1
|
Rushendran R, Begum RF, Singh S A, Narayanan PL, Vellapandian C, Prajapati BG, Paul PK. Navigating neurological disorders: harnessing the power of natural compounds for innovative therapeutic breakthroughs. EXCLI JOURNAL 2024; 23:534-569. [PMID: 38741726 PMCID: PMC11089094 DOI: 10.17179/excli2024-7051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Accepted: 03/07/2024] [Indexed: 05/16/2024]
Abstract
Novel treatments are needed as neurological issues become more frequent worldwide. According to the report, plants, oceans, microorganisms, and animals contain interesting drug discovery compounds. Alzheimer's, Parkinson's, and stroke reviews emphasize neurological disorders' complexity and natural substances' safety. Learn about marine-derived and herbal substances' neuroprotective characteristics and applications. Molecular pathways show these substances' neurological healing effects. This article discusses clinical usage of Bryostatin-1, Fucoidan, Icariin, Salvianolic acid, Curcumin, Resveratrol, etc. Their potential benefits for asthma and Alzheimer's disease are complex. Although limited, the study promotes rigorous scientific research and collaboration between traditional and alternative medical practitioners. Unexplored natural compounds, quality control, well-structured clinical trials, and interdisciplinary collaboration should guide future study. Developing and employing natural chemicals to treat neurological illnesses requires ethical sourcing, sustainability, and public awareness. This detailed analysis covers natural chemicals' current state, challenges, and opportunities in neurological disorder treatment. See also the graphical abstract(Fig. 1).
Collapse
Affiliation(s)
- Rapuru Rushendran
- Department of Pharmacology, SRM College of Pharmacy, SRM Institute of Science and Technology, Kattankulathur- 603 203, Tamil Nadu, India
| | - Rukaiah Fatma Begum
- Department of Pharmacology, SRM College of Pharmacy, SRM Institute of Science and Technology, Kattankulathur- 603 203, Tamil Nadu, India
| | - Ankul Singh S
- Department of Pharmacology, SRM College of Pharmacy, SRM Institute of Science and Technology, Kattankulathur- 603 203, Tamil Nadu, India
| | - Pavithra Lakshmi Narayanan
- Department of Pharmaceutical Chemistry, SRM College of Pharmacy, SRM Institute of Science and Technology, Kattankulathur- 603 203, Tamil Nadu, India
| | - Chitra Vellapandian
- Department of Pharmacology, SRM College of Pharmacy, SRM Institute of Science and Technology, Kattankulathur- 603 203, Tamil Nadu, India
| | - Bhupendra G. Prajapati
- Shree S. K. Patel College of Pharmaceutical Education and Research, Ganpat University, Kherva, 384012, Gujarat, India
| | - Pijush Kumar Paul
- Department of Pharmacy, Gono Bishwabidyalay University, Mirzanagar, Savar, Dhaka-1344, Bangladesh
| |
Collapse
|
2
|
Dahlenburg H, Cameron D, Yang S, Bachman A, Pollock K, Cary W, Pham M, Hendrix K, White J, Nelson H, Deng P, Anderson JS, Fink K, Nolta J. A novel Huntington's disease mouse model to assess the role of neuroinflammation on disease progression and to develop human cell therapies. Stem Cells Transl Med 2021; 10:1033-1043. [PMID: 33710799 PMCID: PMC8235129 DOI: 10.1002/sctm.20-0431] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 01/08/2021] [Accepted: 02/13/2021] [Indexed: 02/06/2023] Open
Abstract
Huntington's disease (HD) is a fatal autosomal-dominant neurodegenerative disease caused by a trinucleotide CAG repeat expansion of the huntingtin gene (HTT) that affects 1 in every 10 000 individuals in the United States. Our lab developed a novel immune deficient HD mouse strain, the YACNSG, from a commonly used line, the YAC128 mouse, to enable transplantation studies using engineered human cells in addition to studying the impact of the immune system on disease progression. The primary goal of this project was to characterize this novel immune deQficient HD mouse model, using behavioral assays and histology to compare this new model to the immune competent YAC128 and immune deficient mice that had engraftment of a human immune system. Flow cytometry was used to confirm that the YACNSG strain lacked immune cells, and in vivo imaging was used to assess human mesenchymal stem/stromal cell (MSC) retention compared with a commonly used immune deficient line, the NSG mouse. We found that YACNSG were able to retain human MSCs longer than the immune competent YAC128 mice. We performed behavioral assessments starting at 4 months of age and continued testing monthly until 12 months on the accelerod and in the open field. At 12 months, brains were isolated and evaluated using immunohistochemistry for striatal volume. Results from these studies suggest that the novel immune deficient YACNSG strain of mice could provide a good model for human stem-cell based therapies and that the immune system appears to play an important role in the pathology of HD.
Collapse
Affiliation(s)
- Heather Dahlenburg
- Stem Cell Program and Institute for Regenerative CuresUniversity of California Davis HealthSacramentoCaliforniaUSA
| | - David Cameron
- Stem Cell Program and Institute for Regenerative CuresUniversity of California Davis HealthSacramentoCaliforniaUSA
- Department of NeurologyUniversity of California Davis HealthSacramentoCaliforniaUSA
| | - Sheng Yang
- Stem Cell Program and Institute for Regenerative CuresUniversity of California Davis HealthSacramentoCaliforniaUSA
| | - Angelica Bachman
- Stem Cell Program and Institute for Regenerative CuresUniversity of California Davis HealthSacramentoCaliforniaUSA
| | - Kari Pollock
- Stem Cell Program and Institute for Regenerative CuresUniversity of California Davis HealthSacramentoCaliforniaUSA
| | - Whitney Cary
- Stem Cell Program and Institute for Regenerative CuresUniversity of California Davis HealthSacramentoCaliforniaUSA
| | - Missy Pham
- Stem Cell Program and Institute for Regenerative CuresUniversity of California Davis HealthSacramentoCaliforniaUSA
| | - Kyle Hendrix
- Stem Cell Program and Institute for Regenerative CuresUniversity of California Davis HealthSacramentoCaliforniaUSA
| | - Jeannine White
- Stem Cell Program and Institute for Regenerative CuresUniversity of California Davis HealthSacramentoCaliforniaUSA
| | - Haley Nelson
- Stem Cell Program and Institute for Regenerative CuresUniversity of California Davis HealthSacramentoCaliforniaUSA
| | - Peter Deng
- Stem Cell Program and Institute for Regenerative CuresUniversity of California Davis HealthSacramentoCaliforniaUSA
- Department of NeurologyUniversity of California Davis HealthSacramentoCaliforniaUSA
| | - Joseph S. Anderson
- Stem Cell Program and Institute for Regenerative CuresUniversity of California Davis HealthSacramentoCaliforniaUSA
| | - Kyle Fink
- Stem Cell Program and Institute for Regenerative CuresUniversity of California Davis HealthSacramentoCaliforniaUSA
- Department of NeurologyUniversity of California Davis HealthSacramentoCaliforniaUSA
| | - Jan Nolta
- Stem Cell Program and Institute for Regenerative CuresUniversity of California Davis HealthSacramentoCaliforniaUSA
- Department of Internal MedicineUniversity of California Davis HealthSacramentoCaliforniaUSA
| |
Collapse
|
3
|
Inhibition of Calcineurin A by FK506 Suppresses Seizures and Reduces the Expression of GluN2B in Membrane Fraction. Neurochem Res 2017; 42:2154-2166. [PMID: 28299629 DOI: 10.1007/s11064-017-2221-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2016] [Revised: 02/28/2017] [Accepted: 03/02/2017] [Indexed: 02/08/2023]
Abstract
FK506, a calcineurin inhibitor, shows neuroprotective effects and has been associated with neurodegenerative diseases. Calcineurin A (CaNA), a catalytic subunit of calcineurin, mediates the dephosphorylation of various proteins. N-methyl-D-aspartate receptor (GluN) is closely related to epileptogenesis, and various phosphorylation sites of GluN2B, a regulatory subunit of the GluN complex, have different functions. Thus, we hypothesized that one of the potential anti-epileptic mechanisms of FK506 is mediated by its ability to promote the phosphorylation of GluN2B and reduce the expression of GluN2B in membrane fraction by down-regulating CaNA. CaNA expression was increased in the cortex of patients with temporal lobe epilepsy and pentylenetetrazol (PTZ)-induced epileptic models. CaNA was shown to be expressed in neurons using immunofluorescence staining. According to our behavioral observations, epileptic rats exhibited less severe seizures and were less sensitive to PTZ after a systemic injection of FK506. The levels of phosphorylated GluN2B were decreased in epileptic rats but increased after the FK506 treatment. Moreover, there was no difference in the total GluN2B levels before and after FK506 treatment. However, the expression of GluN2B in membrane fraction was suppressed after FK506 treatment. Based on these results, FK506 may reduce the severity and frequency of seizures by reducing the expression of GluN2B in membrane fraction.
Collapse
|
4
|
Gao SJ, Liu Y, Wang HJ, Ban DX, Cheng SZ, Ning GZ, Wang LL, Chang J, Feng SQ. New approach to treating spinal cord injury using PEG-TAT-modified, cyclosporine-A-loaded PLGA/polymeric liposomes. J Drug Target 2016; 25:75-82. [DOI: 10.1080/1061186x.2016.1191082] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
5
|
Fink KD, Deng P, Torrest A, Stewart H, Pollock K, Gruenloh W, Annett G, Tempkin T, Wheelock V, Nolta JA. Developing stem cell therapies for juvenile and adult-onset Huntington's disease. Regen Med 2015; 10:623-46. [PMID: 26237705 PMCID: PMC6785015 DOI: 10.2217/rme.15.25] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Stem cell therapies have been explored as a new avenue for the treatment of neurologic disease and damage within the CNS in part due to their native ability to mimic repair mechanisms in the brain. Mesenchymal stem cells have been of particular clinical interest due to their ability to release beneficial neurotrophic factors and their ability to foster a neuroprotective microenviroment. While early stem cell transplantation therapies have been fraught with technical and political concerns as well as limited clinical benefits, mesenchymal stem cell therapies have been shown to be clinically beneficial and derivable from nonembryonic, adult sources. The focus of this review will be on emerging and extant stem cell therapies for juvenile and adult-onset Huntington's disease.
Collapse
Affiliation(s)
- Kyle D Fink
- Stem Cell Program & Institute for Regenerative Cures, University of California Davis Health Systems, 2921 Stockton Blvd. Sacramento, CA 95817, USA
| | - Peter Deng
- Stem Cell Program & Institute for Regenerative Cures, University of California Davis Health Systems, 2921 Stockton Blvd. Sacramento, CA 95817, USA
- GenomeCenter, Biochemistry & Molecular Medicine, University of California, 451 Health Sciences Dr. Davis, CA 95616, USA
| | - Audrey Torrest
- Stem Cell Program & Institute for Regenerative Cures, University of California Davis Health Systems, 2921 Stockton Blvd. Sacramento, CA 95817, USA
| | - Heather Stewart
- Stem Cell Program & Institute for Regenerative Cures, University of California Davis Health Systems, 2921 Stockton Blvd. Sacramento, CA 95817, USA
| | - Kari Pollock
- Stem Cell Program & Institute for Regenerative Cures, University of California Davis Health Systems, 2921 Stockton Blvd. Sacramento, CA 95817, USA
| | - William Gruenloh
- Stem Cell Program & Institute for Regenerative Cures, University of California Davis Health Systems, 2921 Stockton Blvd. Sacramento, CA 95817, USA
| | - Geralyn Annett
- Stem Cell Program & Institute for Regenerative Cures, University of California Davis Health Systems, 2921 Stockton Blvd. Sacramento, CA 95817, USA
| | - Teresa Tempkin
- Department of Neurology, University of California Davis Health Systems, 4860 Y Street Sacramento, CA 95817, USA
| | - Vicki Wheelock
- Department of Neurology, University of California Davis Health Systems, 4860 Y Street Sacramento, CA 95817, USA
| | - Jan A Nolta
- Stem Cell Program & Institute for Regenerative Cures, University of California Davis Health Systems, 2921 Stockton Blvd. Sacramento, CA 95817, USA
| |
Collapse
|
6
|
Molecular Dissection of Cyclosporin A's Neuroprotective Effect Reveals Potential Therapeutics for Ischemic Brain Injury. Brain Sci 2013; 3:1325-56. [PMID: 24961531 PMCID: PMC4061870 DOI: 10.3390/brainsci3031325] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2013] [Revised: 07/30/2013] [Accepted: 08/14/2013] [Indexed: 12/02/2022] Open
Abstract
After the onset of brain ischemia, a series of events leads ultimately to the death of neurons. Many molecules can be pharmacologically targeted to protect neurons during these events, which include glutamate release, glutamate receptor activation, excitotoxicity, Ca2+ influx into cells, mitochondrial dysfunction, activation of intracellular enzymes, free radical production, nitric oxide production, and inflammation. There have been a number of attempts to develop neuroprotectants for brain ischemia, but many of these attempts have failed. It was reported that cyclosporin A (CsA) dramatically ameliorates neuronal cell damage during ischemia. Some researchers consider ischemic cell death as a unique process that is distinct from both apoptosis and necrosis, and suggested that mitochondrial dysfunction and Δψ collapse are key steps for ischemic cell death. It was also suggested that CsA has a unique neuroprotective effect that is related to mitochondrial dysfunction. Here, I will exhibit examples of neuroprotectants that are now being developed or in clinical trials, and will discuss previous researches about the mechanism underlying the unique CsA action. I will then introduce the results of our cDNA subtraction experiment with or without CsA administration in the rat brain, along with our hypothesis about the mechanism underlying CsA’s effect on transcriptional regulation.
Collapse
|