1
|
Zhang Q, Guo S, Ge H, Wang H. The protective role of baicalin regulation of autophagy in cancers. Cytotechnology 2025; 77:33. [PMID: 39760060 PMCID: PMC11699138 DOI: 10.1007/s10616-024-00689-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Accepted: 12/16/2024] [Indexed: 01/07/2025] Open
Abstract
Autophagy is a conservative process of self degradation, in which abnormal organelles, proteins and other macromolecules are encapsulated and transferred to lysosomes for subsequent degradation. It maintains the intracellular balance, and responds to cellular conditions such as hunger or stress. To date, there are mainly three types of autophagy: macroautophagy, microautophagy and chaperone-mediated autophagy. Autophagy plays a key role in regulating multiple physiological and pathological processes, such as cell metabolism, development, energy homeostasis, cell death and hunger adaptation, and so on. Increasing evidence indicates that autophagy dysfunction participates in many kinds of cancers, such as liver cancer, pancreatic cancer, prostate cancer, and so on. However, the relevant mechanisms are not yet fully understood. Baicalin is a natural flavonoid compound extracted from the traditional Chinese medicine Scutellaria baicalensis. The research has shown that after oral or intravenous administration of baicalin, it is delivered to various organs through the systemic circulation, with the highest volume in the kidneys and lungs. More and more evidence suggests that baicalin has antioxidant, anticancer, anti-inflammatory, anti-apoptotic, immunomodulatory and antiviral effects. Therefore, baicalin plays an important role in various diseases, such as cancers, lung diseases, liver diseases, cardiovascular diseases, ans so on. However, the relevant mechanisms have not yet been fully clear. Recently, increasing evidence indicates that baicalin participates in different cancer by regulating autophagy. Herein, we reviewed the current knowledge about the role and mechanism of baicalin regulation of autophagy in multiple types of cancers to lay the theoretical foundation for future related researches.
Collapse
Affiliation(s)
- Qi Zhang
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, 475004 Henan China
| | - Shiyun Guo
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, 475004 Henan China
| | - Hangwei Ge
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, 475004 Henan China
| | - Honggang Wang
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, Henan University, Kaifeng, 475004 Henan China
| |
Collapse
|
2
|
Aslim B, Nigdelioglu Dolanbay S, Baran SS. Exploring allocryptopine as a neuroprotective agent against oxidative stress-induced neural apoptosis via Akt/GSK-3β/tau pathway modulation. Comput Biol Chem 2024; 112:108144. [PMID: 39004026 DOI: 10.1016/j.compbiolchem.2024.108144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 06/20/2024] [Accepted: 07/05/2024] [Indexed: 07/16/2024]
Abstract
Alzheimer's disease (AD) is characterized by neuronal loss due to hyperphosphorylated proteins induced by oxidative stress. AD remains a formidable challenge in the medical field, as current treatments focusing on single biomarkers have yielded limited success. Hence, there's a burgeoning interest in investigating novel compounds that can target mechanisms, offering alternative therapeutic approaches. The aim of this study is to investigate the effects of allocryptopine, an isoquinoline alkaloid, on mechanisms related to AD in order to develop alternative treatment strategies. In this study, the in vitro AD cell model was obtained by inducing nerve growth factor (NGF)-differentiated PC12 (dPC12) cells to oxidative stress with H2O2, and also the effect mechanism of different allocryptopine concentrations on the in vitro AD cell model was studied. The treatments' antioxidative effects at the ROS level and their regulation of the cell cycle were assessed through flow cytometry, while their anti-apoptotic effects were evaluated using both flow cytometry and qRT-PCR. Additionally, the phosphorylation levels of Akt, GSK-3β, and tau proteins were analyzed via western blot, and the interactions between Akt, GSK-3β, CDK5 proteins, and allocryptopine were demonstrated through molecular docking. Our study's conclusive results revealed that allocryptopine effectively suppressed intracellular ROS levels, while simultaneously enhancing the Akt/GSK-3β signaling pathway by increasing p-Akt and p-GSK-3β proteins. This mechanism played a critical role in inhibiting neural cell apoptosis and preventing tau hyperphosphorylation. Moreover, allocryptopine demonstrated its ability to regulate the G1/S cell cycle progression, leading to cell cycle arrest in the G1 phase, and facilitating cellular repair mechanisms, potentially contributing to the suppression of neural apoptosis. The in silico results of allocryptopine were shown to docking with the cyclin-dependent kinase 5 (CDK 5) playing a role in tau phosphorylation Akt and GSK-3β from target proteins. Therefore, the in silico study results supported the in vitro results. The results showed that allocryptopine can protect dPC12 cells from oxidative stress-induced apoptosis and hyperphosphorylation of the tau protein by regulating the Akt/GSK-3β signaling pathway. Based on these findings, it can be suggested that allocryptopine, with its ability to target biomarkers and its significant effects on AD-associated mechanisms, holds promise as a potential candidate for drug development in the treatment of AD. Further research and clinical trials are recommended in the future.
Collapse
Affiliation(s)
- Belma Aslim
- Gazi University, Faculty of Science, Department of Biology, Ankara 06500, Turkey
| | | | - Sahra Setenay Baran
- Gazi University, Faculty of Science, Department of Biology, Ankara 06500, Turkey; Gazi University, Graduate School of Natural and Applied Sciences, Department of Biology, Ankara 06500, Turkey
| |
Collapse
|
3
|
Li J, Zhang QY, Lu QY, Liu QZ, Guo L, Li M, Sun QY. Baicalin relieves complement alternative pathway activation-induced lung inflammation through inhibition of NF-κB pathway. BMC Complement Med Ther 2024; 24:334. [PMID: 39272057 PMCID: PMC11395835 DOI: 10.1186/s12906-024-04622-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 08/19/2024] [Indexed: 09/15/2024] Open
Abstract
INTRODUCTION Acute lung injury (ALI) as one kind of acute pulmonary inflammatory disorder, manifests primarily as damage to alveolar epithelial cells and microvascular endothelial cells. Activation of the complement system is a common pathological mechanism in ALI induced by diverse factors, with the complement alternative pathway assuming a pivotal role. Baicalin, a flavonoid derived from the root of Scutellaria baicalensis Georgi, exhibits noteworthy biological activities. The present study attempted the interventional effects and underlying mechanisms of baicalin in microangiopathy in ALI induced by complement alternative pathway activation. METHODS Activation of the complement alternative pathway by cobra venom factor (CVF). HMEC cells were pretreated with baicalin and then exposed to complement activation products. The expression of inflammatory mediators was detected by ELISA, and the intranuclear transcriptional activity of NF-κB was assessed by a dual fluorescent kinase reporter gene assay kit. Before establishing the ALI mouse model, baicalin or PDTC was gavaged for 7 d. CVF was injected into the tail vein to establish the ALI model. The levels of inflammatory mediators in BALF and serum were determined by ELISA. HE staining and immunohistochemistry evaluated pathological changes, complement activation product deposition, and NF-κB p65 phosphorylation in lung tissue. RESULTS Baicalin reduced complement alternative activation product-induced expression of HMEC cells adhesion molecules (ICAM-1, VCAM-1, E-selectin) and cytokines (IL-6, TNF-α) as well as upregulation of NF-κB intranuclear transcriptional activity. Baicalin intervention reduced the number of inflammatory cells and protein content in the BALF and decreased the levels of IL-6, TNF-α, and ICAM-1 in serum and IL-6, TNF-α, ICAM-1, and P-selectin in BLAF. In addition, baicalin attenuated inflammatory cell infiltration in the lung of ALI mice and reduced the deposition of complement activation products (C5a, C5b-9) and phosphorylation of NF-κB p65 in lung tissue. CONCLUSION Baicalin relieves complement alternative pathway activation-induced lung inflammation by inhibition of NF-κB pathway, delaying the progression of ALI.
Collapse
Affiliation(s)
- Jiao Li
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, 550014, China
- Natural Products Research Center of Guizhou Province, Guiyang, China
| | - Qi-Yun Zhang
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, 550014, China
- Natural Products Research Center of Guizhou Province, Guiyang, China
| | - Qing-Yu Lu
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, 550014, China
- Natural Products Research Center of Guizhou Province, Guiyang, China
| | - Qiao-Zhou Liu
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, 550014, China
- Natural Products Research Center of Guizhou Province, Guiyang, China
| | - Li Guo
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, 550014, China
- Natural Products Research Center of Guizhou Province, Guiyang, China
| | - Min Li
- Guizhou Provincial People's Hospital, No. 83, Zhongshan East Road, Nanming District, Guiyang, 550000, China.
| | - Qian-Yun Sun
- State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medical University, Guiyang, 550014, China.
- Natural Products Research Center of Guizhou Province, Guiyang, China.
| |
Collapse
|
4
|
Dai H, Jiang Y, Liu S, Li D, Zhang X. Dietary flavonoids modulate the gut microbiota: A new perspective on improving autism spectrum disorder through the gut-brain axis. Food Res Int 2024; 186:114404. [PMID: 38729686 DOI: 10.1016/j.foodres.2024.114404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 04/18/2024] [Accepted: 04/20/2024] [Indexed: 05/12/2024]
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental disorder with an unknown etiology. It is associated with various factors and causes great inconvenience to the patient's life. The gut-brain axis (GBA), which serves as a bidirectional information channel for exchanging information between the gut microbiota and the brain, is vital in studying many neurodegenerative diseases. Dietary flavonoids provide anti-inflammatory and antioxidant benefits, as well as regulating the structure and function of the gut microbiota. The occurrence and development of ASD are associated with dysbiosis of the gut microbiota. Modulation of gut microbiota can effectively improve the severity of ASD. This paper reviews the links between gut microbiota, flavonoids, and ASD, focusing on the mechanism of dietary flavonoids in regulating ASD through the GBA.
Collapse
Affiliation(s)
- Haochen Dai
- Department of Food Science and Engineering, Ningbo University, Ningbo 315211, PR China
| | - Yuhan Jiang
- Department of Food Science and Engineering, Ningbo University, Ningbo 315211, PR China
| | - Shuxun Liu
- College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou 310018, PR China.
| | - Dandan Li
- Sinograin Chengdu Storage Research Institute Co., Ltd, Chengdu 610091, PR China
| | - Xin Zhang
- Department of Food Science and Engineering, Ningbo University, Ningbo 315211, PR China.
| |
Collapse
|
5
|
Sharawi ZW, Ibrahim IM, Abd-Alhameed EK, Althagafy HS, Jaber FA, Harakeh S, Hassanein EHM. Baicalin and lung diseases. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:1405-1419. [PMID: 37725153 DOI: 10.1007/s00210-023-02704-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 08/30/2023] [Indexed: 09/21/2023]
Abstract
Studies focusing on natural products have been conducted worldwide, and the results suggest that their natural ingredients effectively treat a wide range of illnesses. Baicalin (BIA) is a glycoside derived from the flavonoid baicalein present in Scutellaria baicalensis of the Lamiaceae family. Interestingly, BIA has been shown to protect the lungs in several animal models used in numerous studies. Therefore, we fully analyzed the data of the studies that focused on BIA's lung protective function against various injuries and included them in this review. Interestingly, BIA exhibits promising effects against acute lung injury, lung fibrosis, pulmonary embolism, and lung remodelling associated with COPD, LPS, and paraquat insecticide. BAI exhibits anticancer activity against lung cancer. Additionally, BIA potently attenuates lung damage associated with infections. BIA primarily exerts its therapeutic effects by suppressing inflammation, oxidative stress immune response, and apoptosis pathways. Nrf2/HO-1, PI3K/Akt, NF-κB, STAT3, MAPKs, TLR4, and NLRP3 are important targets in the pulmonary therapeutic effects of BIA on different lung disease models. Consequently, we recommend using it in future potential clinical applications, its contribution to treatment guidelines, and translating its promising effects to clinical practice in lung diseases.
Collapse
Affiliation(s)
- Zeina W Sharawi
- Biological Sciences Department, Faculty of Sciences, King AbdulAziz University, Jeddah, Saudi Arabia
| | - Islam M Ibrahim
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt
| | - Esraa K Abd-Alhameed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt
| | - Hanan S Althagafy
- Department of Biochemistry, Faculty of Science, University of Jeddah, Jeddah, Saudi Arabia
| | - Fatima A Jaber
- Department of Biology, College of Science, University of Jeddah, P.O. Box 80327, Jeddah, 21589, Saudi Arabia
| | - Steve Harakeh
- King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
- Yousef Abdul Lateef Jameel Chair of Prophetic Medicine Application, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Emad H M Hassanein
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Al-Azhar University, Assiut, Egypt.
| |
Collapse
|
6
|
Fukuyama Y, Kubo M, Harada K. Neurotrophic Natural Products. PROGRESS IN THE CHEMISTRY OF ORGANIC NATURAL PRODUCTS 2024; 123:1-473. [PMID: 38340248 DOI: 10.1007/978-3-031-42422-9_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/12/2024]
Abstract
Neurotrophins (NGF, BDNF, NT3, NT4) can decrease cell death, induce differentiation, as well as sustain the structure and function of neurons, which make them promising therapeutic agents for the treatment of neurodegenerative disorders. However, neurotrophins have not been very effective in clinical trials mostly because they cannot pass through the blood-brain barrier owing to being high-molecular-weight proteins. Thus, neurotrophin-mimic small molecules, which stimulate the synthesis of endogenous neurotrophins or enhance neurotrophic actions, may serve as promising alternatives to neurotrophins. Small-molecular-weight natural products, which have been used in dietary functional foods or in traditional medicines over the course of human history, have a great potential for the development of new therapeutic agents against neurodegenerative diseases such as Alzheimer's disease. In this contribution, a variety of natural products possessing neurotrophic properties such as neurogenesis, neurite outgrowth promotion (neuritogenesis), and neuroprotection are described, and a focus is made on the chemistry and biology of several neurotrophic natural products.
Collapse
Affiliation(s)
- Yoshiyasu Fukuyama
- Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Tokushima, 770-8514, Japan.
| | - Miwa Kubo
- Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Tokushima, 770-8514, Japan
| | - Kenichi Harada
- Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Tokushima, 770-8514, Japan
| |
Collapse
|
7
|
Iqbal M, Waqas M, Mo Q, Shahzad M, Zeng Z, Qamar H, Mehmood K, Kulyar MFEA, Nawaz S, Li J. Baicalin inhibits apoptosis and enhances chondrocyte proliferation in thiram-induced tibial dyschondroplasia in chickens by regulating Bcl-2/Caspase-9 and Sox-9/Collagen-II expressions. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 268:115689. [PMID: 37992645 DOI: 10.1016/j.ecoenv.2023.115689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 11/06/2023] [Accepted: 11/11/2023] [Indexed: 11/24/2023]
Abstract
Avian tibial dyschondroplasia (TD) is a skeletal disease affecting fast growing chickens, resulting in non-mineralized avascular cartilage. This metabolic disorder is characterized by lameness and reduced growth performance causing economic losses. The aim of this study was to investigate the protective effects of baicalin against TD caused by thiram exposure. A total of two hundred and forty (n = 240) one day-old broiler chickens were uniformly and randomly allocated into three different groups (n = 80) viz. control, TD, and baicalin groups. All chickens received standard feed, however, to induce TD, the TD and baicalin groups received thiram (tetramethylthiuram disulfide) at a rate of 50 mg/kg feed from days 4-7. The thiram induction in TD and baicalin groups resulted in lameness, high mortality, and enlarged growth-plate, poor production performance, reduction in ALP, GSH-Px, SOD, and T-AOC levels, and increased AST and ALT, and MDA levels. Furthermore, histopathological results showed less vascularization, and mRNA and protein expression levels of Sox-9, Col-II, and Bcl-2 showed significant downward trend, while caspase-9 displayed significant up-regulation in TD-affected chickens. After the TD induction, the baicalin group was orally administered with baicalin at a rate of 200 mg/kg from days 8-18. Baicalin administration increased the vascularization, and chondrocytes with intact nuclei, alleviated lameness, decreased GP size, increased productive capacity, and restored the liver antioxidant enzymes and serum biochemical levels. Furthermore, baicalin significantly up-regulated the gene and protein expressions of Sox-9, Col-II, and Bcl-2, and significantly down-regulated the expression of caspase-9 (p < 0.05). Therefore, the obtained results suggest that baicalin could be a possible choice in thiram toxicity alleviation by regulating apoptosis and chondrocyte proliferation in thiram-induced tibial dyschondroplasia.
Collapse
Affiliation(s)
- Mudassar Iqbal
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; Faculty of Veterinary and Animal Sciences, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Muhammad Waqas
- Department of Veterinary Clinical Sciences, Faculty of Veterinary and Animal Sciences, University of Poonch Rawalakot, Poonch 12350, Azad Jammu and Kashmir, Pakistan
| | - Quan Mo
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Muhammad Shahzad
- Faculty of Veterinary and Animal Sciences, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Zhibo Zeng
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Hammad Qamar
- Institute of Animal Science, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Khalid Mehmood
- Faculty of Veterinary and Animal Sciences, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | | | - Shah Nawaz
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Jiakui Li
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
8
|
Vitiello L, Capasso L, Cembalo G, De Pascale I, Imparato R, De Bernardo M. Herbal and Natural Treatments for the Management of the Glaucoma: An Update. BIOMED RESEARCH INTERNATIONAL 2023; 2023:3105251. [PMID: 38027044 PMCID: PMC10673672 DOI: 10.1155/2023/3105251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 06/13/2023] [Accepted: 11/06/2023] [Indexed: 12/01/2023]
Abstract
Glaucoma causes the degeneration of the retinal ganglion cells (RGCs) and their axons, inducing a tissue reshaping that affects both the retina and the optic nerve head. Glaucoma care especially focuses on reducing intraocular pressure, a significant risk factor for progressive damage to the optic nerve. The use of natural treatments, such as herbs, vitamins, and minerals, is becoming increasingly popular today. While plants are a rich source of novel biologically active compounds, only a small percentage of them have been phytochemically examined and evaluated for their medicinal potential. It is necessary for eye care professionals to inform their glaucoma patients about the therapy, protection, and efficacy of commonly used herbal medicines, considering the widespread use of herbal medicines. The purpose of this review is to examine evidence related to the most widely used herbal medicines for the management and treatment of glaucoma, to better understand the potential benefits of these natural compounds as supplementary therapy.
Collapse
Affiliation(s)
- Livio Vitiello
- Eye Unit, “Luigi Curto” Hospital, Azienda Sanitaria Locale Salerno, Polla, 84035 Salerno, Italy
| | - Luigi Capasso
- Eye Unit, “Ospedale del Mare” Hospital, Azienda Sanitaria Locale Napoli 1 Centro, Naples 80147, Italy
| | - Giovanni Cembalo
- Eye Unit, Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, Baronissi, 84081 Salerno, Italy
| | - Ilaria De Pascale
- Eye Unit, “Ramazzini” Hospital, Azienda Unità Sanitaria Locale Modena, Carpi 41012, Italy
| | - Roberto Imparato
- Eye Unit, Azienda Unità Sanitaria Locale Valle d'Aosta, Aosta 11100, Italy
| | - Maddalena De Bernardo
- Eye Unit, Department of Medicine, Surgery and Dentistry “Scuola Medica Salernitana”, University of Salerno, Baronissi, 84081 Salerno, Italy
| |
Collapse
|
9
|
Tekeli MY, Eraslan G, Bayram LÇ, Aslan C, Çalımlı S. The protective effects of baicalin and chrysin against emamectin benzoate-induced toxicity in Wistar albino rats. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:53997-54021. [PMID: 36869176 DOI: 10.1007/s11356-023-26110-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Accepted: 02/20/2023] [Indexed: 06/18/2023]
Abstract
The aim of this study was to investigate the effects of baicalin, chrysin and their combinations against emamectin benzoate-induced toxicity in rats. For this purpose, sixty four rats were divided into evenly 8 groups with 6-8-week-old male Wistar albino rats, weighing 180-250 g, in each group. While the first group was kept as a control (corn oil), the remaining 7 groups were administered with emamectin benzoate (10 mg/kg bw), baicalin (50 mg/kg bw) and chrysin (50 mg/kg bw) alone or together for 28 days. Oxidative stress parameters, serum biochemical parameters and blood/tissue (liver, kidney, brain, testis and heart) and tissue histopathology were investigated. Compared to the control group, the emamectin benzoate-intoxicated rats had significantly higher tissue/plasma concentrations of nitric oxide (NO) and malondialdehyde (MDA), as well as lower tissue glutathione (GSH) concentrations and antioxidant enzyme activity (glutathione peroxidase/GSH-Px, glutathione reductase/GR, glutathione-S-transferase/GST, superoxide dismutase/SOD, catalase/CAT). Biochemical analysis showed that emamectin benzoate administration significantly increased serum aspartate aminotransferase (AST), alanine aminotransferase (ALT), alkaline phosphatase (ALP) and lactate dehydrogenase (LDH) activities, as well as triglyceride, cholesterol, creatinine, uric acid and urea levels, and decreased serum total protein and albumin levels. The histopathological examination of the liver, kidney, brain, heart and testis tissues of the emamectin benzoate-intoxicated rats demonstrated necrotic changes. Baicalin and/or chrysin reversed the biochemical and histopathological alterations induced by emamectin benzoate on these tested organs. Therefore, baicalin and chrysin (alone or in combination) could offer protection against emamectin benzoate-induced toxicity.
Collapse
Affiliation(s)
- Muhammet Yasin Tekeli
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Erciyes University, Kayseri, Turkey
| | - Gökhan Eraslan
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Erciyes University, Kayseri, Turkey.
| | - Latife Çakır Bayram
- Department of Pathology, Faculty of Veterinary Medicine, Erciyes University, Kayseri, Turkey
| | - Coşkun Aslan
- Derinkuyu Emineana and Yaşar Ertaş Agriculture and Livestock Vocational School, Nevşehir Hacı Bektaş Veli University, Nevşehir, Turkey
| | - Sinem Çalımlı
- Department of Veterinary Pharmacology and Toxicology, Institute of Health Science, Erciyes University, Kayseri, Turkey
| |
Collapse
|
10
|
Kooshki L, Zarneshan SN, Fakhri S, Moradi SZ, Echeverria J. The pivotal role of JAK/STAT and IRS/PI3K signaling pathways in neurodegenerative diseases: Mechanistic approaches to polyphenols and alkaloids. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 112:154686. [PMID: 36804755 DOI: 10.1016/j.phymed.2023.154686] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 01/10/2023] [Accepted: 01/28/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND Neurodegenerative diseases (NDDs) are characterized by progressive neuronal dysfunctionality which results in disability and human life-threatening events. In recent decades, NDDs are on the rise. Besides, conventional drugs have not shown potential effectiveness to attenuate the complications of NDDs. So, exploring novel therapeutic agents is an urgent need to combat such disorders. Accordingly, growing evidence indicates that polyphenols and alkaloids are promising natural candidates, possessing several beneficial pharmacological effects against diseases. Considering the complex pathophysiological mechanisms behind NDDs, Janus kinase (JAK), insulin receptor substrate (IRS), phosphoinositide 3-kinase (PI3K), and signal transducer and activator of transcription (STAT) seem to play critical roles during neurodegeneration/neuroregeneration. In this line, modulation of the JAK/STAT and IRS/PI3K signaling pathways and their interconnected mediators by polyphenols/alkaloids could play pivotal roles in combating NDDs, including Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD), stroke, aging, multiple sclerosis (MS), amyotrophic lateral sclerosis (ALS), depression and other neurological disorders. PURPOSE Thus, the present study aimed to investigate the neuroprotective roles of polyphenols/alkaloids as multi-target natural products against NDDs which are critically passing through the modulation of the JAK/STAT and IRS/PI3K signaling pathways. STUDY DESIGN AND METHODS A systematic and comprehensive review was performed to highlight the modulatory roles of polyphenols and alkaloids on the JAK/STAT and IRS/PI3K signaling pathways in NDDs, according to the PRISMA guideline, using scholarly electronic databases, including Scopus, PubMed, ScienceDirect, and associated reference lists. RESULTS In the present study 141 articles were included from a total of 1267 results. The results showed that phenolic compounds such as curcumin, epigallocatechin-3-gallate, and quercetin, and alkaloids such as berberine could be introduced as new strategies in combating NDDs through JAK/STAT and IRS/PI3K signaling pathways. This is the first systematic review that reveals the correlation between the JAK/STAT and IRS/PI3K axis which is targeted by phytochemicals in NDDs. Hence, this review highlighted promising insights into the neuroprotective potential of polyphenols and alkaloids through the JAK/STAT and IRS/PI3K signaling pathway and interconnected mediators toward neuroprotection. CONCLUSION Amongst natural products, phenolic compounds and alkaloids are multi-targeting agents with the most antioxidants and anti-inflammatory effects possessing the potential of combating NDDs with high efficacy and lower toxicity. However, additional reports are needed to prove the efficacy and possible side effects of natural products.
Collapse
Affiliation(s)
- Leila Kooshki
- Student Research Committee, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | | | - Sajad Fakhri
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah 6734667149, Iran.
| | - Seyed Zachariah Moradi
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah 6734667149, Iran; Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah 6734667149, Iran
| | - Javier Echeverria
- Departamento de Ciencias del Ambiente, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile.
| |
Collapse
|
11
|
Ma Z, Feng D, Rui W, Wang Z. Baicalin attenuates chronic unpredictable mild stress-induced hippocampal neuronal apoptosis through regulating SIRT1/PARP1 signaling pathway. Behav Brain Res 2023; 441:114299. [PMID: 36642102 DOI: 10.1016/j.bbr.2023.114299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 12/29/2022] [Accepted: 01/11/2023] [Indexed: 01/13/2023]
Abstract
Baicalin (BA), a flavonoid glycoside extracts from Scutellaria baicalensis Georgi, has been reported to exert antidepressant effects. Emerging evidence indicates that neuronal apoptosis plays a crucial role in the pathogenesis of depression. Poly (ADP-ribose) polymerase-1 (PARP1) is established as a key regulator of the cellular apoptosis. In the present study, we explored whether BA exerts antidepressant effects by regulating PARP1 signaling pathway and elucidated the underlying mechanisms. We found that administration of BA (30 mg/kg, 60 mg/kg) alleviated chronic unpredictable mild stress (CUMS)-induced depressive-like behaviors by increasing sucrose consumption in sucrose preference test (SPT), improving activity status in open field test (OFT) and reducing rest time in tail suspension test (TST). Hematoxylin and eosin (HE) staining and Nissl staining showed that BA ameliorated CUMS-induced neuronal damage in the hippocampus. Moreover, BA significantly upregulated anti-apoptotic protein Bcl-2, downregulated pro-apoptotic protein Bax and cleaved-caspase-3 after CUMS in hippocampal of mice. Intriguingly, western blot and immunohistochemistry (IHC) results showed that the protein level of PARP1 was significantly increased in hippocampal tissue after CUMS, which was reversed by BA treatment. In primary hippocampal neurons (PHNs), BA abrogated the neuronal apoptosis caused by PARP1 overexpression. Meanwhile, BA significantly increased the protein level of SIRT1, SIRT1 inhibitor (EX-527) treatment reversed the effect of BA on reducing the protein level of PARP1 and neuronal apoptosis in CUMS-induced mice. Overall, our results indicated that BA attenuated the CUMS-induced hippocampal neuronal apoptosis through regulating the SIRT1/PARP1 signaling pathway.
Collapse
Affiliation(s)
- Zhongxuan Ma
- Department of Pharmacy, Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing 210029, Jiangsu, China.
| | - Dingding Feng
- Department of Pharmaceutical Sciences, Jiangsu Health Vocational College, Nanjing 211800, Jiangsu, China
| | - Wenjuan Rui
- Department of Clinical Laboratory, Shanghai East Hospital, Tongji University School of Medicine, 150 Ji Mo Road, Shanghai 200120, China
| | - Zhiqing Wang
- Department of Pharmacy, Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing 210029, Jiangsu, China.
| |
Collapse
|
12
|
Promising Role of the Scutellaria baicalensis Root Hydroxyflavone-Baicalein in the Prevention and Treatment of Human Diseases. Int J Mol Sci 2023; 24:ijms24054732. [PMID: 36902160 PMCID: PMC10003701 DOI: 10.3390/ijms24054732] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 02/24/2023] [Accepted: 02/27/2023] [Indexed: 03/06/2023] Open
Abstract
Plant roots, due to a high content of natural antioxidants for many years, have been used in herbal medicine. It has been documented that the extract of Baikal skullcap (Scutellaria baicalensis) has hepatoprotective, calming, antiallergic, and anti-inflammatory properties. Flavonoid compounds found in the extract, including baicalein, have strong antiradical activity, which improves overall health and increases feelings of well-being. Plant-derived bioactive compounds with antioxidant activity have for a long time been used as an alternative source of medicines to treat oxidative stress-related diseases. In this review, we summarized the latest reports on one of the most important aglycones with respect to the pharmacological activity and high content in Baikal skullcap, which is 5,6,7-trihydroxyflavone (baicalein).
Collapse
|
13
|
Zhang Y, Cheng L, Liu Y, Zhan S, Wu Z, Luo S, Zhang X. Dietary flavonoids: a novel strategy for the amelioration of cognitive impairment through intestinal microbiota. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:488-495. [PMID: 35892267 DOI: 10.1002/jsfa.12151] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 07/23/2022] [Accepted: 07/27/2022] [Indexed: 06/15/2023]
Abstract
The chances of people suffering from cognitive impairments increase gradually with age. Diet and lifestyle are closely related to the occurrence and development of cognitive function. Dietary flavonoid supplementation has been shown to be one of the protective factors against cognitive decline. Flavonoids belong to a class of polyphenols that have been proposed for the treatment of cognitive decline. Recent evidence has shown that intestinal flora in the human body can interact with flavonoids. Intestinal microbiota can modify the chemical structure of flavonoids, producing new metabolites, the pharmacological activities of which may be different from those of the parent; meanwhile, flavonoids and their metabolites can, in turn, regulate the composition and structure of intestinal flora. Notably, intestinal flora affect host nervous system activity through the gut-brain axis, ultimately causing changes in cognitive function. This review therefore summarizes the interaction of dietary flavonoids and intestinal flora, and their protective effect against cognitive decline through the gut-brain axis, indicating that dietary flavonoids may ameliorate cognitive impairment through their interaction with intestinal microbiota. © 2022 Society of Chemical Industry.
Collapse
Affiliation(s)
- Yuting Zhang
- Department of Food Science and Engineering, Ningbo University, Ningbo, People's Republic of China
| | - Lu Cheng
- Department of Food Science, Rutgers, The State University of New Jersey, New Brunswick, NJ, USA
| | - Yanan Liu
- Department of Food Science and Engineering, Ningbo University, Ningbo, People's Republic of China
| | - Shengnan Zhan
- Department of Food Science and Engineering, Ningbo University, Ningbo, People's Republic of China
| | - Zufang Wu
- Department of Food Science and Engineering, Ningbo University, Ningbo, People's Republic of China
| | - Songmei Luo
- Department of Pharmacy, Lishui Central Hospital, Lishui, People's Republic of China
| | - Xin Zhang
- Department of Food Science and Engineering, Ningbo University, Ningbo, People's Republic of China
| |
Collapse
|
14
|
Lou Y, Ma M, Jiang Y, Xu H, Gao Z, Gao L, Wang Y. Ferroptosis: A new strategy for traditional Chinese medicine treatment of stroke. Biomed Pharmacother 2022; 156:113806. [DOI: 10.1016/j.biopha.2022.113806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 09/24/2022] [Accepted: 10/03/2022] [Indexed: 11/02/2022] Open
|
15
|
Guo L, Li Y, Li W, Qiu J, Du J, Wang L, Zhang T. Shikonin ameliorates oxidative stress and neuroinflammation via the Akt/
ERK
/
JNK
/
NF‐κB
signaling pathways in model of Parkinson’s disease. Clin Exp Pharmacol Physiol 2022; 49:1221-1231. [DOI: 10.1111/1440-1681.13709] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 07/22/2022] [Accepted: 07/26/2022] [Indexed: 11/28/2022]
Affiliation(s)
- Lei Guo
- Department of Neurology Yantai City Yantaishan Hospital Yantai Shandong China
| | - Yuanyuan Li
- Department of Health Care Dongying People's Hospital Dongying Shandong China
| | - Wenna Li
- Department of Neurology Yantai City Yantaishan Hospital Yantai Shandong China
| | - Jiaoxue Qiu
- Department of Neurology Yantai City Yantaishan Hospital Yantai Shandong China
| | - Juan Du
- Department of Neurology Yantai City Yantaishan Hospital Yantai Shandong China
| | - Lingling Wang
- Department of Neurology Yantai City Yantaishan Hospital Yantai Shandong China
| | - Ting Zhang
- Department of Health Care Dongying People's Hospital Dongying Shandong China
| |
Collapse
|
16
|
Ganguly R, Gupta A, Pandey AK. Role of baicalin as a potential therapeutic agent in hepatobiliary and gastrointestinal disorders: A review. World J Gastroenterol 2022; 28:3047-3062. [PMID: 36051349 PMCID: PMC9331529 DOI: 10.3748/wjg.v28.i26.3047] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 03/21/2022] [Accepted: 05/22/2022] [Indexed: 02/06/2023] Open
Abstract
Baicalin is a natural bioactive compound derived from Scutellaria baicalensis, which is extensively used in traditional Chinese medicine. A literature survey demonstrated the broad spectrum of health benefits of baicalin such as antioxidant, anticancer, anti-inflammatory, antimicrobial, cardio-protective, hepatoprotective, renal protective, and neuroprotective properties. Baicalin is hydrolyzed to its metabolite baicalein by the action of gut microbiota, which is further reconverted to baicalin via phase 2 metabolism in the liver. Many studies have suggested that baicalin exhibits therapeutic potential against several types of hepatic disorders including hepatic fibrosis, xenobiotic-induced liver injury, fatty liver disease, viral hepatitis, cholestasis, ulcerative colitis, hepatocellular and colorectal cancer. During in vitro and in vivo examinations, it has been observed that baicalin showed a protective role against liver and gut-associated abnormalities by modifying several signaling pathways such as nuclear factor-kappa B, transforming growth factor beta 1/SMAD3, sirtuin 1, p38/mitogen-activated protein kinase/Janus kinase, and calcium/calmodulin-dependent protein kinase kinaseβ/adenosine monophosphate-activated protein kinase/acetyl-coenzyme A carboxylase pathways. Furthermore, baicalin also regulates the expression of fibrotic genes such as smooth muscle actin, connective tissue growth factor, β-catenin, and inflammatory cytokines such as interferon gamma, interleukin-6 (IL-6), tumor necrosis factor-alpha, and IL-1β, and attenuates the production of apoptotic proteins such as caspase-3, caspase-9 and B-cell lymphoma 2. However, due to its low solubility and poor bioavailability, widespread therapeutic applications of baicalin still remain a challenge. This review summarized the hepatic and gastrointestinal protective attributes of baicalin with an emphasis on the molecular mechanisms that regulate the interaction of baicalin with the gut microbiota.
Collapse
Affiliation(s)
- Risha Ganguly
- Department of Biochemistry, University of Allahabad, Allahabad (Prayagraj) 211002, Uttar Pradesh, India
| | - Ashutosh Gupta
- Department of Biochemistry, University of Allahabad, Allahabad (Prayagraj) 211002, Uttar Pradesh, India
| | - Abhay K Pandey
- Department of Biochemistry, University of Allahabad, Allahabad (Prayagraj) 211002, Uttar Pradesh, India
| |
Collapse
|
17
|
Scutellaria baicalensis and its constituents baicalin and baicalein as antidotes or protective agents against chemical toxicities: a comprehensive review. Naunyn Schmiedebergs Arch Pharmacol 2022; 395:1297-1329. [PMID: 35676380 DOI: 10.1007/s00210-022-02258-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 05/21/2022] [Indexed: 10/18/2022]
Abstract
Scutellaria baicalensis (SB), also known as the Chinese skullcap, has a long history of being used in Chinese medicine to treat a variety of conditions ranging from microbial infections to metabolic syndrome and malignancies. Numerous studies have reported that treatment with total SB extract or two main flavonoids found in its root and leaves, baicalin (BA) and baicalein (BE), can prevent or alleviate the detrimental toxic effects of exposure to various chemical compounds. It has been shown that BA and BE are generally behind the protective effects of SB against toxicants. This paper aimed to review the protective and therapeutic effects of SB and its main components BA and BE against chemical compounds that can cause intoxication after acute or chronic exposure and seriously affect different vital organs including the brain, heart, liver, and kidneys. In this review paper, we had a look into a total of 221 in vitro and in vivo studies from 1995 to 2021 from the scientific databases PubMed, Scopus, and Web of Science which reported protective or therapeutic effects of BA, BE, or SB against drugs and chemicals that one might be exposed to on a professional or accidental basis and compounds that are primarily used to simulate disease models. In conclusion, the protective effects of SB and its flavonoids can be mainly attributed to increase in antioxidants enzymes, inhibition of lipid peroxidation, reduction of inflammatory cytokines, and suppression of apoptosis pathway.
Collapse
|
18
|
Kalra S, Banderwal R, Arora K, Kumar S, Singh G, Chawla PA, Behl T, Sehgal A, Singh S, Bhatia S, Al-Harrasi A, Aleya L, Dhiman A. An update on pathophysiology and treatment of sports-mediated brain injury. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:16786-16798. [PMID: 34994929 DOI: 10.1007/s11356-021-18391-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 12/24/2021] [Indexed: 06/14/2023]
Abstract
Traumatic brain injury (TBI) is a neurological disorder which represents a major health issue worldwide. It causes mortality and disability among all group ages, caused by external force, sports-related events or violence and road traffic accidents. In the USA, approximately one-third people die annually due to injury and 1.7 million people suffer from traumatic brain injury. Every year in India around 1.6 million individuals suffer from sustain brain injury with 200,000 deaths and approximately one million person needed recovery treatment at any stage of time. Sports-related head impact and trauma has become an extremely controversial public health and medico-legal problem that accounts for 20% of all brain injury (including concussion). It is difficult to reverse the primary injury but the secondary injury can be minimized by using proper pharmacological intervention during the initial hours of injury. This article highlights the pathophysiology and types of TBI along with treatment therapies. Till date, there is no single medication that can decrease the progression of the disease so that symptomatic treatment is given to the patient by determining proper pathology. Recently various herbal medicine therapies and traditional supplements have been developed for TBI. Nutritional supplementation and nutraceuticals have exposed potential in the treatment of TBI when used before and after TBI. The compiled data will enable the readers to know the pathophysiology as well as the allopathic and natural remedies to treat the TBI.
Collapse
Affiliation(s)
- Sunishtha Kalra
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak, Haryana, India
| | - Rittu Banderwal
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak, Haryana, India
| | - Kaushal Arora
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak, Haryana, India
| | - Sandeep Kumar
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak, Haryana, India
| | - Govind Singh
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak, Haryana, India
| | - Pooja A Chawla
- Department of Pharmaceutical Chemistry and Analysis, ISF College of Pharmacy Moga, Punjab, India
| | - Tapan Behl
- Chitkara College of Pharmacy, Chitkara University, Punjab, India.
| | - Aayush Sehgal
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Sukhbir Singh
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Saurabh Bhatia
- School of Health Science, University of Petroleum and Energy Studies, Dehradun, Uttarakhand, India
- Natural & Medical Sciences Research Centre, University of Nizwa, Birkat Al Mauz, Nizwa, Oman
| | - Ahmed Al-Harrasi
- Natural & Medical Sciences Research Centre, University of Nizwa, Birkat Al Mauz, Nizwa, Oman
| | - Lotfi Aleya
- Chrono-Environment Laboratory, UMR CNRS 6249, Bourgogne Franche-Comté University, Besançon, France
| | - Anju Dhiman
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak, Haryana, India.
| |
Collapse
|
19
|
Baicalin Inhibits NLRP3 Inflammasome Activity Via the AMPK Signaling Pathway to Alleviate Cerebral Ischemia-Reperfusion Injury. Inflammation 2021; 44:2091-2105. [PMID: 34080089 DOI: 10.1007/s10753-021-01486-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 04/30/2021] [Accepted: 05/23/2021] [Indexed: 02/07/2023]
Abstract
Baicalin has been reported to have ameliorative effects on nerve-induced hypoxic ischemia injury; however, its role in the NLRP3 inflammasome-dependent inflammatory response during cerebral ischemia-reperfusion remains unclear. To investigate the molecular mechanisms involved in baicalin alleviating cerebral ischemia-reperfusion injury, we investigated the AMPK signaling pathway which regulates NLRP3 inflammasome activity. SD rats were treated with baicalin at doses of 100 mg/kg and 200 mg/kg, respectively, after middle cerebral artery occlusion at 2 h and reperfusion for 24 h (MCAO/R). MCAO/R treatment significantly increased cerebral infarct volume, changed the ultrastructure of nerve cells, and activated the NLRP3 inflammasome, manifesting as significantly increased expression of NLRP3, ASC, cleaved caspase-1, IL-1β, and IL-18. Our results demonstrated that baicalin treatment effectively reversed these phenomena in a dose-dependent manner. Additionally, inhibition of NLRP3 expression was found to promote the neuroprotective effects of baicalin on cortical neurons. Furthermore, baicalin remarkably increased the expression of p-AMPK following oxygen glucose deprivation/reperfusion (OGD/R). The expression of the NLRP3 inflammasome was also increased when the AMPK pathway was blocked by compound C. Taken together, our findings reveal that baicalin reduces the activity of the NLRP3 inflammasome and consequently inhibits cerebral ischemia-reperfusion injury through activation of the AMPK signaling pathway.
Collapse
|
20
|
Nigdelioglu Dolanbay S, Kocanci FG, Aslim B. Neuroprotective effects of allocryptopine-rich alkaloid extracts against oxidative stress-induced neuronal damage. Biomed Pharmacother 2021; 140:111690. [PMID: 34004513 DOI: 10.1016/j.biopha.2021.111690] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 04/25/2021] [Accepted: 04/29/2021] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND Oxidative stress is a significant feature in the pathomechanism of neurodegenerative diseases. Thus, the search for an effective and safe novel antioxidant agent with neuroprotective properties has increased the interest in medicinal plant products as a bioactive phytochemical source. However, little is known about the potential effects of the medically important Glaucium corniculatum as a natural antioxidant. OBJECTIVE In the present study, it was aimed to investigate the anti-oxidative, anti-apoptotic, and cell cycle regulatory mechanisms underlying the neuroprotective effects of alkaloid extracts (chloroform, methanol, and water) from G. corniculatum, which was profiled for major alkaloid/alkaloids, against H2O2-induced neuronal damage in differentiated PC12 cells. MATERIALS AND METHODS The profiles of the alkaloid extracts were analyzed by GC-MS. The effects of the alkaloid extracts on intracellular ROS production, level of apoptotic cells, and cell cycle dysregulation were analyzed by flow cytometry; the effects on mRNA expression of apoptosis-related genes were also analyzed by qRT-PCR. RESULTS The same alkaloid components, allocryptopine, tetrahydropalmatine, and tetrahydroberberine N-oxide were obtained in all three solvents, but the ratios of the components differed according to the solvents. Allocryptopine was determined to be the major alkaloid ingredient in the alkaloid extracts, with the highest amount of allocryptopine (497 μg/mg) being found in the chloroform alkaloid extract (CAE) (*p < 0.05). The best results were obtained from CAE, which has the highest amount of allocryptopine among alkaloid extracts in all studies. CAE suppressed intracellular ROS production (5.7-fold), percentage of apoptotic cells (3.0-fold), and cells in the sub G1 phase (6.8-fold); additionally, it increased cells in the G1 phase (1.5-fold) (**p < 0.01). CAE remarkably reduced the expressions of Bax, Caspase-9/-3 mRNA (2.4-3.5-fold) while increasing the expression of Bcl-2 mRNA (3.0-fold) (*p < 0.05). CONCLUSIONS Our results demonstrated that alkaloid extracts from G. corniculatum, which contain allocryptopine, tetrahydropalmatine, and tetrahydroberberine N-oxide suppressed oxidative stress-induced neuronal apoptosis, possibly by suppressing the mitochondrial apoptotic pathway and regulating the cell cycle. These results are the first report that related alkaloids have played a neuroprotective role by regulating multiple mechanisms. Thus, our study indicated that these alkaloids especially allocryptopine could offer an efficient and novel strategy to explore novel drugs for neuroprotection and cognitive improvement.
Collapse
Affiliation(s)
| | - Fatma Gonca Kocanci
- Alaaddin Keykubat University, Vocational High School of Health Services, Department of Medical Laboratory Techniques, Alanya 07425, Antalya, Turkey
| | - Belma Aslim
- Gazi University, Faculty of Science, Department of Biology, 06500 Ankara, Turkey
| |
Collapse
|
21
|
Ren Y, Liang S, Zheng Y, Deng X, Lei L, Ai J, Li Y, Zhang T, Chen L, Mei Z, Cheng YC, He C. Investigation on the function tropism of Tiaoqin and Kuqin (different specification of Scutellaria baicalensis) by comparing their curative effect on different febrile disease model. JOURNAL OF ETHNOPHARMACOLOGY 2021; 268:113596. [PMID: 33221498 DOI: 10.1016/j.jep.2020.113596] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 11/13/2020] [Accepted: 11/14/2020] [Indexed: 06/11/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Scutellaria baicalensis (S. baicalensis) is the root of S. baicalensis Georgi. In traditional Chinese medicine it is divided into Tiaoqin (TQ, 1-3 years old) and Kuqin (KQ, more than 3 years old). However, the differences in TQ and KQ efficacy and their exact mechanisms are still unclear. AIM OF THE STUDY This study aimed to clarify the difference in the efficacy of TQ and KQ in relation to different fever types (damp heat and hyperpyrexia) by using rat models, as well as to determine the primary molecular mechanism. MATERIALS AND METHODS This study compared the compositional content of TQ and KQ by UPLC-MS/MS. Then, rat models of hyperpyrexia (HP, LPS) and damp heat (DH, high-fat and high-sugar diet feeding + fumigation in artificial climate chamber + E. coli injection) were established and their clinical symptoms, blood biochemistry, histopathological sections, cell cytokines and protein expression were compared following treatment with TQ or KQ. Finally, the mechanisms underpinning the differences observed for TQ and KQ were determined by measuring the components of these treatments in different target organs. RESULTS This study identified 31 compounds in the water extracts of both TQ and KQ, which differed significantly in their relative content. TQ and KQ showed different functional tropism in HP and DH model rats. Baicalin, wogonoside, oroxin A, baicalein, wogonin and oroxylin A appeared to be the basic functional components responsible for the functional tropism hypothesis, while the remaining compounds appeared to be the efficacy-oriented components. In addition, the difference in pharmacodynamics between TQ and KQ may be related to their absorption in vivo, which was consistent with the hypothesis of functional tropism proposed in this work. CONCLUSION In this study we adopted TQ and KQ-different specifications of Scutellaria baicalensis with similar chemical components-as a case study to systematically reveal the functional tropism of Chinese herbal medicine (CHM). The results showed that TQ and KQ contain the basic functional components to enable the basic function of 'clearing heat', while the variation in compositional content may result in their different therapeutic effects. A greater understanding and utilisation of the functional tropism of CHM would enormously improve the accuracy and scientific basis for the application of CHM medication, as well as in promoting the multi-function mechanism of CHM and guiding new drug development of CHM.
Collapse
Affiliation(s)
- Yongshen Ren
- School of Pharmaceutical Science, South-central University for Nationalities, Wuhan, 430074, China; School of Medicine, Yale University, New Haven, CT, 06511, USA.
| | - Shuai Liang
- School of Pharmaceutical Science, South-central University for Nationalities, Wuhan, 430074, China
| | - Yao Zheng
- School of Pharmaceutical Science, South-central University for Nationalities, Wuhan, 430074, China
| | - Xin Deng
- School of Pharmaceutical Science, South-central University for Nationalities, Wuhan, 430074, China
| | - Lei Lei
- School of Pharmaceutical Science, South-central University for Nationalities, Wuhan, 430074, China
| | - Jiao Ai
- School of Pharmaceutical Science, South-central University for Nationalities, Wuhan, 430074, China
| | - Yanqiu Li
- School of Pharmaceutical Science, South-central University for Nationalities, Wuhan, 430074, China
| | - Tianpei Zhang
- School of Pharmaceutical Science, South-central University for Nationalities, Wuhan, 430074, China
| | - Linlin Chen
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan, China
| | - Zhinan Mei
- School of Pharmaceutical Science, South-central University for Nationalities, Wuhan, 430074, China
| | - Yung-Chi Cheng
- School of Medicine, Yale University, New Haven, CT, 06511, USA.
| | - Caijing He
- School of Pharmaceutical Science, South-central University for Nationalities, Wuhan, 430074, China
| |
Collapse
|
22
|
Jia R, Du J, Cao L, Feng W, Xu P, Yin G. Effects of dietary baicalin supplementation on growth performance, antioxidative status and protection against oxidative stress-induced liver injury in GIFT tilapia (Oreochromis niloticus). Comp Biochem Physiol C Toxicol Pharmacol 2021; 240:108914. [PMID: 33141079 DOI: 10.1016/j.cbpc.2020.108914] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 09/21/2020] [Accepted: 10/12/2020] [Indexed: 12/19/2022]
Abstract
Baicalin, a main bioactive compound of Scutellaria baicalensis, has a variety of pharmacological activities including antioxidation, anti-inflammation and hepatoprotection. However, there are few reports on these biological activities in fish. Therefore, the aim of this study was to assess the effects of baicalin on growth performance, antioxidative status and hepatoprotection in tilapia. The fish were fed on different doses of baicalin (0, 0.4, 0.8 and 1.6 g/kg diet). After feeding 60 days, parts of fishes were netted, and the blood, liver, gills and muscle tissues were collected to analyze the antioxidative effect. The remaining fishes were injected with saline or hydrogen peroxide (H2O2) for challenge test. The results showed that the specific growth rate of fish was slightly increased in three baicalin treatments, and the feed efficiency was clearly improved in 0.4 g/kg baicalin treatment. Meanwhile, the antioxidative capacity in blood, liver and/or gill was enhanced in treatments with 0.4, 0.8 and/or 1.6 g/kg baicalin. After challenge test, the pre-treatments with baicalin effectively alleviated H2O2-induced liver injury. In serum and liver, pre-treatments with 0.8 and/or 1.6 g/kg baicalin suppressed the oxidative damage induced by H2O2, as evidenced by improvement of the levels of SOD, T-AOC and GSH and the decline of MDA level. More important, pre-treatments with 0.4, 0.8 and/or 1.6 g/kg baicalin blocked the upregulation of mRNA levels of tlr1, myd88, irak4, rela, tnf-α and il-1β in H2O2-induced liver injury. In summary, dietary baicalin supplementation could improve feed efficiency, enhance antioxidative ability and alleviate oxidative stress-induced hepatotoxicity in tilapia.
Collapse
Affiliation(s)
- Rui Jia
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China; International Joint Research Laboratory for Fish Immunopharmacology, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Jinliang Du
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China; International Joint Research Laboratory for Fish Immunopharmacology, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Liping Cao
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China; International Joint Research Laboratory for Fish Immunopharmacology, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Wengrong Feng
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China; International Joint Research Laboratory for Fish Immunopharmacology, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China
| | - Pao Xu
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China; International Joint Research Laboratory for Fish Immunopharmacology, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China.
| | - Guojun Yin
- Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China; International Joint Research Laboratory for Fish Immunopharmacology, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Wuxi 214081, China.
| |
Collapse
|
23
|
Aravind P, Bulbule SR, Hemalatha N, Babu R, Devaraju K. Elevation of gene expression of calcineurin, calmodulin and calsyntenin in oxidative stress induced PC12 cells. Genes Dis 2021; 8:87-93. [PMID: 33569517 PMCID: PMC7859428 DOI: 10.1016/j.gendis.2019.09.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2019] [Revised: 08/01/2019] [Accepted: 09/01/2019] [Indexed: 12/30/2022] Open
Abstract
In normal physiological conditions, reactive oxygen and nitrogen species are used as important signaling molecules in the cell. However, in excess it causes the disruption of cell resulting in their death. Oxidative stress causes influx in intracellular calcium levels leading to higher concentrations of calcium in the cell. This accelerated calcium affects both the mitochondria and nuclei leading to excitotoxicity in neurons. Intracellular calcium levels are controlled by voltage dependent calcium channels located in the plasma membrane, calcium stores like endoplasmic/sarcoplasmic reticulum and majorly by calcium binding proteins. Our study was aimed at analyzing the gene expression of major calcium binding proteins namely calcineurin, calmodulin, calreticulin, synaptotagamin and calsyntenin in stress induced PC 12 cells. Rotenone (1 μM), Peroxynitrite (10 μM), H2O2 (100 μM) and High glucose (33 mM) were used to induce oxidative stress in PC12 cells. Results obtained from the study suggest that calcineurin, calmodulin and calsyntenin gene expression were enhanced compared to the control due to oxidative stress. However, synaptotagmin and calreticulin gene expression were down regulated. Further, Akt protein expression (stress marker) was enhanced in PC12 cells with all other stress inducers except in hyperglycemic condition.
Collapse
Affiliation(s)
- P. Aravind
- Department of Biochemistry, Karnatak University, Pavate Nagar, Dharwad, 580 003, India
| | - Sarojini R. Bulbule
- Department of Biochemistry, Karnatak University, Pavate Nagar, Dharwad, 580 003, India
| | - N. Hemalatha
- Department of Biochemistry and Nutrition, CFTRI, V V Moholla, Mysore, 570 020, India
| | - R.L. Babu
- Department of Bioinformatics and Biotechnology, Akkamahadevi Women's University, Vijayapura, Karnataka, 586 108, India
| | - K.S. Devaraju
- Department of Biochemistry, Karnatak University, Pavate Nagar, Dharwad, 580 003, India
| |
Collapse
|
24
|
Tuli HS, Aggarwal V, Kaur J, Aggarwal D, Parashar G, Parashar NC, Tuorkey M, Kaur G, Savla R, Sak K, Kumar M. Baicalein: A metabolite with promising antineoplastic activity. Life Sci 2020; 259:118183. [PMID: 32781058 DOI: 10.1016/j.lfs.2020.118183] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Revised: 07/22/2020] [Accepted: 07/28/2020] [Indexed: 12/11/2022]
Abstract
Cancer, being a multifactorial disease has diverse presentation in different subgroups which is mainly attributed to heterogenous presentation of tumor cells. This cancer cell heterogeneity is the major reason for variable response to standard chemotherapeutic regimes owing to which high relapse rate and multi-drug resistance has increasingly been reported over the past decade. Interestingly, the research on natural compounds in combination with standard therapies have reported with interesting and promising results from the pre-clinical trials and few of which have also been tested in other phases of clinical trials. This review focusses on baicalein, an emerging anti-cancerous natural compound, its chemistry and mechanism of action. In view of promising pre-clinical this review is mainly motivated by the results observed from baicalein treatment of different cancer cell population. With the advancing scientific evidence on the anti-malignant potential of baicalein with respect to its pharmacological activities encompassing from anti-inflammatory to anti-angiogenic/anti-metastatic effects, the focus is mainly directed to understanding the precise mechanism of action of baicalein. In the process of understanding the underlying signaling cascades, the role of mitogen activated protein kinase (MAPK), mammalian target of rapamycin (mTOR), AKT serine/threonine protein kinase B (AKT), poly(ADP-ribose) polymerase (PARP), matrix metalloproteinases-2 (MMP-2), matrix metalloproteinases-9 (MMP-9) and caspase-3/-8,-9 have been highlighted as the major players for baicalein anti-malignant potential. This is also supported by the interesting pre-clinical findings which cumulatively pave the way ahead for development of baicalein as an adjunct anti-cancer treatment with chemotherapeutic agents.
Collapse
Affiliation(s)
- Hardeep Singh Tuli
- Department of Biotechnology, Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala, Haryana 133207, India.
| | - Vaishali Aggarwal
- Department of Histopathology, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, Punjab 160012, India
| | - Jagjit Kaur
- Graduate School of Biomedical Engineering, ARC Centre of Excellence in Nanoscale Biophotonics (CNBP), Faculty of Engineering, The University of New South Wales, Sydney 2052, Australia
| | - Diwakar Aggarwal
- Department of Biotechnology, Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala, Haryana 133207, India
| | - Gaurav Parashar
- Department of Biotechnology, Maharishi Markandeshwar (Deemed to be University), Mullana-Ambala, Haryana 133207, India
| | | | - Muobarak Tuorkey
- Division of Physiology, Zoology Department, Faculty of Science, Damanhour University, Damanhour, Egypt
| | - Ginpreet Kaur
- Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, SVKM'S NMIMS, Vileparle-West, Mumbai-56, India
| | - Raj Savla
- Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, SVKM'S NMIMS, Vileparle-West, Mumbai-56, India
| | | | - Manoj Kumar
- Department of Chemistry, Maharishi Markandeshwar University, Sadopur, India
| |
Collapse
|
25
|
Shah MA, Park DJ, Kang JB, Kim MO, Koh PO. Baicalin attenuates lipopolysaccharide-induced neuroinflammation in cerebral cortex of mice via inhibiting nuclear factor kappa B (NF-κB) activation. J Vet Med Sci 2019; 81:1359-1367. [PMID: 31366818 PMCID: PMC6785614 DOI: 10.1292/jvms.19-0281] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Baicalin is a plant-derived flavonoid that has anti-inflammatory and anti-oxidative effects. We investigated an anti-inflammatory effect of baicalin against lipopolysaccharide (LPS)-induced
damage in cerebral cortex. Adult mice were divided into control, LPS-treated, and LPS and baicalin co-treated animals. LPS (250 µg/kg/day) and baicalin (10 mg/kg/day) were
intraperitoneally injected for 7 days. LPS treatment induced histopathological changes in cerebral cortex, whereas baicalin protected neuronal cells against LPS toxicity. Moreover, baicalin
treatment attenuated LPS-induced increases of reactive oxygen species and oxidative stress in cerebral cortices. Ionized calcium binding adaptor molecule-1 (Iba-1) and glial fibrillary
acidic protein (GFAP) are known as markers of activated microglia and astrocyte, respectively. Results of Western blot and immunofluorescence staining showed that LPS exposure induces
increases of Iba-1 and GFAP expressions, whereas baicalin alleviates LPS-induced increases of these proteins. Baicalin also prevented LPS-induced increase of nuclear factor kappa B (NF-κB).
LPS treatment led to increases of pro-inflammatory factors including interleukin-1β (IL-1β) and tumor necrosis factor-α (TNF-α). Increases of these pro-inflammatory mediators were attenuated
in baicalin co-treated animals. These results demonstrated that baicalin regulates neuroglia activation and modulates inflammatory factors in LPS-induced neuronal injury. Thus, our findings
suggest that baicalin exerts a neuroinflammatory effect against LPS-induced toxicity through decreasing oxidative stress and inhibiting NF-κB mediated inflammatory factors, such as IL-1β and
TNF-α.
Collapse
Affiliation(s)
- Murad-Ali Shah
- Department of Anatomy, College of Veterinary Medicine, Research Institute of Life Science, Gyeongsang National University, 501 Jinjudaero, Jinju, 52828, South Korea
| | - Dong-Ju Park
- Department of Anatomy, College of Veterinary Medicine, Research Institute of Life Science, Gyeongsang National University, 501 Jinjudaero, Jinju, 52828, South Korea
| | - Ju-Bin Kang
- Department of Anatomy, College of Veterinary Medicine, Research Institute of Life Science, Gyeongsang National University, 501 Jinjudaero, Jinju, 52828, South Korea
| | - Myeong-Ok Kim
- Division of Life Science and Applied Life Science, College of Natural Sciences, Gyeongsang National University, 501 Jinjudaero, Jinju, 52828, South Korea
| | - Phil-Ok Koh
- Department of Anatomy, College of Veterinary Medicine, Research Institute of Life Science, Gyeongsang National University, 501 Jinjudaero, Jinju, 52828, South Korea
| |
Collapse
|
26
|
Regulating effect of baicalin on IKK/IKB/NF-kB signaling pathway and apoptosis-related proteins in rats with ulcerative colitis. Int Immunopharmacol 2019; 73:193-200. [DOI: 10.1016/j.intimp.2019.04.052] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Revised: 04/15/2019] [Accepted: 04/25/2019] [Indexed: 12/19/2022]
|
27
|
Perruchot MH, Gondret F, Robert F, Dupuis E, Quesnel H, Dessauge F. Effect of the flavonoid baicalin on the proliferative capacity of bovine mammary cells and their ability to regulate oxidative stress. PeerJ 2019; 7:e6565. [PMID: 30863682 PMCID: PMC6407502 DOI: 10.7717/peerj.6565] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Accepted: 02/01/2019] [Indexed: 12/13/2022] Open
Abstract
Background High-yielding dairy cows are prone to oxidative stress due to the high metabolic needs of homeostasis and milk production. Oxidative stress and inflammation are tightly linked; therefore, anti-inflammatory and/or natural antioxidant compounds may help improve mammary cell health. Baicalin, one of the major flavonoids in Scutellaria baicalensis, has natural antioxidant and anti-inflammatory properties in various cell types, but its effects on bovine mammary epithelial cells (BMECs) have not been investigated. Methods Explants from bovine mammary glands were collected by biopsy at the peak of lactation (approximately 60 days after the start of lactation) (n = three animals) to isolate BMECs corresponding to mature secretory cells. Cell viability, apoptosis, proliferative capacity and reactive oxygen species (ROS) production by BMECs were measured after increasing doses of baicalin were added to the culture media in the absence or presence of H2O2, which was used as an in vitro model of oxidative stress. Results Low doses of baicalin (1–10 µg/mL) had no or only slightly positive effects on the proliferation and viability of BMECs, whereas higher doses (100 or 200 µg/mL) markedly decreased BMEC proliferation. Baicalin decreased apoptosis rate at low concentrations (10 µg/mL) but increased apoptosis at higher doses. ROS production was decreased in BMECs treated with increasing doses of baicalin compared with untreated cells, and this decreased production was associated with increased intracellular concentrations of catalase and NRF-2. Irrespective of the dose, baicalin pretreatment attenuated H2O2-induced ROS production. Discussion These results indicate that baicalin exerts protective antioxidant effects on bovine mammary cells. This finding suggests that baicalin could be used to prevent oxidative metabolic disorders in dairy cows.
Collapse
|
28
|
Fang J, Wang H, Zhou J, Dai W, Zhu Y, Zhou Y, Wang X, Zhou M. Baicalin provides neuroprotection in traumatic brain injury mice model through Akt/Nrf2 pathway. DRUG DESIGN DEVELOPMENT AND THERAPY 2018; 12:2497-2508. [PMID: 30127597 PMCID: PMC6089097 DOI: 10.2147/dddt.s163951] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Background The neuroprotective effects of Baicalin have been confirmed in several central nervous system (CNS) diseases. However, its possible effect on traumatic brain injury (TBI) model is still not clear. The present study is aimed to investigate the role and the underling mechanisms of 7-D-glucuronic acid-5,6-dihydroxyflavone (Baicalin) on TBI model. Methods The weight-drop model of TBI in Institute of Cancer Research mice was treated with Baicalin intraperitoneally at 30 minutes after TBI. LY294002 (LY) (a commonly used PI3K/Akt pathway inhibitor) was injected into the left ventricle at 30 minutes before TBI. All mice were euthanized at 24 hours after TBI to collect the brain tissue for a series of tests except for neurological function, which was measured at 2 hours and 1 and 3 days post-TBI. Results Baicalin administration significantly improved neurobehavioral function, alleviated brain edema, and reduced apoptosis-positive cells by terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assay accompanied with the upregulation of B-cell lymphoma 2 (Bcl-2) and downregulation of Bcl-2-associated X protein (Bax) and cleaved-caspase 3 by Western blot. Besides, TBI-induced oxidant stress status was also restored in the Baicalin group by measuring malondialdehyde (MDA) content, glutathione peroxidase (GPx), and superoxide dismutase (SOD) levels in the injured brain cortex. Furthermore, translocation of Nrf2 to the nucleus was dramatically enhanced by Baicalin verified by immunofluorescence and Western blot analyses. Accordingly, its downstream antioxidative enzymes nicotinamide adenine dinucleotide phosphate:quinine oxidoreductase 1 (NQO-1) and heme oxygenase 1 (HO-1) were also activated by Baicalin confirmed by quantitative reverse transcription polymerase chain reaction (RT-qPCR) and Western blot. However, cotreatment with Baicalin and LY could partly abolish Baicalin-induced activation of Nrf2 and its neuroprotective effects in TBI. Conclusion This study demonstrates that Baicalin provides a neuroprotective effect in TBI mice model via activating the Akt/Nrf2 pathway.
Collapse
Affiliation(s)
- Jiang Fang
- Department of Neurosurgery, Jinling Hospital, School of Medicine, Southeast University, Nanjing, China,
| | - Handong Wang
- Department of Neurosurgery, Jinling Hospital, School of Medicine, Southeast University, Nanjing, China,
| | - Jian Zhou
- Department of Neurosurgery, Jinling Hospital, Jinling Clinical Medical College, Nanjing Medical University, Nanjing, China
| | - Wei Dai
- Department of Neurosurgery, Jinling Hospital, Jinling Clinical Medical College, Nanjing Medical University, Nanjing, China
| | - Yihao Zhu
- Department of Neurosurgery, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, China
| | - Yuan Zhou
- Department of Neurosurgery, Jinling Hospital, Jinling Clinical Medical College, Nanjing Medical University, Nanjing, China
| | - Xiaoliang Wang
- Department of Neurosurgery, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, China
| | - Mengliang Zhou
- Department of Neurosurgery, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, China
| |
Collapse
|
29
|
Neuroprotective and Cognitive Enhancement Potentials of Baicalin: A Review. Brain Sci 2018; 8:brainsci8060104. [PMID: 29891783 PMCID: PMC6025220 DOI: 10.3390/brainsci8060104] [Citation(s) in RCA: 95] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Revised: 06/05/2018] [Accepted: 06/08/2018] [Indexed: 12/20/2022] Open
Abstract
Neurodegenerative diseases are a heterogeneous group of disorders that are characterized by the gradual loss of neurons. The development of effective neuroprotective agents to prevent and control neurodegenerative diseases is specifically important. Recently, there has been an increasing interest in selecting flavonoid compounds as potential neuroprotective agents, owing to their high effectiveness with low side effects. Baicalin is one of the important flavonoid compounds, which is mainly isolated from the root of Scutellaria baicalensis Georgi (an important Chinese medicinal herb). In recent years, a number of studies have shown that baicalin has a potent neuroprotective effect in various in vitro and in vivo models of neuronal injury. In particular, baicalin effectively prevents neurodegenerative diseases through various pharmacological mechanisms, including antioxidative stress, anti-excitotoxicity, anti-apoptotic, anti-inflammatory, stimulating neurogenesis, promoting the expression of neuronal protective factors, etc. This review mainly focuses on the neuroprotective and cognitive enhancement effects of baicalin. The aim of the present review is to compile all information in relation to the neuroprotective and cognitive enhancement effects of baicalin and its molecular mechanisms of action in various in vitro and in vivo experimental models.
Collapse
|
30
|
Lee AY, Choi JM, Lee MH, Lee J, Lee S, Cho EJ. Protective effects of perilla oil and alpha linolenic acid on SH-SY5Y neuronal cell death induced by hydrogen peroxide. Nutr Res Pract 2018; 12:93-100. [PMID: 29629025 PMCID: PMC5886971 DOI: 10.4162/nrp.2018.12.2.93] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Revised: 07/10/2017] [Accepted: 01/29/2018] [Indexed: 11/04/2022] Open
Abstract
BACKGROUND/OBJECTIVE Oxidative stress plays a key role in neuronal cell damage, which is associated with neurodegenerative disease. The aim of present study was to investigate the neuroprotective effects of perilla oil (PO) and its active component, alpha-linolenic acid (ALA), against hydrogen peroxide (H2O2)-induced oxidative stress in SH-SY5Y neuronal cells. MATERIALS/METHODS The SH-SY5Y human neuroblastoma cells exposed to 250 µM H2O2 for 24 h were treated with different concentrations of PO (25, 125, 250 and 500 µg/mL) and its major fatty acid, ALA (1, 2.5, 5 and 25 µ/mL). We examined the effects of PO and ALA on H2O2-induced cell viability, lactate dehydrogenase (LDH) release, and nuclear condensation. Moreover, we determined whether PO and ALA regulated the apoptosis-related protein expressions, such as cleaved-poly ADP ribose polymerase (PARP), cleaved caspase-9 and -3, BCL-2 and BAX. RESULTS Treatment of H2O2 resulted in decreased cell viability, increased LDH release, and increase in the nuclei condensation as indicated by Hoechst 33342 staining. However, PO and ALA treatment significantly attenuated the neuronal cell death, indicating that PO and ALA potently blocked the H2O2-induced neuronal apoptosis. Furthermore, cleaved-PARP, cleaved caspase-9 and -3 activations were significantly decreased in the presence of PO and ALA, and the H2O2-mediated up-regulated BAX/BCL-2 ratio was blocked after treatment with PO and ALA. CONCLUSIONS PO and its main fatty acid, ALA, exerted the protective activity from neuronal oxidative stress induced by H2O2. They regulated apoptotic pathway in neuronal cell death by alleviation of BAX/BCL-2 ratio, and down-regulation of cleaved-PARP and cleaved caspase-9 and -3. Although further studies are required to verify the protective mechanisms of PO and ALA from neuronal damage, PO and ALA are the promising agent against oxidative stress-induced apoptotic neuronal cell death.
Collapse
Affiliation(s)
- Ah Young Lee
- Department of Food Science and Nutrition & Kimchi Research Institute, Pusan National University, Busandaehak-ro 63 beon-gil 2, Geumjeong-gu, Busan 46241, Korea
| | - Ji Myung Choi
- Department of Southern Area Crop Science, National Institute of Crop Science, Rural Development Administration, Gyeongnam 50424, Korea
| | - Myoung Hee Lee
- Department of Southern Area Crop Science, National Institute of Crop Science, Rural Development Administration, Gyeongnam 50424, Korea
| | - Jaemin Lee
- Department of Integrative Plant Science, Chung-Ang University, Anseong 17546, Korea
| | - Sanghyun Lee
- Department of Integrative Plant Science, Chung-Ang University, Anseong 17546, Korea
| | - Eun Ju Cho
- Department of Food Science and Nutrition & Kimchi Research Institute, Pusan National University, Busandaehak-ro 63 beon-gil 2, Geumjeong-gu, Busan 46241, Korea
| |
Collapse
|
31
|
Tong Y, Bai L, Gong R, Chuan J, Duan X, Zhu Y. Shikonin Protects PC12 Cells Against β-amyloid Peptide-Induced Cell Injury Through Antioxidant and Antiapoptotic Activities. Sci Rep 2018; 8:26. [PMID: 29311595 PMCID: PMC5758797 DOI: 10.1038/s41598-017-18058-7] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Accepted: 12/05/2017] [Indexed: 12/21/2022] Open
Abstract
Excessive accumulation of β-amyloid (Aβ) is thought to be a major causative factor in the pathogenesis of Alzheimer's disease (AD). Pretreating Aβ-induced neurotoxicity is a potential therapeutic approach to ameliorate the progression and development of AD. The present study aimed to investigate the neuroprotective effect of shikonin, a naphthoquinone pigment isolated from the roots of the traditional Chinese herb Lithospermum erythrorhizon, on Aβ1-42-treated neurotoxicity in PC12 cells. Pretreating cells with shikonin strongly improved cell viability, decreased the malondialdehyde and reactive oxygen species (ROS) content, and stabilized the mitochondrial membrane potential in Aβ1-42-induced PC12 cells. In addition, shikonin strongly improved the response of the antioxidant system to ROS by increasing the levels of superoxidedismutase, catalase and glutathione peroxidase. Furthermore, shikonin has the ability to reduce proapoptotic signaling by reducing the activity of caspase-3 and moderating the ratio of Bcl-2/Bax. These observations indicate that shikonin holds great potential for neuroprotection via inhibition of oxidative stress and cell apoptosis.
Collapse
Affiliation(s)
- Yuna Tong
- Department of Nephrology, The Third People's Hospital of Chengdu, Chengdu, 610031, China
| | - Lan Bai
- Department of Pharmacy, Sichuan Academy of Medical Science & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, China
| | - Rong Gong
- Department of Nephrology, The Third People's Hospital of Chengdu, Chengdu, 610031, China
| | - Junlan Chuan
- Department of Pharmacy, Sichuan Academy of Medical Science & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, China
| | - Xingmei Duan
- Department of Pharmacy, Sichuan Academy of Medical Science & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, China
| | - Yuxuan Zhu
- Department of Pharmacy, Sichuan Academy of Medical Science & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, China.
| |
Collapse
|
32
|
Chen H, Guan B, Chen X, Chen X, Li C, Qiu J, Yang D, Liu KJ, Qi S, Shen J. Baicalin Attenuates Blood-Brain Barrier Disruption and Hemorrhagic Transformation and Improves Neurological Outcome in Ischemic Stroke Rats with Delayed t-PA Treatment: Involvement of ONOO --MMP-9 Pathway. Transl Stroke Res 2017; 9:515-529. [PMID: 29275501 DOI: 10.1007/s12975-017-0598-3] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2017] [Revised: 12/06/2017] [Accepted: 12/07/2017] [Indexed: 10/18/2022]
Abstract
Tissue plasminogen activator (t-PA) has a restrictive therapeutic window within 4.5 h after ischemic stroke with the risk of hemorrhagic transformation (HT) and neurotoxicity when it is used beyond the time window. In the present study, we tested the hypothesis that baicalin, an active compound of medicinal plant, could attenuate HT in cerebral ischemia stroke with delayed t-PA treatment. Male Sprague-Dawley rats were subjected to middle cerebral artery occlusion (MCAO) for 4.5 h and then continuously received t-PA infusion (10 mg/kg) for 0.5 h and followed by 19-h reperfusion. Baicalin (50, 100, 150 mg/kg) was administrated via femoral vein at 4.5 h after MCAO cerebral ischemia. Delayed t-PA infusion significantly increased the mortality rate, induced HT, blood-brain barrier (BBB) damage, and apoptotic cell death in the ischemic brains and exacerbated neurological outcomes in cerebral ischemia-reperfusion rats at 24 h after MCAO cerebral ischemia. Co-treatment of baicalin significantly reduced the mortality rates, ameliorated the t-PA-mediated BBB disruption and HT. Furthermore, baicalin showed to directly scavenge peroxynitrite and inhibit MMP-9 expression and activity in the ischemic brains with the delayed t-PA treatment. Baicalin had no effect on the t-PA fibrinolytic function indicated by t-PA activity assay. Taken together, baicalin could attenuate t-PA-mediated HT and improve the outcomes of ischemic stroke treatment possibly via inhibiting peroxynitrite-mediated MMP-9 activation.
Collapse
Affiliation(s)
- Hansen Chen
- School of Chinese Medicine, The University of Hong Kong, Sassoon Road, Pokfulam, Hong Kong SAR, People's Republic of China.,The University of Hong Kong-Shenzhen Institute of Research and Innovation (HKU-SIRI), Hong Kong SAR, China
| | - Binghe Guan
- School of Chinese Medicine, The University of Hong Kong, Sassoon Road, Pokfulam, Hong Kong SAR, People's Republic of China.,The University of Hong Kong-Shenzhen Institute of Research and Innovation (HKU-SIRI), Hong Kong SAR, China
| | - Xi Chen
- Department of Core Facility, The People's Hospital of Bao-an Shenzhen, Shenzhen Shi, China.,The 8th People's Hospital of Shenzhen, The Affiliated Bao-an Hospital of Southern Medical University, Shenzhen, 518000, China
| | - Xingmiao Chen
- School of Chinese Medicine, The University of Hong Kong, Sassoon Road, Pokfulam, Hong Kong SAR, People's Republic of China.,The University of Hong Kong-Shenzhen Institute of Research and Innovation (HKU-SIRI), Hong Kong SAR, China
| | - Caiming Li
- Department of Neurology, Huizhou First Hospital, Huizhou, Guangdong Province, China
| | - Jinhua Qiu
- Department of Neurology, Huizhou First Hospital, Huizhou, Guangdong Province, China
| | - Dan Yang
- Morningside Laboratory for Chemical Biology and Department of Chemistry, The University of Hong Kong, Hong Kong SAR, China
| | - Ke Jian Liu
- Department of Pharmaceutical Sciences, College of Pharmacy, The University of New Mexico, Albuquerque, NM, 87131, USA
| | - Suhua Qi
- Research Center for Biochemistry and Molecular Biology and Jiangsu Key Laboratory of Brain Disease Bioinformation, Xuzhou Medical University, Xuzhou, 221000, People's Republic of China.
| | - Jiangang Shen
- School of Chinese Medicine, The University of Hong Kong, Sassoon Road, Pokfulam, Hong Kong SAR, People's Republic of China. .,The University of Hong Kong-Shenzhen Institute of Research and Innovation (HKU-SIRI), Hong Kong SAR, China.
| |
Collapse
|
33
|
Liang W, Huang X, Chen W. The Effects of Baicalin and Baicalein on Cerebral Ischemia: A Review. Aging Dis 2017; 8:850-867. [PMID: 29344420 PMCID: PMC5758355 DOI: 10.14336/ad.2017.0829] [Citation(s) in RCA: 157] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2017] [Accepted: 08/29/2017] [Indexed: 12/12/2022] Open
Abstract
Ischemic stroke, producing a high mortality and morbidity rate, is a common clinical disease. Enhancing the prevention and control of ischemic stroke is particularly important. Baicalin and its aglycon baicalein are flavonoids extracted from Scutellaria baicalensis, an important traditional Chinese herb. In recent years, a growing body of evidences has shown that baicalin and baicalein could be effective in the treatment of cerebral ischemia. Pharmacokinetic studies have shown that baicalin could penetrate the blood-brain barrier and distribute in cerebral nuclei. Through a variety of in vitro and in vivo models of ischemic neuronal injury, numerous studies have demonstrated that baicalin and baicalein have salutary effect for neuroprotection. Especially, the studies on the pharmacological mechanism showed that baicalin and baicalein have several pharmacological activities, which include antioxidant, anti-apoptotic, anti-inflammatory and anti-excitotoxicity effects, protection of the mitochondria, promoting neuronal protective factors expression and adult neurogenesis effects and many more. This review focuses on the neuroprotective effects of baicalin and baicalein in ischemia or stroke-induced neuronal cell death. We aimed at collecting all important information regarding the neuroprotective effect and its pharmacological mechanism of baicalin and baicalein in various in vivo and in vitro experimental models of ischemic neuronal injury.
Collapse
Affiliation(s)
- Wei Liang
- Department of Traditional Chinese Medicine, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
| | - Xiaobo Huang
- Department of Traditional Chinese Medicine, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
| | - Wenqiang Chen
- Department of Traditional Chinese Medicine, Xuanwu Hospital, Capital Medical University, Beijing, 100053, ChinaThese authors equally contributed to this work
| |
Collapse
|
34
|
Gong L, Zhu J. Baicalin alleviates oxidative stress damage in trabecular meshwork cells in vitro. Naunyn Schmiedebergs Arch Pharmacol 2017; 391:51-58. [PMID: 29080912 DOI: 10.1007/s00210-017-1433-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Accepted: 10/18/2017] [Indexed: 02/06/2023]
Abstract
Oxidative stress and inflammation play a key role in pathophysiology of glaucoma. Baicalin is known as an anti-oxidative and anti-inflammatory substance, possessing the potential to treat glaucoma. This study was designed to assess the anti-oxidative and anti-inflammatory potentials in culture human trabecular meshwork (hTM) cells. Using hTM cells as the in vitro model, we investigated the effects of baicalin on oxidative stress-induced markers for hTM impairments. We pre-incubated hTM cells with baicalin before hydrogen peroxide stressing or pre- plus co-incubated with baicalin before and during stressing and monitored the cell death, production of intracellular reactive oxygen species (iROS) and inflammatory cytokines, accumulation of carbonylated proteins, and activity of senescence marker. Samples that received pre- plus co-treatment with 10 or 15 μM baicalin showed significantly increased cell survival and decreased iROS production. Further studies demonstrated that pre- plus co-treatment with 15 μM baicalin significantly inhibited proinflammatory factor IL-1α and ELAM-1 production, decreased activities of senescence marker SA-β-gal, and lowered carbonylated protein levels. In contrast, samples that received only pre-treatment did not show any of these protective effects. Baicalin can protect hTM cells against oxidative stress, shedding light on potential treatment for glaucoma.
Collapse
Affiliation(s)
- Lei Gong
- Department of Ophthalmology, Jinan Eighth People's Hospital, No.73 Wenhua Dong Road, Lixia District, Jinan, Shandong, 250000, China
| | - Jianfeng Zhu
- Department of Ophthalmology, Linyi People's Hospital, No. 48 Jiefang Road, Lanshan District, Linyi, Shandong, 276000, China.
| |
Collapse
|
35
|
JAK2/STAT3 pathway is involved in the protective effects of epidermal growth factor receptor activation against cerebral ischemia/reperfusion injury in rats. Neurosci Lett 2017; 662:219-226. [PMID: 29061394 DOI: 10.1016/j.neulet.2017.10.037] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Revised: 10/16/2017] [Accepted: 10/19/2017] [Indexed: 12/14/2022]
Abstract
Cerebral ischemia and reperfusion is a common pathophysiologic process, which is involved in stroke and brain trauma. Recent studies revealed that activating epidermal growth factor receptor (EGFR) ameliorates cerebral ischemia/reperfusion (I/R) injury, however, the precise mechanisms remain to be illuminated. In this study, the neurological behavior was evaluated by Longa score. The infarct volume was performed by 2, 3, 5-triphenyltetrazolium chloride (TTC) staining and the expression of p-EGFR, p-STAT3, connexin (Cx43), Bax and Bcl-2 were detected by Western blot. The neurological behavior and infarct volume were increased in rats with cerebral I/R injury. Epidermal growth factor (EGF) pretreatment significantly decreased neurological deficit and infarct volume. However, the antagonist of EGFR, AG1478 attenuated the EGF-induced reduction of neurological deficit and infarct volume. Moreover, the inhibitor of JAK2/STAT3, AG490 undermined the protective effects stimulated by activating EGFR in rats with I/R injury. In addition, EGF pretreatment increased the expression of Bcl-2 and reduced the expression of Bax and Cx43, and the effects were abolished after using AG1478 and AG490. These findings implicate that JAK2/STAT3 pathway plays the vital role in I/R injury protection from activating EGFR. And the neuroprotective effects may associate with inhibiting the Cx43 expression and the inhibition of apoptosis.
Collapse
|
36
|
Hong C, Schüffler A, Kauhl U, Cao J, Wu CF, Opatz T, Thines E, Efferth T. Identification of NF-κB as Determinant of Posttraumatic Stress Disorder and Its Inhibition by the Chinese Herbal Remedy Free and Easy Wanderer. Front Pharmacol 2017; 8:181. [PMID: 28428751 PMCID: PMC5382210 DOI: 10.3389/fphar.2017.00181] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Accepted: 03/20/2017] [Indexed: 01/09/2023] Open
Abstract
Posttraumatic stress disorder (PTSD) is a mental disorder developing after exposure to traumatic events. Although psychotherapy reveals some therapeutic effectiveness, clinically sustainable cure is still uncertain. Some Chinese herbal formulae are reported to work well clinically against mental diseases in Asian countries, but the safety and their mode of action are still unclear. In this study, we investigated the mechanisms of Chinese remedy free and easy wanderer (FAEW) on PTSD. We used a reverse pharmacology approach combining clinical data to search for mechanisms of PTSD with subsequent in vitro verification and bioinformatics techniques as follows: (1) by analyzing microarray-based transcriptome-wide mRNA expression profiling of PTSD patients; (2) by investigating the effect of FAEW and the antidepressant control drug fluoxetine on the transcription factor NF-κB using reporter cell assays and western blotting; (3) by performing molecular docking and literature data mining based on phytochemical constituents of FAEW. The results suggest an involvement of inflammatory processes mediated through NF-κB in the progression of PTSD. FAEW was non-cytotoxic in vitro and inhibited NF-κB activity and p65 protein expression. FAEW's anti-inflammatory compounds, i.e., paeoniflorin, isoliquiritin, isoliquiritin apioside and ononin were evaluated for binding to IκK and p65-RelA in a molecular docking approach. Paeoniflorin, albiflorin, baicalin, isoliquiritin and liquiritin have been reported to relieve depression in vivo or in clinical trials, which might be the active ingredients for FAEW against PTSD.
Collapse
Affiliation(s)
- Chunlan Hong
- Department of Pharmaceutical Biology, Institute of Pharmacy and Biochemistry, Johannes Gutenberg UniversityMainz, Germany
| | - Anja Schüffler
- Institut für Biotechnologie und Wirkstoff Forschung gGmbHKaiserslautern, Germany.,Institute of Molecular Physiology, Johannes Gutenberg UniversityMainz, Germany
| | - Ulrich Kauhl
- Institute of Organic Chemistry, Johannes Gutenberg UniversityMainz, Germany
| | - Jingming Cao
- Department of Pharmaceutical Biology, Institute of Pharmacy and Biochemistry, Johannes Gutenberg UniversityMainz, Germany
| | - Ching-Fen Wu
- Department of Pharmaceutical Biology, Institute of Pharmacy and Biochemistry, Johannes Gutenberg UniversityMainz, Germany
| | - Till Opatz
- Institute of Organic Chemistry, Johannes Gutenberg UniversityMainz, Germany
| | - Eckhard Thines
- Institut für Biotechnologie und Wirkstoff Forschung gGmbHKaiserslautern, Germany.,Institute of Molecular Physiology, Johannes Gutenberg UniversityMainz, Germany
| | - Thomas Efferth
- Department of Pharmaceutical Biology, Institute of Pharmacy and Biochemistry, Johannes Gutenberg UniversityMainz, Germany
| |
Collapse
|
37
|
Yao J, Cao X, Zhang R, Li YX, Xu ZL, Zhang DG, Wang LS, Wang JY. Protective Effect of Baicalin Against Experimental Colitis via Suppression of Oxidant Stress and Apoptosis. Pharmacogn Mag 2016; 12:225-34. [PMID: 27601854 PMCID: PMC4989799 DOI: 10.4103/0973-1296.186342] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Background: Baicalin is a bioactive ingredient extracted from the root of Scutellariae radix, which is used to treat ulcerative colitis (UC). Objective: We investigated the activity of baicalin on lipopolysaccharide-stimulated RAW264.7 cells and 2,4,6-trinitrobenzene sulfonic acid-induced rats, including the attenuation of oxidant stress and apoptosis. Materials and Methods: The severity of colitis was assessed by disease activity index. The activities of catalase (CAT), glutathione peroxidase (GSH-PX), superoxide dismutase (SOD), and the content of malondialdehyde (MDA) were determined by their corresponding kits. The terminal deoxynucleotidyl transferase-mediated dUTP nick end-labeling (TUNEL) was performed to study whether experimental colitis was associated with intestinal epithelial cell (IEC) apoptosis and the effect of baicalin on IEC apoptosis. Western blot analysis and immunocytochemistry assay were applied to determine the protein expressions. The reactive oxygen species (ROS) level in the colon of UC rats treated with baicalin was determined by ROS assay kit. Results: Baicalin remarkably upregulated the activities of CAT, GSH-PX, and SOD and decreased the content of MDA in a dose-dependent manner in vitro and in vivo. The TUNEL-positive cells in rats treated baicalin were remarkably reduced. Both Western blot analysis and immunocytochemistry assay indicated that baicalin significantly decreased the expressions of transforming growth factor beta-1, Bax protein and upregulated the expression of Bcl-2 protein. In addition, the expressions of total and cleaved caspase-3, total and cleaved caspase-9 protein, Fas, and FasL in vitro were downregulated by the treatment with baicalin. Baicalin of different doses reduced the generation of ROS in UC rats. Conclusion: Taken together, these evidences provide scientific basics for the application of baicalin in the treatment of UC and suggest that baicalin exerts its effect via suppression of oxidant stress and apoptosis. SUMMARY Baicalin remarkably upregulated the activities of catalase, glutathione peroxidase, and superoxide dismutase and decreased the content of MDA, both in vivo and in vitro The terminal deoxynucleotidyl transferase-mediated dUTP nick end-labeling-positive cells in rats treated baicalin remarkably reduced in a concentration-dependent manner Western blot analysis and immunocytochemistry assay indicated that baicalin significantly decreased the expressions of transforming growth factor beta-1, Bax protein, and upregulated the expression of Bcl-2 protein The expressions of total and cleaved caspase-3, total and cleaved caspase-9 protein, Fas, and FasL in vitro were downregulated by the treatment with baicalin.
Abbreviations used: UC: Ulcerative colitis, LPS: Lipopolysaccharide, TNBS: 2,4,6-trinitrobenzene sulfonic acid, DAI: Disease activity index, CAT: Catalase, GSH-PX: Glutathione peroxidase, SOD: Superoxide dismutase, MDA: Malondialdehyde, TUNEL: Terminal deoxynucleotidyl transferase-mediated dUTP nick end-labeling, ROS: Reactive oxygen species, IEC: Intestinal epithelial cell, SD: Sprague-Dawley, HE: H and E, DNTB: 5,5'-dithiobis-2-nitrobenzoic acid, TBA: Thiobarbituric acid, TBARS: Thiobarbituric acid-reactive substances, S.D: Standard deviation, and PBS: Phosphate-buffered saline.
Collapse
Affiliation(s)
- Jun Yao
- Department of Gastroenterology, Shenzhen genetic engineering Animal Center, Jinan University of Medical Sciences, Shenzhen Municipal People's Hospital, Shenzhen 518020, China
| | - Xu Cao
- Department of Internal Medicine-Neurology, Shenzhen genetic engineering Animal Center, Jinan University of Medical Sciences, Shenzhen Municipal People's Hospital, Shenzhen 518020, China
| | - Ru Zhang
- Department of Gastroenterology, Shenzhen genetic engineering Animal Center, Jinan University of Medical Sciences, Shenzhen Municipal People's Hospital, Shenzhen 518020, China
| | - Ying-Xue Li
- Department of Gastroenterology, Shenzhen genetic engineering Animal Center, Jinan University of Medical Sciences, Shenzhen Municipal People's Hospital, Shenzhen 518020, China
| | - Zheng-Lei Xu
- Department of Gastroenterology, Shenzhen genetic engineering Animal Center, Jinan University of Medical Sciences, Shenzhen Municipal People's Hospital, Shenzhen 518020, China
| | - Ding-Guo Zhang
- Department of Gastroenterology, Shenzhen genetic engineering Animal Center, Jinan University of Medical Sciences, Shenzhen Municipal People's Hospital, Shenzhen 518020, China
| | - Li-Sheng Wang
- Department of Gastroenterology, Shenzhen genetic engineering Animal Center, Jinan University of Medical Sciences, Shenzhen Municipal People's Hospital, Shenzhen 518020, China
| | - Jian-Yao Wang
- Department of General Surgery, Shenzhen Children's Hospital, Shenzhen 518026, Guangdong Province, China
| |
Collapse
|
38
|
Zuo D, Lin L, Liu Y, Wang C, Xu J, Sun F, Li L, Li Z, Wu Y. Baicalin Attenuates Ketamine-Induced Neurotoxicity in the Developing Rats: Involvement of PI3K/Akt and CREB/BDNF/Bcl-2 Pathways. Neurotox Res 2016; 30:159-72. [PMID: 26932180 DOI: 10.1007/s12640-016-9611-y] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Revised: 12/29/2015] [Accepted: 02/19/2016] [Indexed: 12/22/2022]
Abstract
Ketamine is widely used as an anesthetic in pediatric clinical practice. However, numerous studies have reported that exposure to ketamine during the developmental period induces neurotoxicity. Here we investigate the neuroprotective effects of baicalin, a natural flavonoid compound, against ketamine-induced apoptotic neurotoxicity in the cortex and hippocampus of the Sprague-Dawley postnatal day 7 (PND7) rat pups. Our results revealed that five continuous injections of ketamine (20 mg/kg) at 90-min intervals over 6 h induced obvious morphological damages of neuron by Nissl staining and apoptosis by TUNEL assays in the prefrontal cortex and hippocampus of PND7 rat pups. Baicalin (100 mg/kg) pretreatment alleviated ketamine-induced morphological change and apoptosis. Caspase-3 activity and caspase-3 mRNA expression increase induced by ketamine were also inhibited by baicalin treatment. LY294002, an inhibitor of PI3K, abrogated the effect of baicalin against ketamine-induced caspase-3 activity and caspase-3 mRNA expression increase. In addition, Western blot studies indicated that baicalin not only inhibited ketamine-induced p-Akt and p-GSK-3β decrease, but also relieved ketamine-induced p-CREB and BDNF expression decrease. Baicalin also attenuated ketamine-induced Bcl-2/Bax decrease and caspase-3 expression increase. Further in vitro experiments proved that baicalin mitigated ketamine-induced cell viability decrease in the MTT assay, morphological change by Rosenfeld's staining, and caspase-3 expression increase by Western blot in the primary neuron-glia mixed cultures. LY294002 abrogated the protective effect of baicalin. These data demonstrate that baicalin exerts neuroprotective effect against ketamine-induced neuronal apoptosis by activating the PI3K/Akt and its downstream CREB/BDNF/Bcl-2 signaling pathways. Therefore, baicalin appears to be a promising agent in preventing or reversing ketamine's apoptotic neurotoxicity at an early developmental stage.
Collapse
Affiliation(s)
- Daiying Zuo
- Department of Pharmacology, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning, 110016, People's Republic of China
| | - Li Lin
- Department of Pharmacology, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning, 110016, People's Republic of China
| | - Yumiao Liu
- Department of Pharmacology, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning, 110016, People's Republic of China
| | - Chengna Wang
- Department of Pharmacology, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning, 110016, People's Republic of China
| | - Jingwen Xu
- Department of Pharmacology, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning, 110016, People's Republic of China
| | - Feng Sun
- Department of Pharmacology, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning, 110016, People's Republic of China
| | - Lin Li
- Department of Pharmacology, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning, 110016, People's Republic of China
| | - Zengqiang Li
- Department of Pharmacology, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning, 110016, People's Republic of China
| | - Yingliang Wu
- Department of Pharmacology, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning, 110016, People's Republic of China.
| |
Collapse
|
39
|
Fouad AA, Qutub HO, Jresat I. Dose-dependent protective effect of baicalin against testicular torsion-detorsion in rats. Andrologia 2016; 49. [DOI: 10.1111/and.12580] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/30/2016] [Indexed: 01/08/2023] Open
Affiliation(s)
- A. A. Fouad
- Department of Biomedical Sciences; Pharmacology Division; College of Medicine; King Faisal University; Al-Ahsa Saudi Arabia
| | - H. O. Qutub
- Department of Internal Medicine; College of Medicine; King Faisal University; Al-Ahsa Saudi Arabia
| | - I. Jresat
- Department of Biomedical Sciences; Pathology Division; College of Medicine; King Faisal University; Al-Ahsa Saudi Arabia
| |
Collapse
|
40
|
Chen XH, Zhou X, Yang XY, Zhou ZB, Lu DH, Tang Y, Ling ZM, Zhou LH, Feng X. Propofol Protects Against H2O2-Induced Oxidative Injury in Differentiated PC12 Cells via Inhibition of Ca(2+)-Dependent NADPH Oxidase. Cell Mol Neurobiol 2016; 36:541-51. [PMID: 26162968 DOI: 10.1007/s10571-015-0235-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Accepted: 07/02/2015] [Indexed: 12/31/2022]
Abstract
Propofol (2,6-diisopropylphenol) is a widely used general anesthetic with anti-oxidant activities. This study aims to investigate protective capacity of propofol against hydrogen peroxide (H2O2)-induced oxidative injury in neural cells and whether the anti-oxidative effects of propofol occur through a mechanism involving the modulation of NADPH oxidase (NOX) in a manner of calcium-dependent. The rat differentiated PC12 cell was subjected to H2O2 exposure for 24 h to mimic a neuronal in vitro model of oxidative injury. Our data demonstrated that pretreatment of PC12 cells with propofol significantly reversed the H2O2-induced decrease in cell viability, prevented H2O2-induced morphological changes, and reduced the ratio of apoptotic cells. We further found that propofol attenuated the accumulation of malondialdehyde (biomarker of oxidative stress), counteracted the overexpression of NOX core subunit gp91(phox) (NOX2) as well as the NOX activity following H2O2 exposure in PC12 cells. In addition, blocking of L-type Ca(2+) channels with nimodipine reduced H2O2-induced overexpression of NOX2 and caspase-3 activation in PC12 cells. Moreover, NOX inhibitor apocynin alone or plus propofol neither induces a significant downregulation of NOX activity nor increases cell viability compared with propofol alone in the PC12 cells exposed to H2O2. These results demonstrate that the protective effects of propofol against oxidative injury in PC12 cells are mediated, at least in part, through inhibition of Ca(2+)-dependent NADPH oxidase.
Collapse
Affiliation(s)
- Xiao-Hui Chen
- Department of Anesthesiology, The First Affiliated Hospital of Sun Yat-Sen University, No. 58 Zhongshan Road 2, Guangzhou, 510080, People's Republic of China
- Department of Anesthesiology, Fujian Provincial Hospital, Fujian Provincial Clinical Medical College, Fujian Medical University, Fuzhou, 350001, People's Republic of China
| | - Xue Zhou
- Department of Anesthesiology, The First Affiliated Hospital of Sun Yat-Sen University, No. 58 Zhongshan Road 2, Guangzhou, 510080, People's Republic of China
| | - Xiao-Yu Yang
- Department of Anesthesiology, The First Affiliated Hospital of Sun Yat-Sen University, No. 58 Zhongshan Road 2, Guangzhou, 510080, People's Republic of China
| | - Zhi-Bin Zhou
- Department of Anesthesiology, The First Affiliated Hospital of Sun Yat-Sen University, No. 58 Zhongshan Road 2, Guangzhou, 510080, People's Republic of China
| | - Di-Han Lu
- Department of Anesthesiology, The First Affiliated Hospital of Sun Yat-Sen University, No. 58 Zhongshan Road 2, Guangzhou, 510080, People's Republic of China
| | - Ying Tang
- Department of Anatomy, Zhongshan School of Medicine, Sun Yat-Sen University, No. 74 Zhongshan Road 2, Guangzhou, 510080, People's Republic of China
| | - Ze-Min Ling
- Department of Anatomy, Zhongshan School of Medicine, Sun Yat-Sen University, No. 74 Zhongshan Road 2, Guangzhou, 510080, People's Republic of China
| | - Li-Hua Zhou
- Department of Anatomy, Zhongshan School of Medicine, Sun Yat-Sen University, No. 74 Zhongshan Road 2, Guangzhou, 510080, People's Republic of China
| | - Xia Feng
- Department of Anesthesiology, The First Affiliated Hospital of Sun Yat-Sen University, No. 58 Zhongshan Road 2, Guangzhou, 510080, People's Republic of China.
| |
Collapse
|
41
|
The emerging role of signal transducer and activator of transcription 3 in cerebral ischemic and hemorrhagic stroke. Prog Neurobiol 2016; 137:1-16. [DOI: 10.1016/j.pneurobio.2015.11.001] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2015] [Revised: 10/13/2015] [Accepted: 11/18/2015] [Indexed: 01/05/2023]
|
42
|
Shen L, Chen H, Zhu Q, Wang Y, Wang S, Qian J, Wang Y, Qu H. Identification of bioactive ingredients with immuno-enhancement and anti-oxidative effects from Fufang-Ejiao-Syrup by LC–MS n combined with bioassays. J Pharm Biomed Anal 2016; 117:363-71. [DOI: 10.1016/j.jpba.2015.09.024] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Revised: 09/14/2015] [Accepted: 09/19/2015] [Indexed: 12/20/2022]
|
43
|
Ashbaugh A, McGrew C. The Role of Nutritional Supplements in Sports Concussion Treatment. Curr Sports Med Rep 2016; 15:16-9. [DOI: 10.1249/jsr.0000000000000219] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
44
|
Zeng XS, Jia JJ, Ma LF. Gensenoside Rb1 protects rat PC12 cells from oxidative stress-induced endoplasmic reticulum stress: the involvement of thioredoxin-1. Mol Cell Biochem 2015; 410:239-246. [PMID: 26346161 DOI: 10.1007/s11010-015-2557-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Accepted: 09/03/2015] [Indexed: 10/23/2022]
Abstract
Oxidative stress plays an important role in many diseases and hydrogen peroxide (H2O2) plays a central role in the stress. Gensenoside Rb1 is the one of active ingredients in the traditional Chinese medicine Panax notoginseng. It has been reported that gensenoside Rb1 possesses various pharmacological activities. Here we report that gensenoside Rb1 exhibits potent protective effects against oxidative injury induced by H2O2 through inhibiting endoplasmic reticulum stress in PC12 cells. Cell viability assay demonstrated that incubation with H2O2 for 24 h led to a significant loss of cultured rat PC12 cells, and the cell viability was pronouncedly increased by pretreatment of gensenoside Rb1 for 24 h. H2O2-induced endoplasmic reticulum stress pathway was also suppressed after gensenoside Rb1 pretreatment, which was related with thioredoxin-1 (Trx-1) induction. Trx-1 siRNA abolished the protective effects of gensenoside Rb1. Our results of the present study demonstrate that gensenoside Rb1 shows a potent anti-oxidative effect on cultured PC12 cells by inducing Trx-1 expression.
Collapse
Affiliation(s)
- Xian-Si Zeng
- College of Life Science, Xinyang Normal University, Xinyang, 464000, China
| | - Jin-Jing Jia
- College of Life Science, Xinyang Normal University, Xinyang, 464000, China.
| | - Li-Fang Ma
- College of Life Science, Xinyang Normal University, Xinyang, 464000, China
| |
Collapse
|
45
|
Zhang Y, Li X, Ciric B, Ma CG, Gran B, Rostami A, Zhang GX. Therapeutic effect of baicalin on experimental autoimmune encephalomyelitis is mediated by SOCS3 regulatory pathway. Sci Rep 2015; 5:17407. [PMID: 26616302 PMCID: PMC4663791 DOI: 10.1038/srep17407] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Accepted: 10/29/2015] [Indexed: 12/17/2022] Open
Abstract
Natural compounds derived from medicinal plants have long been considered a rich source of novel therapeutic agents. Baicalin (Ba) is a bioactive flavonoid compound derived from the root of Scutellaria baicalensis, an herb widely used in traditional medicine for the treatment of various inflammatory diseases. In this study, we investigate the effects and mechanism of action of Ba in experimental autoimmune encephalomyelitis (EAE), an animal model of multiple sclerosis (MS). Ba treatment effectively ameliorated clinical disease severity in myelin oligodendrocyte glycoprotein (MOG)35–55 peptide-induced EAE, and reduced inflammation and demyelination of the central nervous system (CNS). Ba reduced infiltration of immune cells into the CNS, inhibited expression of proinflammatory molecules and chemokines, and prevented Th1 and Th17 cell differentiation via STAT/NFκB signaling pathways. Further, we showed that SOCS3 induction is essential to the effects of Ba, given that the inhibitory effect of Ba on pathogenic Th17 responses was largely abolished when SOCS3 signaling was knocked down. Taken together, our findings demonstrate that Ba has significant potential as a novel anti-inflammatory agent for therapy of autoimmune diseases such as MS.
Collapse
Affiliation(s)
- Yuan Zhang
- Department of Neurology, Thomas Jefferson University, Philadelphia, PA, USA.,Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, Northwest China National Engineering Laboratory for Resource Development of Endangered Crude Drugs, College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Xing Li
- Department of Neurology, Thomas Jefferson University, Philadelphia, PA, USA.,Key Laboratory of the Ministry of Education for Medicinal Resources and Natural Pharmaceutical Chemistry, Northwest China National Engineering Laboratory for Resource Development of Endangered Crude Drugs, College of Life Sciences, Shaanxi Normal University, Xi'an, China
| | - Bogoljub Ciric
- Department of Neurology, Thomas Jefferson University, Philadelphia, PA, USA
| | - Cun-Gen Ma
- Institute of Brain Science, Department of Neurology, Shanxi Datong University Medical School, Datong, China
| | - Bruno Gran
- Clinical Neurology Research Group, Division of Clinical Neuroscience, University of Nottingham School of Medicine, UK
| | | | - Guang-Xian Zhang
- Department of Neurology, Thomas Jefferson University, Philadelphia, PA, USA
| |
Collapse
|
46
|
Sanhueza C, Wehinger S, Castillo Bennett J, Valenzuela M, Owen GI, Quest AFG. The twisted survivin connection to angiogenesis. Mol Cancer 2015; 14:198. [PMID: 26584646 PMCID: PMC4653922 DOI: 10.1186/s12943-015-0467-1] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Accepted: 11/08/2015] [Indexed: 12/15/2022] Open
Abstract
Survivin, a member of the inhibitor of apoptosis family of proteins (IAPs) that controls cell division, apoptosis, metastasis and angiogenesis, is overexpressed in essentially all human cancers. As a consequence, the gene/protein is considered an attractive target for cancer treatment. Here, we discuss recent findings related to the regulation of survivin expression and its role in angiogenesis, particularly in the context of hypoxia. We propose a novel role for survivin in cancer, whereby expression of the protein in tumor cells promotes VEGF synthesis, secretion and angiogenesis. Mechanistically, we propose the existence of a positive feed-back loop involving PI3-kinase/Akt activation and enhanced β-Catenin-TCF/LEF-dependent VEGF expression followed by secretion. Finally, we elaborate on the possibility that this mechanism operating in cancer cells may contribute to enhanced tumor vascularization by vasculogenic mimicry together with conventional angiogenesis.
Collapse
Affiliation(s)
- C Sanhueza
- Cellular and Molecular Physiology Laboratory (CMPL), Division of Obstetrics and Gynecology, School of Medicine, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, 8330024, Chile
| | - S Wehinger
- Interdisciplinary Excellence Research Program on Healthy Aging (PIEI-ES), Universidad de Talca, Talca, Chile
| | - J Castillo Bennett
- Cellular Communication Laboratory, Center for Molecular Studies of the Cell (CEMC), Program of Cell and Molecular Biology, Institute of Biomedical Sciences (ICBM), Faculty of Medicine, Av. Independencia 1027, Santiago, Chile.,Advanced Center for Chronic Diseases (ACCDiS), Santiago, Chile
| | - M Valenzuela
- Cellular Communication Laboratory, Center for Molecular Studies of the Cell (CEMC), Program of Cell and Molecular Biology, Institute of Biomedical Sciences (ICBM), Faculty of Medicine, Av. Independencia 1027, Santiago, Chile.,Advanced Center for Chronic Diseases (ACCDiS), Santiago, Chile
| | - G I Owen
- Advanced Center for Chronic Diseases (ACCDiS), Santiago, Chile.,Facultad de Ciencias Biológicas & Center UC Investigation in Oncology, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - A F G Quest
- Cellular Communication Laboratory, Center for Molecular Studies of the Cell (CEMC), Program of Cell and Molecular Biology, Institute of Biomedical Sciences (ICBM), Faculty of Medicine, Av. Independencia 1027, Santiago, Chile. .,Advanced Center for Chronic Diseases (ACCDiS), Santiago, Chile.
| |
Collapse
|
47
|
Morita A, Soga K, Nakayama H, Ishida T, Kawanishi S, Sato EF. Neuronal differentiation of human iPS cells induced by baicalin via regulation of bHLH gene expression. Biochem Biophys Res Commun 2015; 465:458-63. [PMID: 26277393 DOI: 10.1016/j.bbrc.2015.08.039] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Accepted: 08/09/2015] [Indexed: 01/05/2023]
Abstract
Efficient differentiation is important for regenerative medicine based on pluripotent stem cells, including treatment of neurodegenerative disorders and trauma. Baicalin promotes neuronal differentiation of neural stem/progenitor cells of rats and mice. To evaluate the suitability of baicalin for neuronal differentiation of human iPS cells, we investigated whether it promotes neuronal differentiation in human iPS cells and monitored basic helix-loop-helix (bHLH) gene expression during neuronal differentiation. Baicalin promoted neuronal differentiation and inhibited glial differentiation, suggesting that baicalin can influence the neuronal fate decision in human iPS cells. Notch signaling, which is upstream of bHLH proteins, was not involved in baicalin-induced neuronal differentiation. Baicalin treatment did not down-regulate Hes1 gene expression, but it reduced Hes1 protein levels and up-regulated Ascl1 gene expression. Thus, baicalin promoted neuronal differentiation via modulation of bHLH transcriptional factors. Therefore, baicalin has potential to be used as a small-molecule drug for regenerative treatment of neurodegenerative disorders.
Collapse
Affiliation(s)
- Akihiro Morita
- Faculty of Pharmaceutical Sciences, Suzuka University of Medical Science, Japan.
| | - Kohei Soga
- Faculty of Pharmaceutical Sciences, Suzuka University of Medical Science, Japan
| | - Hironobu Nakayama
- Faculty of Pharmaceutical Sciences, Suzuka University of Medical Science, Japan
| | - Torao Ishida
- Institute of Traditional Chinese Medicine, Suzuka University of Medical Science, Japan
| | - Shosuke Kawanishi
- Faculty of Pharmaceutical Sciences, Suzuka University of Medical Science, Japan
| | - Eisuke F Sato
- Faculty of Pharmaceutical Sciences, Suzuka University of Medical Science, Japan
| |
Collapse
|
48
|
Ding H, Wang H, Zhao Y, Sun D, Zhai X. Protective Effects of Baicalin on Aβ₁₋₄₂-Induced Learning and Memory Deficit, Oxidative Stress, and Apoptosis in Rat. Cell Mol Neurobiol 2015; 35:623-32. [PMID: 25596671 DOI: 10.1007/s10571-015-0156-z] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Accepted: 01/05/2015] [Indexed: 12/11/2022]
Abstract
The accumulation and deposition of β-amyloid peptide (Aβ) in senile plaques and cerebral vasculature is believed to facilitate the progressive neurodegeneration that occurs in the Alzheimer's disease (AD). The present study sought to elucidate possible effects of baicalin, a natural phytochemical, on Aβ toxicity in a rat model of AD. By morris water maze test, Aβ1-42 injection was found to cause learning and memory deficit in rat, which was effectively improved by baicalin treatment. Besides, histological examination showed that baicalin could attenuate the hippocampus injury caused by Aβ. The neurotoxicity mechanism of Aβ is associated with oxidative stress and apoptosis, as revealed by increased malonaldehyde generation and TUNEL-positive cells. Baicalin treatment was able to increase antioxidant capabilities by recovering activities of antioxidant enzymes (superoxide dismutase, catalase, and glutathione peroxidase) and up-regulating their gene expression. Moreover, baicalin effectively prevented Aβ-induced mitochondrial membrane potential decrease, Bax/Bcl-2 ratio increase, cytochrome c release, and caspase-9/-3 activation. In addition, we found that the anti-oxidative effect of baicalin was associated with Nrf2 activation. In conclusion, baicalin effectively improved Aβ-induced learning and memory deficit, hippocampus injury, and neuron apoptosis, making it a promising drug to preventive interventions for AD.
Collapse
Affiliation(s)
- Haitao Ding
- Linyi City Yishui Central Hospital, Linyi, 276400, Shandong, China
| | | | | | | | | |
Collapse
|
49
|
Xiao JR, Do CW, To CH. Potential Therapeutic Effects of Baicalein, Baicalin, and Wogonin in Ocular Disorders. J Ocul Pharmacol Ther 2014; 30:605-14. [DOI: 10.1089/jop.2014.0074] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Affiliation(s)
- Jing-Ru Xiao
- Laboratory of Experimental Optometry, School of Optometry, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, Hong Kong
| | - Chi-Wai Do
- Laboratory of Experimental Optometry, School of Optometry, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, Hong Kong
| | - Chi-Ho To
- Laboratory of Experimental Optometry, School of Optometry, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, Hong Kong
- State Key Laboratory of Ophthalmology, Department of Ophthalmology, Sun Yat-sen University, Guangzhou, Guangdong, People's Republic of China
| |
Collapse
|