/12/2013] [Indexed: 12/13/2022]
Abstract
Despite decades of study, subarachnoid hemorrhage (SAH) continues to be a serious and significant health problem in the United States and worldwide. The mechanisms contributing to brain injury after SAH remain unclear. Traditionally, most in vivo research has heavily emphasized the basic mechanisms of SAH over the pathophysiological or morphological changes of delayed cerebral vasospasm after SAH. Unfortunately, the results of clinical trials based on this premise have mostly been disappointing, implicating some other pathophysiological factors, independent of vasospasm, as contributors to poor clinical outcomes. Delayed cerebral vasospasm is no longer the only culprit. In this review, we summarize recent data from both experimental and clinical studies of SAH and discuss the vast array of physiological dysfunctions following SAH that ultimately lead to cell death. Based on the progress in neurobiological understanding of SAH, the terms "early brain injury" and "delayed brain injury" are used according to the temporal progression of SAH-induced brain injury. Additionally, a new concept of the vasculo-neuronal-glia triad model for SAH study is highlighted and presents the challenges and opportunities of this model for future SAH applications.
Collapse
Affiliation(s)
- Sheng Chen
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China; Department of Physiology & Pharmacology, Loma Linda University, Loma Linda, CA, USA
| | - Hua Feng
- Department of Neurosurgery, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Prativa Sherchan
- Department of Physiology & Pharmacology, Loma Linda University, Loma Linda, CA, USA
| | - Damon Klebe
- Department of Physiology & Pharmacology, Loma Linda University, Loma Linda, CA, USA
| | - Gang Zhao
- Department of Neurology, Xijing Hospital, Fourth Military Medical University, Xi'an, Shanxi, China
| | - Xiaochuan Sun
- Department of Neurosurgery, First Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Jianmin Zhang
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Jiping Tang
- Department of Physiology & Pharmacology, Loma Linda University, Loma Linda, CA, USA
| | - John H Zhang
- Department of Physiology & Pharmacology, Loma Linda University, Loma Linda, CA, USA; Department of Neurosurgery, Loma Linda University, Loma Linda, CA, USA.
| |
Collapse
|
48
|
Kooijman E, Nijboer CH, van Velthoven CTJ, Kavelaars A, Kesecioglu J, Heijnen CJ. The rodent endovascular puncture model of subarachnoid hemorrhage: mechanisms of brain damage and therapeutic strategies. J Neuroinflammation 2014; 11:2. [PMID: 24386932 PMCID: PMC3892045 DOI: 10.1186/1742-2094-11-2] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2013] [Accepted: 12/17/2013] [Indexed: 01/05/2023] Open
Abstract
Subarachnoid hemorrhage (SAH) represents a considerable health problem. To date, limited therapeutic options are available. In order to develop effective therapeutic strategies for SAH, the mechanisms involved in SAH brain damage should be fully explored. Here we review the mechanisms of SAH brain damage induced by the experimental endovascular puncture model. We have included a description of similarities and distinctions between experimental SAH in animals and human SAH pathology. Moreover, several novel treatment options to diminish SAH brain damage are discussed.SAH is accompanied by cerebral inflammation as demonstrated by an influx of inflammatory cells into the cerebral parenchyma, upregulation of inflammatory transcriptional pathways and increased expression of cytokines and chemokines. Additionally, various cell death pathways including cerebral apoptosis, necrosis, necroptosis and autophagy are involved in neuronal damage caused by SAH.Treatment strategies aiming at inhibition of inflammatory or cell death pathways demonstrate the importance of these mechanisms for survival after experimental SAH. Moreover, neuroregenerative therapies using stem cells are discussed as a possible strategy to repair the brain after SAH since this therapy may extend the window of treatment considerably. We propose the endovascular puncture model as a suitable animal model which resembles the human pathology of SAH and which could be applied to investigate novel therapeutic therapies to combat this debilitating insult.
Collapse
Affiliation(s)
- Elke Kooijman
- Department of Intensive Care Medicine, University Medical Center Utrecht, Utrecht, The Netherlands
- Laboratory of Neuroimmunology and Developmental Origins of Disease, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Cora H Nijboer
- Laboratory of Neuroimmunology and Developmental Origins of Disease, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Cindy TJ van Velthoven
- Laboratory of Neuroimmunology and Developmental Origins of Disease, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Annemieke Kavelaars
- Division of Internal Medicine, Department of Symptom Research, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jozef Kesecioglu
- Department of Intensive Care Medicine, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Cobi J Heijnen
- Division of Internal Medicine, Department of Symptom Research, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
49
|
Güresir E, Vasiliadis N, Konczalla J, Raab P, Hattingen E, Seifert V, Vatter H. Erythropoietin prevents delayed hemodynamic dysfunction after subarachnoid hemorrhage in a randomized controlled experimental setting. J Neurol Sci 2013; 332:128-35. [DOI: 10.1016/j.jns.2013.07.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2012] [Revised: 06/30/2013] [Accepted: 07/08/2013] [Indexed: 10/26/2022]
|
50
|
Pathophysiological Role of Global Cerebral Ischemia following Subarachnoid Hemorrhage: The Current Experimental Evidence. Stroke Res Treat 2013; 2013:651958. [PMID: 23844316 PMCID: PMC3694494 DOI: 10.1155/2013/651958] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2013] [Accepted: 04/29/2013] [Indexed: 11/24/2022] Open
Abstract
Subarachnoid hemorrhage (SAH) is the subtype of stroke with one of the highest mortality rates and the least well-understood pathophysiologies. One of the very early events which may occur after SAH is a significant decrease of cerebral perfusion pressure (CPP) caused by the excessive increase of intracranial pressure during the initial bleeding. A severely decreased CPP results in global cerebral ischemia, an event also occurring after cardiac arrest. The aim of the current paper is to review the pathophysiological events occurring in experimental models of SAH and global cerebral ischemia and to evaluate the contribution and the importance of global cerebral ischemia for the pathophysiology of SAH.
Collapse
|