1
|
Wang J, Lai Q, Han J, Qin P, Wu H. Neuroimaging biomarkers for the diagnosis and prognosis of patients with disorders of consciousness. Brain Res 2024; 1843:149133. [PMID: 39084451 DOI: 10.1016/j.brainres.2024.149133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 05/29/2024] [Accepted: 07/25/2024] [Indexed: 08/02/2024]
Abstract
The progress in neuroimaging and electrophysiological techniques has shown substantial promise in improving the clinical assessment of disorders of consciousness (DOC). Through the examination of both stimulus-induced and spontaneous brain activity, numerous comprehensive investigations have explored variations in brain activity patterns among patients with DOC, yielding valuable insights for clinical diagnosis and prognostic purposes. Nonetheless, reaching a consensus on precise neuroimaging biomarkers for patients with DOC remains a challenge. Therefore, in this review, we begin by summarizing the empirical evidence related to neuroimaging biomarkers for DOC using various paradigms, including active, passive, and resting-state approaches, by employing task-based fMRI, resting-state fMRI (rs-fMRI), electroencephalography (EEG), and positron emission tomography (PET) techniques. Subsequently, we conducted a review of studies examining the neural correlates of consciousness in patients with DOC, with the findings holding potential value for the clinical application of DOC. Notably, previous research indicates that neuroimaging techniques have the potential to unveil covert awareness that conventional behavioral assessments might overlook. Furthermore, when integrated with various task paradigms or analytical approaches, this combination has the potential to significantly enhance the accuracy of both diagnosis and prognosis in DOC patients. Nonetheless, the stability of these neural biomarkers still needs additional validation, and future directions may entail integrating diagnostic and prognostic methods with big data and deep learning approaches.
Collapse
Affiliation(s)
- Jiaying Wang
- Key Laboratory of Brain, Cognition and Education Sciences, Ministry of Education, Center for Studies of Psychological Application, School of Psychology, South China Normal University, Guangzhou 510631, China
| | - Qiantu Lai
- Key Laboratory of Brain, Cognition and Education Sciences, Ministry of Education, Center for Studies of Psychological Application, School of Psychology, South China Normal University, Guangzhou 510631, China
| | - Junrong Han
- Key Laboratory of Brain, Cognition and Education Sciences, Ministry of Education, Institute for Brain Research and Rehabilitation, and Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, 510631 Guangzhou, China
| | - Pengmin Qin
- Key Laboratory of Brain, Cognition and Education Sciences, Ministry of Education, Center for Studies of Psychological Application, School of Psychology, South China Normal University, Guangzhou 510631, China; Pazhou Lab, Guangzhou 510330, China.
| | - Hang Wu
- Key Laboratory of Brain, Cognition and Education Sciences, Ministry of Education, Institute for Brain Research and Rehabilitation, and Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, 510631 Guangzhou, China.
| |
Collapse
|
2
|
Parmigiani S, Cline CC, Sarkar M, Forman L, Truong J, Ross JM, Gogulski J, Keller CJ. Real-time optimization to enhance noninvasive cortical excitability assessment in the human dorsolateral prefrontal cortex. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.29.596317. [PMID: 38853941 PMCID: PMC11160722 DOI: 10.1101/2024.05.29.596317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
Objective We currently lack a robust noninvasive method to measure prefrontal excitability in humans. Concurrent TMS and EEG in the prefrontal cortex is usually confounded by artifacts. Here we asked if real-time optimization could reduce artifacts and enhance a TMS-EEG measure of left prefrontal excitability. Methods This closed-loop optimization procedure adjusts left dlPFC TMS coil location, angle, and intensity in real-time based on the EEG response to TMS. Our outcome measure was the left prefrontal early (20-60 ms) and local TMS-evoked potential (EL-TEP). Results In 18 healthy participants, this optimization of coil angle and brain target significantly reduced artifacts by 63% and, when combined with an increase in intensity, increased EL-TEP magnitude by 75% compared to a non-optimized approach. Conclusions Real-time optimization of TMS parameters during dlPFC stimulation can enhance the EL-TEP. Significance Enhancing our ability to measure prefrontal excitability is important for monitoring pathological states and treatment response.
Collapse
Affiliation(s)
- Sara Parmigiani
- Department of Psychiatry & Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, 94305, USA
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, USA
- Veterans Affairs Palo Alto Healthcare System, and the Sierra Pacific Mental Illness, Research, Education, and Clinical Center (MIRECC), Palo Alto, CA, 94394, USA
| | - Christopher C. Cline
- Department of Psychiatry & Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, 94305, USA
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, USA
- Veterans Affairs Palo Alto Healthcare System, and the Sierra Pacific Mental Illness, Research, Education, and Clinical Center (MIRECC), Palo Alto, CA, 94394, USA
| | - Manjima Sarkar
- Department of Psychiatry & Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, 94305, USA
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, USA
- Veterans Affairs Palo Alto Healthcare System, and the Sierra Pacific Mental Illness, Research, Education, and Clinical Center (MIRECC), Palo Alto, CA, 94394, USA
| | - Lily Forman
- Department of Psychiatry & Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, 94305, USA
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, USA
- Veterans Affairs Palo Alto Healthcare System, and the Sierra Pacific Mental Illness, Research, Education, and Clinical Center (MIRECC), Palo Alto, CA, 94394, USA
| | - Jade Truong
- Department of Psychiatry & Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, 94305, USA
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, USA
- Veterans Affairs Palo Alto Healthcare System, and the Sierra Pacific Mental Illness, Research, Education, and Clinical Center (MIRECC), Palo Alto, CA, 94394, USA
| | - Jessica M. Ross
- Department of Psychiatry & Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, 94305, USA
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, USA
- Veterans Affairs Palo Alto Healthcare System, and the Sierra Pacific Mental Illness, Research, Education, and Clinical Center (MIRECC), Palo Alto, CA, 94394, USA
| | - Juha Gogulski
- Department of Psychiatry & Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, 94305, USA
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, USA
- Department of Clinical Neurophysiology, HUS Diagnostic Center, Clinical Neurosciences, Helsinki University Hospital and University of Helsinki, Helsinki, FI-00029 HUS, Finland
| | - Corey J. Keller
- Department of Psychiatry & Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, 94305, USA
- Wu Tsai Neurosciences Institute, Stanford University, Stanford, CA, USA
- Veterans Affairs Palo Alto Healthcare System, and the Sierra Pacific Mental Illness, Research, Education, and Clinical Center (MIRECC), Palo Alto, CA, 94394, USA
| |
Collapse
|
3
|
Whyte CJ, Redinbaugh MJ, Shine JM, Saalmann YB. Thalamic contributions to the state and contents of consciousness. Neuron 2024; 112:1611-1625. [PMID: 38754373 PMCID: PMC11537458 DOI: 10.1016/j.neuron.2024.04.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 04/11/2024] [Accepted: 04/17/2024] [Indexed: 05/18/2024]
Abstract
Consciousness can be conceptualized as varying along at least two dimensions: the global state of consciousness and the content of conscious experience. Here, we highlight the cellular and systems-level contributions of the thalamus to conscious state and then argue for thalamic contributions to conscious content, including the integrated, segregated, and continuous nature of our experience. We underscore vital, yet distinct roles for core- and matrix-type thalamic neurons. Through reciprocal interactions with deep-layer cortical neurons, matrix neurons support wakefulness and determine perceptual thresholds, whereas the cortical interactions of core neurons maintain content and enable perceptual constancy. We further propose that conscious integration, segregation, and continuity depend on the convergent nature of corticothalamic projections enabling dimensionality reduction, a thalamic reticular nucleus-mediated divisive normalization-like process, and sustained coherent activity in thalamocortical loops, respectively. Overall, we conclude that the thalamus plays a central topological role in brain structures controlling conscious experience.
Collapse
Affiliation(s)
- Christopher J Whyte
- Centre for Complex Systems, The University of Sydney, Sydney, NSW, Australia; Brain and Mind Centre, The University of Sydney, Sydney, NSW, Australia
| | | | - James M Shine
- Centre for Complex Systems, The University of Sydney, Sydney, NSW, Australia; Brain and Mind Centre, The University of Sydney, Sydney, NSW, Australia
| | - Yuri B Saalmann
- Department of Psychology, University of Wisconsin - Madison, Madison, WI, USA; Wisconsin National Primate Research Center, Madison, WI, USA
| |
Collapse
|
4
|
Mancuso M, Cruciani A, Sveva V, Casula EP, Brown K, Rothwell JC, Di Lazzaro V, Koch G, Rocchi L. Somatosensory input in the context of transcranial magnetic stimulation coupled with electroencephalography: An evidence-based overview. Neurosci Biobehav Rev 2023; 155:105434. [PMID: 37890602 DOI: 10.1016/j.neubiorev.2023.105434] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 10/11/2023] [Accepted: 10/22/2023] [Indexed: 10/29/2023]
Abstract
The transcranial evoked potential (TEP) is a powerful technique to investigate brain dynamics, but some methodological issues limit its interpretation. A possible contamination of the TEP by electroencephalographic (EEG) responses evoked by the somatosensory input generated by transcranial magnetic stimulation (TMS) has been postulated; nonetheless, a characterization of these responses is lacking. The aim of this work was to review current evidence about possible somatosensory evoked potentials (SEP) induced by sources of somatosensory input in the craniofacial region. Among these, only contraction of craniofacial muscle and stimulation of free cutaneous nerve endings may be able to induce EEG responses, but direct evidence is lacking due to experimental difficulties in isolating these inputs. Notably, EEG evoked activity in this context is represented by a N100/P200 complex, reflecting a saliency-related multimodal response, rather than specific activation of the primary somatosensory cortex. Strategies to minimize or remove these responses by EEG processing still yield uncertain results; therefore, data inspection is of paramount importance to judge a possible contamination of the TEP by multimodal potentials caused by somatosensory input.
Collapse
Affiliation(s)
- M Mancuso
- Department of Human Neurosciences, University of Rome "Sapienza", Viale dell'Università 30, 00185 Rome, Italy
| | - A Cruciani
- Department of Medicine and Surgery, Unit of Neurology, Neurophysiology, Neurobiology, and Psychiatry, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo, 21, 00128 Rome, Italy; Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo 200, 00128 Rome, Italy
| | - V Sveva
- Department of Anatomical and Histological Sciences, Legal Medicine and Orthopedics, University of Rome "Sapienza", Piazzale Aldo Moro, 5, 00185 Rome, Italy
| | - E P Casula
- Department of System Medicine, "Tor Vergata" University of Rome, Via Montpellier 1, 00133 Rome, Italy
| | - K Brown
- Department of Kinesiology, University of Waterloo, 200 University Ave W, N2L 3G5 Waterloo, ON, Canada
| | - J C Rothwell
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, University College London, WC1N 3BG London, United Kingdom
| | - V Di Lazzaro
- Department of Medicine and Surgery, Unit of Neurology, Neurophysiology, Neurobiology, and Psychiatry, Università Campus Bio-Medico di Roma, Via Alvaro del Portillo, 21, 00128 Rome, Italy; Fondazione Policlinico Universitario Campus Bio-Medico, Via Alvaro del Portillo 200, 00128 Rome, Italy
| | - G Koch
- Non-Invasive Brain Stimulation Unit, IRCCS Santa Lucia Foundation, Via Ardeatina, 306/354, 00179 Rome, Italy
| | - L Rocchi
- Department of Medical Sciences and Public Health, University of Cagliari, Cittadella Universitaria di Monserrato Blocco I S.S, 554 bivio per Sestu 09042, Monserrato, Cagliari, Italy.
| |
Collapse
|
5
|
Alnagger N, Cardone P, Martial C, Laureys S, Annen J, Gosseries O. The current and future contribution of neuroimaging to the understanding of disorders of consciousness. Presse Med 2023; 52:104163. [PMID: 36796250 DOI: 10.1016/j.lpm.2022.104163] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 11/21/2022] [Accepted: 12/13/2022] [Indexed: 02/16/2023] Open
Abstract
Patients with disorders of consciousness (DoC) represent a group of severely brain-injured patients with varying capacities for consciousness in terms of both wakefulness and awareness. The current state-of-the-art for assessing these patients is through standardised behavioural examinations, but inaccuracies are commonplace. Neuroimaging and electrophysiological techniques have revealed vast insights into the relationships between neural alterations, andcognitive and behavioural features of consciousness in patients with DoC. This has led to the establishment of neuroimaging paradigms for the clinical assessment of DoC patients. Here, we review selected neuroimaging findings on the DoC population, outlining key findings of the dysfunction underlying DoC and presenting the current clinical utility of neuroimaging tools. We discuss that whilst individual brain areas play instrumental roles in generating and supporting consciousness, activation of these areas alone is not sufficient for conscious experience. Instead, for consciousness to arise, we need preserved thalamo-cortical circuits, in addition to sufficient connectivity between distinctly differentiated brain networks, underlined by connectivity both within, and between such brain networks. Finally, we present recent advances and future perspectives in computational methodologies applied to DoC, supporting the notion that progress in the science of DoC will be driven by a symbiosis of these data-driven analyses, and theory-driven research. Both perspectives will work in tandem to provide mechanistic insights contextualised within theoretical frameworks which ultimately inform the practice of clinical neurology.
Collapse
Affiliation(s)
- Naji Alnagger
- Coma Science Group, GIGA-Consciousness, University of Liège, Liège, Belgium; Centre du Cerveau(2), University Hospital of Liège, Liège, Belgium
| | - Paolo Cardone
- Coma Science Group, GIGA-Consciousness, University of Liège, Liège, Belgium; Centre du Cerveau(2), University Hospital of Liège, Liège, Belgium
| | - Charlotte Martial
- Coma Science Group, GIGA-Consciousness, University of Liège, Liège, Belgium; Centre du Cerveau(2), University Hospital of Liège, Liège, Belgium
| | - Steven Laureys
- Coma Science Group, GIGA-Consciousness, University of Liège, Liège, Belgium; Centre du Cerveau(2), University Hospital of Liège, Liège, Belgium; CERVO Research Center, Laval University, Quebec, Canada
| | - Jitka Annen
- Coma Science Group, GIGA-Consciousness, University of Liège, Liège, Belgium; Centre du Cerveau(2), University Hospital of Liège, Liège, Belgium
| | - Olivia Gosseries
- Coma Science Group, GIGA-Consciousness, University of Liège, Liège, Belgium; Centre du Cerveau(2), University Hospital of Liège, Liège, Belgium.
| |
Collapse
|
6
|
Huntley J, Bor D, Deng F, Mancuso M, Mediano PAM, Naci L, Owen AM, Rocchi L, Sternin A, Howard R. Assessing awareness in severe Alzheimer's disease. Front Hum Neurosci 2023; 16:1035195. [PMID: 36819296 PMCID: PMC9930987 DOI: 10.3389/fnhum.2022.1035195] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 12/30/2022] [Indexed: 02/04/2023] Open
Abstract
There is an urgent need to understand the nature of awareness in people with severe Alzheimer's disease (AD) to ensure effective person-centered care. Objective biomarkers of awareness validated in other clinical groups (e.g., anesthesia, minimally conscious states) offer an opportunity to investigate awareness in people with severe AD. In this article we demonstrate the feasibility of using Transcranial magnetic stimulation (TMS) combined with EEG, event related potentials (ERPs) and fMRI to assess awareness in severe AD. TMS-EEG was performed in six healthy older controls and three people with severe AD. The perturbational complexity index (PCIST) was calculated as a measure of capacity for conscious awareness. People with severe AD demonstrated a PCIST around or below the threshold for consciousness, suggesting reduced capacity for consciousness. ERPs were recorded during a visual perception paradigm. In response to viewing faces, two patients with severe AD provisionally demonstrated similar visual awareness negativity to healthy controls. Using a validated fMRI movie-viewing task, independent component analysis in two healthy controls and one patient with severe AD revealed activation in auditory, visual and fronto-parietal networks. Activation patterns in fronto-parietal networks did not significantly correlate between the patient and controls, suggesting potential differences in conscious awareness and engagement with the movie. Although methodological issues remain, these results demonstrate the feasibility of using objective measures of awareness in severe AD. We raise a number of challenges and research questions that should be addressed using these biomarkers of awareness in future studies to improve understanding and care for people with severe AD.
Collapse
Affiliation(s)
- Jonathan Huntley
- Division of Psychiatry, University College London, London, United Kingdom
| | - Daniel Bor
- Department of Psychology, University of Cambridge, Cambridge, United Kingdom
| | - Feng Deng
- School of Psychology, Trinity College Dublin, Global Brain Health Institute, Dublin, Ireland
| | - Marco Mancuso
- Human Neuroscience Department, Sapienza University of Rome, Rome, Italy
| | - Pedro A. M. Mediano
- Department of Psychology, University of Cambridge, Cambridge, United Kingdom
| | - Lorina Naci
- School of Psychology, Trinity College Dublin, Global Brain Health Institute, Dublin, Ireland
| | - Adrian M. Owen
- Department of Physiology and Pharmacology, Brain and Mind Institute, University of Western Ontario, London, ON, Canada
- Department of Psychology, Brain and Mind Institute, University of Western Ontario, London, ON, Canada
| | - Lorenzo Rocchi
- Institute of Neurology, University College London, London, United Kingdom
| | - Avital Sternin
- Department of Physiology and Pharmacology, Brain and Mind Institute, University of Western Ontario, London, ON, Canada
- Department of Psychology, Brain and Mind Institute, University of Western Ontario, London, ON, Canada
| | - Robert Howard
- Division of Psychiatry, University College London, London, United Kingdom
| |
Collapse
|
7
|
Porcaro C, Avanaki K, Arias-Carrion O, Mørup M. Editorial: Combined EEG in research and diagnostics: Novel perspectives and improvements. Front Neurosci 2023; 17:1152394. [PMID: 36875646 PMCID: PMC9978703 DOI: 10.3389/fnins.2023.1152394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 01/31/2023] [Indexed: 02/18/2023] Open
Affiliation(s)
- Camillo Porcaro
- Department of Neuroscience and Padova Neuroscience Center, University of Padua, Padua, Italy.,Institute of Cognitive Sciences and Technologies-National Research Council, Rome, Italy.,Centre for Human Brain Health and School of Psychology, University of Birmingham, Birmingham, United Kingdom
| | - Kamran Avanaki
- University of Illinois at Chicago, Chicago, IL, United States
| | - Oscar Arias-Carrion
- Unidad de Trastornos del Movimiento y Sueño, Hospital General Dr. Manuel Gea González, Mexico City, Mexico
| | - Morten Mørup
- Technical University of Denmark, Lyngby, Denmark
| |
Collapse
|
8
|
Lee M, Sanz LRD, Barra A, Wolff A, Nieminen JO, Boly M, Rosanova M, Casarotto S, Bodart O, Annen J, Thibaut A, Panda R, Bonhomme V, Massimini M, Tononi G, Laureys S, Gosseries O, Lee SW. Quantifying arousal and awareness in altered states of consciousness using interpretable deep learning. Nat Commun 2022; 13:1064. [PMID: 35217645 PMCID: PMC8881479 DOI: 10.1038/s41467-022-28451-0] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2020] [Accepted: 01/25/2022] [Indexed: 12/16/2022] Open
Abstract
Consciousness can be defined by two components: arousal (wakefulness) and awareness (subjective experience). However, neurophysiological consciousness metrics able to disentangle between these components have not been reported. Here, we propose an explainable consciousness indicator (ECI) using deep learning to disentangle the components of consciousness. We employ electroencephalographic (EEG) responses to transcranial magnetic stimulation under various conditions, including sleep (n = 6), general anesthesia (n = 16), and severe brain injury (n = 34). We also test our framework using resting-state EEG under general anesthesia (n = 15) and severe brain injury (n = 34). ECI simultaneously quantifies arousal and awareness under physiological, pharmacological, and pathological conditions. Particularly, ketamine-induced anesthesia and rapid eye movement sleep with low arousal and high awareness are clearly distinguished from other states. In addition, parietal regions appear most relevant for quantifying arousal and awareness. This indicator provides insights into the neural correlates of altered states of consciousness.
Collapse
Affiliation(s)
- Minji Lee
- Department of Brain and Cognitive Engineering, Korea University, Seoul, Republic of Korea
| | - Leandro R D Sanz
- Coma Science Group, GIGA-Consciousness, GIGA Research Center, University of Liège, Liège, Belgium
- Centre du Cerveau², University Hospital of Liège, Liège, Belgium
| | - Alice Barra
- Coma Science Group, GIGA-Consciousness, GIGA Research Center, University of Liège, Liège, Belgium
- Centre du Cerveau², University Hospital of Liège, Liège, Belgium
| | - Audrey Wolff
- Coma Science Group, GIGA-Consciousness, GIGA Research Center, University of Liège, Liège, Belgium
- Centre du Cerveau², University Hospital of Liège, Liège, Belgium
| | - Jaakko O Nieminen
- Wisconsin Institute for Sleep and Consciousness, Department of Psychiatry, University of Wisconsin, Madison, USA
- Department of Neuroscience and Biomedical Engineering, Aalto University School of Science, Espoo, Finland
| | - Melanie Boly
- Wisconsin Institute for Sleep and Consciousness, Department of Psychiatry, University of Wisconsin, Madison, USA
- Department of Neurology, University of Wisconsin, Madison, WI, USA
| | - Mario Rosanova
- Department of Biomedical and Clinical Sciences "L. Sacco", University of Milan, Milan, Italy
- Fondazione Europea di Ricerca Biomedica, FERB Onlus, Milan, Italy
| | - Silvia Casarotto
- Department of Biomedical and Clinical Sciences "L. Sacco", University of Milan, Milan, Italy
- IRCCS Fondazione Don Carlo Gnocchi ONLUS, Milan, Italy
| | - Olivier Bodart
- Coma Science Group, GIGA-Consciousness, GIGA Research Center, University of Liège, Liège, Belgium
| | - Jitka Annen
- Coma Science Group, GIGA-Consciousness, GIGA Research Center, University of Liège, Liège, Belgium
- Centre du Cerveau², University Hospital of Liège, Liège, Belgium
| | - Aurore Thibaut
- Coma Science Group, GIGA-Consciousness, GIGA Research Center, University of Liège, Liège, Belgium
- Centre du Cerveau², University Hospital of Liège, Liège, Belgium
| | - Rajanikant Panda
- Coma Science Group, GIGA-Consciousness, GIGA Research Center, University of Liège, Liège, Belgium
- Centre du Cerveau², University Hospital of Liège, Liège, Belgium
| | - Vincent Bonhomme
- Department of Anesthesia and Intensive Care Medicine, University Hospital of Liège, Liège, Belgium
- University Department of Anesthesia and Intensive Care Medicine, CHR Citadelle, Liège, Belgium
- Anesthesia and Intensive Care Laboratory, GIGA-Consciousness, GIGA Research Center, University of Liège, Liège, Belgium
| | - Marcello Massimini
- Department of Biomedical and Clinical Sciences "L. Sacco", University of Milan, Milan, Italy
- IRCCS Fondazione Don Carlo Gnocchi ONLUS, Milan, Italy
| | - Giulio Tononi
- Wisconsin Institute for Sleep and Consciousness, Department of Psychiatry, University of Wisconsin, Madison, USA
| | - Steven Laureys
- Coma Science Group, GIGA-Consciousness, GIGA Research Center, University of Liège, Liège, Belgium
- Centre du Cerveau², University Hospital of Liège, Liège, Belgium
| | - Olivia Gosseries
- Coma Science Group, GIGA-Consciousness, GIGA Research Center, University of Liège, Liège, Belgium.
- Centre du Cerveau², University Hospital of Liège, Liège, Belgium.
- Wisconsin Institute for Sleep and Consciousness, Department of Psychiatry, University of Wisconsin, Madison, USA.
- Department of Psychology, University of Wisconsin, Madison, WI, USA.
| | - Seong-Whan Lee
- Department of Artificial Intelligence, Korea University, Seoul, Republic of Korea.
| |
Collapse
|
9
|
Bagnato S. The role of plasticity in the recovery of consciousness. HANDBOOK OF CLINICAL NEUROLOGY 2022; 184:375-395. [PMID: 35034750 DOI: 10.1016/b978-0-12-819410-2.00020-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Disorders of consciousness (DOCs), i.e., coma, vegetative state, and minimally conscious state are the consequences of a severe brain injury that disrupts the brain ability to generate consciousness. Recovery from DOCs requires functional and structural changes in the brain. The sites where these plastic changes take place vary according to the pathophysiology of the DOC. The ascending reticular activating system of the brainstem and its complex connections with the thalamus and cortex are involved in the pathophysiology of coma. Subcortical structures, such as the striatum and globus pallidus, together with thalamocortical and corticothalamic projections, the basal forebrain, and several networks among different cortical areas are probably involved in vegetative and minimally conscious states. Some mechanisms of plasticity that allegedly operate in each of these sites to promote recovery of consciousness will be discussed in this chapter. While some mechanisms of plasticity work at a local level, others produce functional changes in complex neuronal networks, for example by entraining neuronal oscillations. The specific mechanisms of brain plasticity represent potential targets for future treatments aiming to restore consciousness in patients with severe DOCs.
Collapse
Affiliation(s)
- Sergio Bagnato
- Unit of Neurophysiology and Unit for Severe Acquired Brain Injuries, Rehabilitation Department, Giuseppe Giglio Foundation, Cefalù (PA), Italy.
| |
Collapse
|
10
|
Porcaro C, Nemirovsky IE, Riganello F, Mansour Z, Cerasa A, Tonin P, Stojanoski B, Soddu A. Diagnostic Developments in Differentiating Unresponsive Wakefulness Syndrome and the Minimally Conscious State. Front Neurol 2022; 12:778951. [PMID: 35095725 PMCID: PMC8793804 DOI: 10.3389/fneur.2021.778951] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 12/08/2021] [Indexed: 12/12/2022] Open
Abstract
When treating patients with a disorder of consciousness (DOC), it is essential to obtain an accurate diagnosis as soon as possible to generate individualized treatment programs. However, accurately diagnosing patients with DOCs is challenging and prone to errors when differentiating patients in a Vegetative State/Unresponsive Wakefulness Syndrome (VS/UWS) from those in a Minimally Conscious State (MCS). Upwards of ~40% of patients with a DOC can be misdiagnosed when specifically designed behavioral scales are not employed or improperly administered. To improve diagnostic accuracy for these patients, several important neuroimaging and electrophysiological technologies have been proposed. These include Positron Emission Tomography (PET), functional Magnetic Resonance Imaging (fMRI), Electroencephalography (EEG), and Transcranial Magnetic Stimulation (TMS). Here, we review the different ways in which these techniques can improve diagnostic differentiation between VS/UWS and MCS patients. We do so by referring to studies that were conducted within the last 10 years, which were extracted from the PubMed database. In total, 55 studies met our criteria (clinical diagnoses of VS/UWS from MCS as made by PET, fMRI, EEG and TMS- EEG tools) and were included in this review. By summarizing the promising results achieved in understanding and diagnosing these conditions, we aim to emphasize the need for more such tools to be incorporated in standard clinical practice, as well as the importance of data sharing to incentivize the community to meet these goals.
Collapse
Affiliation(s)
- Camillo Porcaro
- Department of Neuroscience and Padova Neuroscience Center (PNC), University of Padova, Padova, Italy
- Institute of Cognitive Sciences and Technologies (ISTC)–National Research Council (CNR), Rome, Italy
- Department of Information Engineering, Università Politecnica delle Marche, Ancona, Italy
- Centre for Human Brain Health, School of Psychology, University of Birmingham, Birmingham, United Kingdom
- *Correspondence: Camillo Porcaro ; orcid.org/0000-0003-4847-163X
| | - Idan Efim Nemirovsky
- Department of Physics and Astronomy, Brain and Mind Institute, University of Western Ontario, London, ON, Canada
| | - Francesco Riganello
- Sant'Anna Institute and Research in Advanced Neurorehabilitation (RAN), Crotone, Italy
| | - Zahra Mansour
- Department of Information Engineering, Università Politecnica delle Marche, Ancona, Italy
| | - Antonio Cerasa
- Sant'Anna Institute and Research in Advanced Neurorehabilitation (RAN), Crotone, Italy
- Institute for Biomedical Research and Innovation (IRIB), National Research Council, Messina, Italy
- Pharmacotechnology Documentation and Transfer Unit, Preclinical and Translational Pharmacology, Department of Pharmacy, Health Science and Nutrition, University of Calabria, Rende, Italy
| | - Paolo Tonin
- Sant'Anna Institute and Research in Advanced Neurorehabilitation (RAN), Crotone, Italy
| | - Bobby Stojanoski
- Faculty of Social Science and Humanities, University of Ontario Institute of Technology, Oshawa, ON, Canada
- Department of Psychology, Brain and Mind Institute, University of Western Ontario, London, ON, Canada
| | - Andrea Soddu
- Department of Physics and Astronomy, Brain and Mind Institute, University of Western Ontario, London, ON, Canada
| |
Collapse
|
11
|
Arai N, Nakanishi T, Nakajima S, Li X, Wada M, Daskalakis ZJ, Goodman MS, Blumberger DM, Mimura M, Noda Y. Insights of neurophysiology on unconscious state using combined transcranial magnetic stimulation and electroencephalography: A systematic review. Neurosci Biobehav Rev 2021; 131:293-312. [PMID: 34555384 DOI: 10.1016/j.neubiorev.2021.09.029] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 09/06/2021] [Accepted: 09/16/2021] [Indexed: 02/02/2023]
Abstract
Unconscious state has been investigated in numerous studies so far, but pathophysiology of this state is not fully understood. Recently, combined transcranial magnetic stimulation (TMS) and electroencephalography (EEG) has been developed to allow for non-invasive assessment of neurophysiology in the cerebral cortex. We conducted a systematic literature search for TMS-EEG studies on human unconscious state using PubMed with cross-reference and manual searches. The initial search yielded 137 articles, and 19 of them were identified as relevant, including one article found by manual search. This review included 10 studies for unresponsive wakefulness syndrome (UWS), 9 for minimally conscious states (MCS), 5 for medication-induced unconscious states, and 6 for natural non-rapid eye movement states. These studies analyzed TMS-evoked potential to calculate perturbational complexity index (PCI) and OFF-periods. In particular, PCI was found to be a potentially useful marker to differentiate between UWS and MCS. This review demonstrated that TMS-EEG could represent a promising neuroscientific tool to investigate various unconscious states. Further TMS-EEG research may help elucidate the neural basis of unconscious state.
Collapse
Affiliation(s)
- Naohiro Arai
- Department of Neuropsychiatry, Graduate School of Medicine, Keio University School of Medicine, Tokyo, Japan.
| | - Tomoya Nakanishi
- Department of Neuropsychiatry, Graduate School of Medicine, Keio University School of Medicine, Tokyo, Japan; Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, Japan.
| | - Shinichiro Nakajima
- Department of Neuropsychiatry, Graduate School of Medicine, Keio University School of Medicine, Tokyo, Japan.
| | - Xuemei Li
- Department of Neuropsychiatry, Graduate School of Medicine, Keio University School of Medicine, Tokyo, Japan.
| | - Masataka Wada
- Department of Neuropsychiatry, Graduate School of Medicine, Keio University School of Medicine, Tokyo, Japan.
| | | | - Michelle S Goodman
- Temerty Centre for Therapeutic Brain Intervention, Centre for Addiction and Mental Health and Department of Psychiatry, University of Toronto, Toronto, Canada.
| | - Daniel M Blumberger
- Temerty Centre for Therapeutic Brain Intervention, Centre for Addiction and Mental Health and Department of Psychiatry, University of Toronto, Toronto, Canada.
| | - Masaru Mimura
- Department of Neuropsychiatry, Graduate School of Medicine, Keio University School of Medicine, Tokyo, Japan.
| | - Yoshihiro Noda
- Department of Neuropsychiatry, Graduate School of Medicine, Keio University School of Medicine, Tokyo, Japan.
| |
Collapse
|
12
|
Ponce-Alvarez A, Uhrig L, Deco N, Signorelli CM, Kringelbach ML, Jarraya B, Deco G. Macroscopic Quantities of Collective Brain Activity during Wakefulness and Anesthesia. Cereb Cortex 2021; 32:298-311. [PMID: 34231843 DOI: 10.1093/cercor/bhab209] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 06/02/2021] [Accepted: 06/07/2021] [Indexed: 01/18/2023] Open
Abstract
The study of states of arousal is key to understand the principles of consciousness. Yet, how different brain states emerge from the collective activity of brain regions remains unknown. Here, we studied the fMRI brain activity of monkeys during wakefulness and anesthesia-induced loss of consciousness. We showed that the coupling between each brain region and the rest of the cortex provides an efficient statistic to classify the two brain states. Based on this and other statistics, we estimated maximum entropy models to derive collective, macroscopic properties that quantify the system's capabilities to produce work, to contain information, and to transmit it, which were all maximized in the awake state. The differences in these properties were consistent with a phase transition from critical dynamics in the awake state to supercritical dynamics in the anesthetized state. Moreover, information-theoretic measures identified those parameters that impacted the most the network dynamics. We found that changes in the state of consciousness primarily depended on changes in network couplings of insular, cingulate, and parietal cortices. Our findings suggest that the brain state transition underlying the loss of consciousness is predominantly driven by the uncoupling of specific brain regions from the rest of the network.
Collapse
Affiliation(s)
- Adrián Ponce-Alvarez
- Computational Neuroscience Group, Department of Information and Communication Technologies, Center for Brain and Cognition, Universitat Pompeu Fabra, Barcelona 08005, Spain
| | - Lynn Uhrig
- Life Science Division, NeuroSpin Center, Institute of BioImaging Commissariat à l'Energie Atomique, Gif-sur-Yvette 91191, France
| | - Nikolas Deco
- Computational Neuroscience Group, Department of Information and Communication Technologies, Center for Brain and Cognition, Universitat Pompeu Fabra, Barcelona 08005, Spain
| | - Camilo M Signorelli
- Computational Neuroscience Group, Department of Information and Communication Technologies, Center for Brain and Cognition, Universitat Pompeu Fabra, Barcelona 08005, Spain.,Life Science Division, NeuroSpin Center, Institute of BioImaging Commissariat à l'Energie Atomique, Gif-sur-Yvette 91191, France.,Department of Psychiatry, University of Oxford, Oxford OX3 7JX, UK
| | - Morten L Kringelbach
- Department of Psychiatry, University of Oxford, Oxford OX3 7JX, UK.,Department of Clinical Medicine, Center for Music in the Brain, Aarhus University, Aarhus 8000, Denmark.,Department of Neurosciences, Life and Health Sciences Research Institute, School of Medicine, University of Minho, Braga 4710-057, Portugal
| | - Béchir Jarraya
- Life Science Division, NeuroSpin Center, Institute of BioImaging Commissariat à l'Energie Atomique, Gif-sur-Yvette 91191, France.,UniCog, INSERM, Gif-sur-Yvette 91191, France.,Université Paris-Saclay, UVSQ, Versailles 78000, France.,Neuromodulation Unit, Foch Hospital, Suresnes 92150, France
| | - Gustavo Deco
- Computational Neuroscience Group, Department of Information and Communication Technologies, Center for Brain and Cognition, Universitat Pompeu Fabra, Barcelona 08005, Spain.,Institució Catalana de la Recerca i Estudis Avançats (ICREA), Barcelona 08010, Spain.,Department of Neuropsychology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig 04103, Germany.,School of Psychological Sciences, Monash University, Melbourne, VIC 3800, Australia
| |
Collapse
|
13
|
Kleiner J, Hoel E. Falsification and consciousness. Neurosci Conscious 2021; 2021:niab001. [PMID: 33889423 PMCID: PMC8052953 DOI: 10.1093/nc/niab001] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 11/23/2020] [Accepted: 01/05/2021] [Indexed: 11/13/2022] Open
Abstract
The search for a scientific theory of consciousness should result in theories that are falsifiable. However, here we show that falsification is especially problematic for theories of consciousness. We formally describe the standard experimental setup for testing these theories. Based on a theory's application to some physical system, such as the brain, testing requires comparing a theory's predicted experience (given some internal observables of the system like brain imaging data) with an inferred experience (using report or behavior). If there is a mismatch between inference and prediction, a theory is falsified. We show that if inference and prediction are independent, it follows that any minimally informative theory of consciousness is automatically falsified. This is deeply problematic since the field's reliance on report or behavior to infer conscious experiences implies such independence, so this fragility affects many contemporary theories of consciousness. Furthermore, we show that if inference and prediction are strictly dependent, it follows that a theory is unfalsifiable. This affects theories which claim consciousness to be determined by report or behavior. Finally, we explore possible ways out of this dilemma.
Collapse
Affiliation(s)
- Johannes Kleiner
- Munich Center for Mathematical Philosophy, Ludwig Maximilian University of Munich, Germany
| | - Erik Hoel
- Allen Discovery Center, Tufts University, Medford, MA, USA
| |
Collapse
|
14
|
Formica C, De Salvo S, Corallo F, Alagna A, Logiudice AL, Todaro A, Bramanti P, Marino S. Role of neurorehabilitative treatment using transcranial magnetic stimulation in disorders of consciousness. J Int Med Res 2021; 49:300060520976472. [PMID: 33535855 PMCID: PMC7869152 DOI: 10.1177/0300060520976472] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 11/04/2020] [Indexed: 11/16/2022] Open
Abstract
Disorders of consciousness (DOC) result from brain injuries that cause functional changes in vigilance, awareness and behaviour. It is important to correctly diagnose DOC so that the most appropriate rehabilitation treatments can be initiated. Several studies in DOC patients have demonstrated that repetitive transcranial magnetic stimulation (rTMS) has an important role to play in the recovery of consciousness as highlighted by monitoring clinical scale scores. Although studies indicate that rTMS can be used to aid recovery, it is not combined with other rehabilitative cognitive treatments. As of December 2018, there have been no studies published that combined DOC cognitive rehabilitation with TMS. This current review describes the use of rTMS as a form of non-invasive brain stimulation, as distinct from its use as a tool to investigate residual cortical activity, in terms of its possible therapeutic effects including cognitive rehabilitation. Literature searches were undertaken to identify all relevant studies. The available evidence suggests that rTMS may have an important role to play in in monitoring brain function during recovery and making other intensive rehabilitation treatments more effective, such as sensorial stimulations and cognitive training in patients after a severe acquired brain injury. Further research is required to establish the usefulness of rTMS treatment in DOC rehabilitation.
Collapse
Affiliation(s)
- Caterina Formica
- IRCCS Centro Neurolesi “Bonino Pulejo”, Messina, Italy
- Biomedical Department of Internal Medicine and Medical
Specialties, University of Palermo, Palermo, Italy
| | | | | | | | | | | | | | - Silvia Marino
- IRCCS Centro Neurolesi “Bonino Pulejo”, Messina, Italy
| |
Collapse
|
15
|
Mensen A, Bodart O, Thibaut A, Wannez S, Annen J, Laureys S, Gosseries O. Decreased Evoked Slow-Activity After tDCS in Disorders of Consciousness. Front Syst Neurosci 2020; 14:62. [PMID: 33100977 PMCID: PMC7546425 DOI: 10.3389/fnsys.2020.00062] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 07/28/2020] [Indexed: 12/20/2022] Open
Abstract
Due to life-saving medical advances, the diagnosis and treatment of disorders of consciousness (DOC) has become a more commonly occurring clinical issue. One recently developed intervention option has been non-invasive transcranial direct current stimulation. This dichotomy of patient responders may be better understood by investigating the mechanism behind the transcranial direct current stimulation (tDCS) intervention. The combination of transcranial magnetic stimulation and electroencephalography (TMS-EEG) has been an important diagnostic tool in DOC patients. We therefore examined the neural response using TMS-EEG both before and after tDCS in seven DOC patients (four diagnosed as in a minimally conscious state and three with unresponsive wakefulness syndrome). tDCS was applied over the dorsolateral prefrontal cortex, while TMS pulses were applied to the premotor cortex. None of the seven patients showed relevant behavioral change after tDCS. We did, however, find that the overall evoked slow activity was reduced following tDCS intervention. We also found a positive correlation between the strength of the slow activity and the amount of high-frequency suppression. However, there was no significant pre-post tDCS difference in high frequencies. In the resting-state EEG, we observed that both the incidence of slow waves and the positive slope of the wave were affected by tDCS. Taken together, these results suggest that the tDCS intervention can reduce the slow-wave activity component of bistability, but this may not directly affect high-frequency activity. We hypothesize that while reduced slow activity may be necessary for the recovery of neural function, especially consciousness, this alone is insufficient.
Collapse
Affiliation(s)
- Armand Mensen
- Coma Science Group, GIGA Consciousness, University of Liège, Liège, Belgium
| | - Olivier Bodart
- Coma Science Group, GIGA Consciousness, University of Liège, Liège, Belgium.,Department of Neurology, University Hospital of Liège, Liège, Belgium
| | - Aurore Thibaut
- Coma Science Group, GIGA Consciousness, University of Liège, Liège, Belgium.,Centre du Cerveau2, University Hospital of Liège, Liège, Belgium.,Neuromodulation Center, Spaulding Rehabilitation Hospital, Harvard Medical School, Boston, MA, United States
| | - Sarah Wannez
- Coma Science Group, GIGA Consciousness, University of Liège, Liège, Belgium
| | - Jitka Annen
- Coma Science Group, GIGA Consciousness, University of Liège, Liège, Belgium
| | - Steven Laureys
- Coma Science Group, GIGA Consciousness, University of Liège, Liège, Belgium.,Centre du Cerveau2, University Hospital of Liège, Liège, Belgium
| | - Olivia Gosseries
- Coma Science Group, GIGA Consciousness, University of Liège, Liège, Belgium.,Centre du Cerveau2, University Hospital of Liège, Liège, Belgium
| |
Collapse
|
16
|
Mortaheb S, Annen J, Chatelle C, Cassol H, Martens G, Thibaut A, Gosseries O, Laureys S. A Graph Signal Processing Approach to Study High Density EEG Signals in Patients with Disorders of Consciousness. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2020; 2019:4549-4553. [PMID: 31946877 DOI: 10.1109/embc.2019.8856436] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Graph signal processing (GSP) is a novel approach to analyse multi-dimensional neuroimaging data, constraining functional measures by structural characteristics in a single framework (i.e. graph signals). In this approach, functional time series are assigned to the vertices of the underlying weighted graph and GSP analysis is performed in each time point of the signal. Here we used GSP to study local brain connectivity changes in patients with disorders of consciousness based on resting state high density electroencephalography (hdEEG) recordings. Total variation of the graph signals is a measure of signal smoothness over the underlying graph. In this study, we constructed the underlying graph based on the geometrical distances between each electrode pairs in such a way that local smoothness of the signal can be studied. Total variation analysis in α-band showed that in the pathological states of altered consciousness, local short range communication of brain regions in this frequency band is stronger than in healthy states which shows that information is segregated in local regions in patients with disorders of consciousness.
Collapse
|
17
|
Arzi A, Rozenkrantz L, Gorodisky L, Rozenkrantz D, Holtzman Y, Ravia A, Bekinschtein TA, Galperin T, Krimchansky BZ, Cohen G, Oksamitni A, Aidinoff E, Sacher Y, Sobel N. Olfactory sniffing signals consciousness in unresponsive patients with brain injuries. Nature 2020; 581:428-433. [PMID: 32461641 DOI: 10.1038/s41586-020-2245-5] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 02/26/2020] [Indexed: 11/09/2022]
Abstract
After severe brain injury, it can be difficult to determine the state of consciousness of a patient, to determine whether the patient is unresponsive or perhaps minimally conscious1, and to predict whether they will recover. These diagnoses and prognoses are crucial, as they determine therapeutic strategies such as pain management, and can underlie end-of-life decisions2,3. Nevertheless, there is an error rate of up to 40% in determining the state of consciousness in patients with brain injuries4,5. Olfaction relies on brain structures that are involved in the basic mechanisms of arousal6, and we therefore hypothesized that it may serve as a biomarker for consciousness7. Here we use a non-verbal non-task-dependent measure known as the sniff response8-11 to determine consciousness in patients with brain injuries. By measuring odorant-dependent sniffing, we gain a sensitive measure of olfactory function10-15. We measured the sniff response repeatedly over time in patients with severe brain injuries and found that sniff responses significantly discriminated between unresponsive and minimally conscious states at the group level. Notably, at the single-patient level, if an unresponsive patient had a sniff response, this assured future regaining of consciousness. In addition, olfactory sniff responses were associated with long-term survival rates. These results highlight the importance of olfaction in human brain function, and provide an accessible tool that signals consciousness and recovery in patients with brain injuries.
Collapse
Affiliation(s)
- Anat Arzi
- Department of Psychology, University of Cambridge, Cambridge, UK. .,Azrieli Center for Human Brain Imaging and Research, Weizmann Institute of Science, Rehovot, Israel. .,Department of Neurobiology, Weizmann Institute of Science, Rehovot, Israel.
| | - Liron Rozenkrantz
- Azrieli Center for Human Brain Imaging and Research, Weizmann Institute of Science, Rehovot, Israel.,Department of Neurobiology, Weizmann Institute of Science, Rehovot, Israel
| | - Lior Gorodisky
- Azrieli Center for Human Brain Imaging and Research, Weizmann Institute of Science, Rehovot, Israel.,Department of Neurobiology, Weizmann Institute of Science, Rehovot, Israel
| | | | - Yael Holtzman
- Azrieli Center for Human Brain Imaging and Research, Weizmann Institute of Science, Rehovot, Israel.,Department of Neurobiology, Weizmann Institute of Science, Rehovot, Israel
| | - Aharon Ravia
- Azrieli Center for Human Brain Imaging and Research, Weizmann Institute of Science, Rehovot, Israel.,Department of Neurobiology, Weizmann Institute of Science, Rehovot, Israel
| | | | | | | | - Gal Cohen
- Loewenstein Hospital Rehabilitation Center, Raanana, Israel
| | - Anna Oksamitni
- Loewenstein Hospital Rehabilitation Center, Raanana, Israel
| | - Elena Aidinoff
- Loewenstein Hospital Rehabilitation Center, Raanana, Israel
| | - Yaron Sacher
- Loewenstein Hospital Rehabilitation Center, Raanana, Israel.,Sackler Medical Faculty, Tel-Aviv University, Tel Aviv, Israel
| | - Noam Sobel
- Azrieli Center for Human Brain Imaging and Research, Weizmann Institute of Science, Rehovot, Israel. .,Department of Neurobiology, Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
18
|
Evaluation of algorithms for correction of transcranial magnetic stimulation-induced artifacts in electroencephalograms. Med Biol Eng Comput 2019; 57:2599-2615. [PMID: 31656029 DOI: 10.1007/s11517-019-02053-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2019] [Accepted: 09/27/2019] [Indexed: 12/29/2022]
Abstract
Transcranial magnetic stimulation combined with electroencephalography (TMS-EEG) is widely used to study the reactivity and connectivity of brain regions for clinical or research purposes. The electromagnetic pulse of the TMS device generates at the instant of administration an artifact of large amplitude and a duration up to tens of milliseconds that overlaps with brain activity. Methods for TMS artifact correction have been developed to remove the artifact and recover the underlying, immediate response of the cerebral cortex to the magnetic stimulus. In this study, four such algorithms are evaluated. Since there is no ground truth for the masked brain activity, pilot data formed from the superposition of the isolated TMS artifact on EEG brain activity are used to evaluate the performance of the algorithms. Different scenarios of TMS-EEG experiments are considered for the evaluation: TMS at resting state, TMS inducing epileptiform discharges, and TMS administered during epileptiform discharges. We show that a proposed gap filling method is able to reproduce qualitative characteristics and, in many cases, closely resemble the hidden EEG signal. Finally, shortcomings of the TMS correction algorithms as well as the pilot data approach are discussed. Graphical abstract The transcranial magnetic stimulation (TMS) artifact on the electroencephalogram (EEG) and its correction.
Collapse
|
19
|
Saleem GT, Ewen JB, Crasta JE, Slomine BS, Cantarero GL, Suskauer SJ. Single-arm, open-label, dose escalation phase I study to evaluate the safety and feasibility of transcranial direct current stimulation with electroencephalography biomarkers in paediatric disorders of consciousness: a study protocol. BMJ Open 2019; 9:e029967. [PMID: 31401607 PMCID: PMC6701812 DOI: 10.1136/bmjopen-2019-029967] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
INTRODUCTION Children with disorders of consciousness (DOC) represent the highest end of the acquired brain injury (ABI) severity spectrum for survivors and experience a multitude of functional impairments. Current clinical management in DOC uses behavioural evaluation measures and interventions that fail to (1) describe the physiological consequences of ABI and (2) elicit functional gains. In paediatric DOC, there is a critical need to develop evidence-based interventions to promote recovery of basic responses to improve rehabilitation and aid decision-making for medical teams and caregivers. The purpose of this investigation is to examine the safety, tolerability and feasibility of transcranial direct current stimulation (tDCS) in children with DOC. METHODS AND ANALYSIS This study is an open-label dose escalation trial evaluating the safety, tolerability and feasibility of tDCS in 10 children (5-17 years) receiving inpatient rehabilitation for DOC. This study will follow a modified rule-based design, allowing for intrapatient escalation, where a cohort of patients will be assigned to an initial tDCS current of 0.5 or 1 mA based on participant's head circumference and according to the safety data available in other paediatric populations. The subsequent assignment of increased current (1 or 2 mA) according to the prespecified rules will be based on the clinical observation of adverse events in the patients. The study will include up to three, 20 min sessions of anodal tDCS (sham, 0.5 or 1 mA, 1 or 2 mA) applied over the dorsolateral prefrontal cortex. The primary outcomes are adverse events, pain associated with tDCS and intolerable disruption of inpatient care. Secondary outcomes are changes in electroencephalography (EEG) phase-locking and event-related potential components and the Coma Recovery Scale-Revised total score from prestimulation to poststimulation. ETHICS AND DISSEMINATION The Johns Hopkins IRB (#IRB00174966) approved this study. Trial results will be disseminated through journals and conferences. REGISTRATION NUMBER NCT03618849.
Collapse
Affiliation(s)
- Ghazala T Saleem
- Kennedy Krieger Institute, Baltimore, Maryland, USA
- Physical Medicine and Rehabilitation, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Joshua Benjamin Ewen
- Kennedy Krieger Institute, Baltimore, Maryland, USA
- Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Jewel E Crasta
- Kennedy Krieger Institute, Baltimore, Maryland, USA
- Physical Medicine and Rehabilitation, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | | | - Gabriela Lucila Cantarero
- Physical Medicine and Rehabilitation, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Stacy J Suskauer
- Kennedy Krieger Institute, Baltimore, Maryland, USA
- Physical Medicine and Rehabilitation, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Pediatrics, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
20
|
Lee M, Baird B, Gosseries O, Nieminen JO, Boly M, Postle BR, Tononi G, Lee SW. Connectivity differences between consciousness and unconsciousness in non-rapid eye movement sleep: a TMS-EEG study. Sci Rep 2019; 9:5175. [PMID: 30914674 PMCID: PMC6435892 DOI: 10.1038/s41598-019-41274-2] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Accepted: 03/05/2019] [Indexed: 01/27/2023] Open
Abstract
The neuronal connectivity patterns that differentiate consciousness from unconsciousness remain unclear. Previous studies have demonstrated that effective connectivity, as assessed by transcranial magnetic stimulation combined with electroencephalography (TMS-EEG), breaks down during the loss of consciousness. This study investigated changes in EEG connectivity associated with consciousness during non-rapid eye movement (NREM) sleep following parietal TMS. Compared with unconsciousness, conscious experiences during NREM sleep were associated with reduced phase-locking at low frequencies (<4 Hz). Transitivity and clustering coefficient in the delta and theta bands were also significantly lower during consciousness compared to unconsciousness, with differences in the clustering coefficient observed in scalp electrodes over parietal-occipital regions. There were no significant differences in Granger-causality patterns in frontal-to-parietal or parietal-to-frontal connectivity between reported unconsciousness and reported consciousness. Together these results suggest that alterations in spectral and spatial characteristics of network properties in posterior brain areas, in particular decreased local (segregated) connectivity at low frequencies, is a potential indicator of consciousness during sleep.
Collapse
Affiliation(s)
- Minji Lee
- Department of Brain and Cognitive Engineering, Korea University, Seoul, Korea
| | - Benjamin Baird
- Wisconsin Institute for Sleep and Consciousness, Department of Psychiatry, University of Wisconsin, Madison, USA
| | - Olivia Gosseries
- Wisconsin Institute for Sleep and Consciousness, Department of Psychiatry, University of Wisconsin, Madison, USA
- Department of Psychology, University of Wisconsin, Madison, USA
- Coma Science Group, GIGA-Consciousness & Neurology Department, University and University Hospital of Liege, Liege, Belgium
| | - Jaakko O Nieminen
- Wisconsin Institute for Sleep and Consciousness, Department of Psychiatry, University of Wisconsin, Madison, USA
- Department of Neuroscience and Biomedical Engineering, Aalto University School of Science, Espoo, Finland
| | - Melanie Boly
- Wisconsin Institute for Sleep and Consciousness, Department of Psychiatry, University of Wisconsin, Madison, USA
- Department of Neurology, University of Wisconsin, Madison, WI, USA
| | - Bradley R Postle
- Wisconsin Institute for Sleep and Consciousness, Department of Psychiatry, University of Wisconsin, Madison, USA
- Department of Psychology, University of Wisconsin, Madison, USA
| | - Giulio Tononi
- Wisconsin Institute for Sleep and Consciousness, Department of Psychiatry, University of Wisconsin, Madison, USA
| | - Seong-Whan Lee
- Department of Brain and Cognitive Engineering, Korea University, Seoul, Korea.
| |
Collapse
|
21
|
Conde V, Tomasevic L, Akopian I, Stanek K, Saturnino GB, Thielscher A, Bergmann TO, Siebner HR. The non-transcranial TMS-evoked potential is an inherent source of ambiguity in TMS-EEG studies. Neuroimage 2018; 185:300-312. [PMID: 30347282 DOI: 10.1016/j.neuroimage.2018.10.052] [Citation(s) in RCA: 209] [Impact Index Per Article: 29.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Revised: 09/16/2018] [Accepted: 10/18/2018] [Indexed: 10/28/2022] Open
Abstract
Transcranial Magnetic Stimulation (TMS) excites populations of neurons in the stimulated cortex, and the resulting activation may spread to connected brain regions. The distributed cortical response can be recorded with electroencephalography (EEG). Since TMS also stimulates peripheral sensory and motor axons and generates a loud "click" sound, the TMS-evoked EEG potentials (TEPs) reflect not only neural activity induced by transcranial neuronal excitation but also neural activity due to somatosensory and auditory processing. In 17 healthy young individuals, we systematically assessed the contribution of multisensory peripheral stimulation to TEPs using a TMS-compatible EEG system. Real TMS was delivered with a figure-of-eight coil over the left para-median posterior parietal cortex or superior frontal gyrus with the coil being oriented perpendicularly or in parallel to the target gyrus. We also recorded the EEG responses evoked by realistic sham stimulation over the posterior parietal and superior frontal cortex, mimicking the auditory and somatosensory sensations evoked by real TMS. We applied state-of-the-art procedures to attenuate somatosensory and auditory confounds during real TMS, including the placement of a foam layer underneath the coil and auditory noise masking. Despite these precautions, the temporal and spatial features of the cortical potentials evoked by real TMS at the prefrontal and parietal site closely resembled the cortical potentials evoked by realistic sham TMS, both for early and late TEP components. Our findings stress the need to include a peripheral multisensory control stimulation in the design of TMS-EEG studies to enable a dissociation between truly transcranial and non-transcranial components of TEPs.
Collapse
Affiliation(s)
- Virginia Conde
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Hvidovre, Denmark; Clinical Neuroscience Laboratory, Institute of Psychology, Norwegian University of Science and Technology, Trondheim, Norway
| | - Leo Tomasevic
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Hvidovre, Denmark
| | - Irina Akopian
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Hvidovre, Denmark
| | - Konrad Stanek
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Hvidovre, Denmark; Cognitive Systems, Department of Applied Mathematics and Computer Science, Technical University of Denmark, Denmark
| | - Guilherme B Saturnino
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Hvidovre, Denmark; Center for Magnetic Resonance, Department of Electrical Engineering, Technical University of Denmark, Kgs Lyngby, Denmark
| | - Axel Thielscher
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Hvidovre, Denmark; Center for Magnetic Resonance, Department of Electrical Engineering, Technical University of Denmark, Kgs Lyngby, Denmark
| | - Til Ole Bergmann
- Department of Neurology & Stroke, Hertie Institute for Clinical Brain Research, Eberhard Karls University of Tübingen, Hoppe-Seyler-Str. 3, 72076 Tübingen, Germany; Institute for Medical Psychology and Behavioral Neurobiology, Eberhard Karls University of Tübingen, Otfried-Müller-Straße 25, 72076 Tübingen, Germany
| | - Hartwig Roman Siebner
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Hvidovre, Denmark; Department of Neurology, Copenhagen University Hospital Bispebjerg, Bispebjerg Bakke 23, 2400 København NV, Denmark.
| |
Collapse
|
22
|
Coyle HL, Ponsford J, Hoy KE. Understanding individual variability in symptoms and recovery following mTBI: A role for TMS-EEG? Neurosci Biobehav Rev 2018; 92:140-149. [PMID: 29885426 DOI: 10.1016/j.neubiorev.2018.05.027] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Revised: 05/15/2018] [Accepted: 05/25/2018] [Indexed: 10/14/2022]
Abstract
The pathophysiology associated with mild traumatic brain injury (mTBI) includes neurometabolic and cytoskeletal changes that have been shown to impair structural and functional connectivity. Evidence that persistent neuropsychological impairments post injury are linked to structural and functional connectivity changes is increasing. However, to date the relationship between connectivity changes, heterogeneity of persistent symptoms and recovery post mTBI has been poorly characterised. Recent innovations in neuroimaging provide new ways of exploring connectivity changes post mTBI. Namely, combined transcranial magnetic stimulation and electroencephalography (TMS-EEG) offers several advantages over traditional approaches for studying connectivity changes post TBI. Its ability to perturb neural function in a controlled manner allows for measurement of causal interactions or effective connectivity between brain regions. We review the current literature assessing structural and functional connectivity following mTBI and outline the rationale for the use of TMS-EEG as an ideal tool for investigating the neural substrates of connectivity dysfunction and reorganisation post mTBI. The diagnostic, prognostic and potential therapeutic implications will also be explored.
Collapse
Affiliation(s)
- Hannah L Coyle
- Monash Alfred Psychiatry Research Centre, The Alfred and Monash University, Central Clinical School, Melbourne, Australia.
| | - Jennie Ponsford
- School of Psychological Sciences, Monash University, Clayton, Australia
| | - Kate E Hoy
- Monash Alfred Psychiatry Research Centre, The Alfred and Monash University, Central Clinical School, Melbourne, Australia
| |
Collapse
|
23
|
Naro A, Leo A, Bruno R, Cannavò A, Buda A, Manuli A, Bramanti A, Bramanti P, Calabrò RS. Reducing the rate of misdiagnosis in patients with chronic disorders of consciousness: Is there a place for audiovisual stimulation? Restor Neurol Neurosci 2018; 35:511-526. [PMID: 28800340 DOI: 10.3233/rnn-170741] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
BACKGROUND The patients with chronic Disorders of Consciousness (DoC) mostly present with extremely challenging differential diagnosis. The advanced analysis of electroencephalographic (EEG) signals induced by brain stimulation paradigms may provide an appropriate approach to differentiate patients with DoC, besides the clinical assessment. OBJECTIVE This study was performed with an objective of identifying residual brain network perturbations following an innovative, non-invasive audiovisual stimulation protocol, which could be related to behavioral responsiveness in patients with DoC. METHODS The study comprised of ten healthy controls (HC), seven patients with Minimally Conscious State (MCS), and nine patients with Unresponsive Wakefulness Syndrome (UWS). Both synchronous as well as asynchronous transorbital and transauricolar alternating current were employed as stimuli and their effects were measured in terms of functional and effective connectivity. RESULTS A more noticeable deterioration of long range connectivity patterns were found in patients with UWS than in those with MCS, with an exception of two patients with UWS, who showed connectivity values similar to those of MCS patients. CONCLUSION The audiovisual stimulation paradigm used in the present study may be employed as a supportive bedside tool for improving the differential diagnosis in patients with DoC.
Collapse
Affiliation(s)
- Antonino Naro
- IRCCS Centro Neurolesi "Bonino-Pulejo", c.da Casazza, Messina, Italy
| | - Antonino Leo
- IRCCS Centro Neurolesi "Bonino-Pulejo", c.da Casazza, Messina, Italy
| | - Rocco Bruno
- Otorhinolaryngoiatry Unit, University of Messina, Messina, Italy
| | - Antonino Cannavò
- IRCCS Centro Neurolesi "Bonino-Pulejo", c.da Casazza, Messina, Italy
| | - Antonio Buda
- IRCCS Centro Neurolesi "Bonino-Pulejo", c.da Casazza, Messina, Italy
| | - Alfredo Manuli
- IRCCS Centro Neurolesi "Bonino-Pulejo", c.da Casazza, Messina, Italy
| | - Alessia Bramanti
- IRCCS Centro Neurolesi "Bonino-Pulejo", c.da Casazza, Messina, Italy
| | - Placido Bramanti
- IRCCS Centro Neurolesi "Bonino-Pulejo", c.da Casazza, Messina, Italy
| | | |
Collapse
|
24
|
Global structural integrity and effective connectivity in patients with disorders of consciousness. Brain Stimul 2017; 11:358-365. [PMID: 29162503 DOI: 10.1016/j.brs.2017.11.006] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Revised: 10/07/2017] [Accepted: 11/08/2017] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Previous studies have separately reported impaired functional, structural, and effective connectivity in patients with disorders of consciousness (DOC). The perturbational complexity index (PCI) is a transcranial magnetic stimulation (TMS) derived marker of effective connectivity. The global fractional anisotropy (FA) is a marker of structural integrity. Little is known about how these parameters are related to each other. OBJECTIVE We aimed at testing the relationship between structural integrity and effective connectivity. METHODS We assessed 23 patients with severe brain injury more than 4 weeks post-onset, leading to DOC or locked-in syndrome, and 14 healthy subjects. We calculated PCI using repeated single pulse TMS coupled with high-density electroencephalography, and used it as a surrogate of effective connectivity. Structural integrity was measured using the global FA, derived from diffusion weighted imaging. We used linear regression modelling to test our hypothesis, and computed the correlation between PCI and FA in different groups. RESULTS Global FA could predict 74% of PCI variance in the whole sample and 56% in the patients' group. No other predictors (age, gender, time since onset, behavioural score) improved the models. FA and PCI were correlated in the whole population (r = 0.86, p < 0.0001), the patients, and the healthy subjects subgroups. CONCLUSION We here demonstrated that effective connectivity correlates with structural integrity in brain-injured patients. Increased structural damage level decreases effective connectivity, which could prevent the emergence of consciousness.
Collapse
|
25
|
Hallett M, Di Iorio R, Rossini PM, Park JE, Chen R, Celnik P, Strafella AP, Matsumoto H, Ugawa Y. Contribution of transcranial magnetic stimulation to assessment of brain connectivity and networks. Clin Neurophysiol 2017; 128:2125-2139. [PMID: 28938143 DOI: 10.1016/j.clinph.2017.08.007] [Citation(s) in RCA: 96] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Revised: 07/31/2017] [Accepted: 08/12/2017] [Indexed: 01/01/2023]
Abstract
The goal of this review is to show how transcranial magnetic stimulation (TMS) techniques can make a contribution to the study of brain networks. Brain networks are fundamental in understanding how the brain operates. Effects on remote areas can be directly observed or identified after a period of stimulation, and each section of this review will discuss one method. EEG analyzed following TMS is called TMS-evoked potentials (TEPs). A conditioning TMS can influence the effect of a test TMS given over the motor cortex. A disynaptic connection can be tested also by assessing the effect of a pre-conditioning stimulus on the conditioning-test pair. Basal ganglia-cortical relationships can be assessed using electrodes placed in the process of deep brain stimulation therapy. Cerebellar-cortical relationships can be determined using TMS over the cerebellum. Remote effects of TMS on the brain can be found as well using neuroimaging, including both positron emission tomography (PET) and functional magnetic resonance imaging (fMRI). The methods complement each other since they give different views of brain networks, and it is often valuable to use more than one technique to achieve converging evidence. The final product of this type of work is to show how information is processed and transmitted in the brain.
Collapse
Affiliation(s)
- Mark Hallett
- National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD, USA.
| | - Riccardo Di Iorio
- Department of Geriatrics, Institute of Neurology, Neuroscience and Orthopedics, Catholic University, Policlinic A. Gemelli Foundation, Rome, Italy
| | - Paolo Maria Rossini
- Department of Geriatrics, Institute of Neurology, Neuroscience and Orthopedics, Catholic University, Policlinic A. Gemelli Foundation, Rome, Italy; Brain Connectivity Laboratory, IRCCS San Raffaele Pisana, Rome, Italy
| | - Jung E Park
- National Institute of Neurological Disorders and Stroke, NIH, Bethesda, MD, USA; Department of Neurology, Dongguk University Ilsan Hospital, Goyang, Republic of Korea
| | - Robert Chen
- Krembil Research Institute, University of Toronto, Toronto, Canada; Department of Medicine (Neurology), University of Toronto, Toronto, Canada
| | - Pablo Celnik
- Department of Physical Medicine and Rehabilitation, Johns Hopkins School of Medicine, USA
| | - Antonio P Strafella
- Krembil Research Institute, University of Toronto, Toronto, Canada; Morton and Gloria Shulman Movement Disorder Unit & E.J. Safra Parkinson Disease Program, Toronto Western Hospital, UHN, Canada; Research Imaging Centre, Campbell Family Mental Health Research Institute, CAMH, University of Toronto, Ontario, Canada
| | | | - Yoshikazu Ugawa
- Department of Neurology, School of Medicine, Fukushima Medical University, Japan; Fukushima Global Medical Science Center, Advanced Clinical Research Center, Fukushima Medical University, Japan
| |
Collapse
|
26
|
Lechinger J, Wielek T, Blume C, Pichler G, Michitsch G, Donis J, Gruber W, Schabus M. Event-related EEG power modulations and phase connectivity indicate the focus of attention in an auditory own name paradigm. J Neurol 2016; 263:1530-43. [PMID: 27216625 PMCID: PMC4971049 DOI: 10.1007/s00415-016-8150-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2015] [Revised: 04/26/2016] [Accepted: 04/27/2016] [Indexed: 11/28/2022]
Abstract
Estimating cognitive abilities in patients suffering from Disorders of Consciousness remains challenging. One cognitive task to address this issue is the so-called own name paradigm, in which subjects are presented with first names including the own name. In the active condition, a specific target name has to be silently counted. We recorded EEG during this task in 24 healthy controls, 8 patients suffering from Unresponsive Wakefulness Syndrome (UWS) and 7 minimally conscious (MCS) patients. EEG was analysed with respect to amplitude as well as phase modulations and connectivity. Results showed that general reactivity in the delta, theta and alpha frequency (event-related de-synchronisation, ERS/ERD, and phase locking between trials and electrodes) toward auditory stimulation was higher in controls than in patients. In controls, delta ERS and lower alpha ERD indexed the focus of attention in both conditions, late theta ERS only in the active condition. Additionally, phase locking between trials and delta phase connectivity was highest for own names in the passive and targets in the active condition. In patients, clear stimulus-specific differences could not be detected. However, MCS patients could reliably be differentiated from UWS patients based on their general event-related delta and theta increase independent of the type of stimulus. In conclusion, the EEG signature of the active own name paradigm revealed instruction-following in healthy participants. On the other hand, DOC patients did not show clear stimulus-specific processing. General reactivity toward any auditory input, however, allowed for a reliable differentiation between MCS and UWS patients.
Collapse
Affiliation(s)
- Julia Lechinger
- Laboratory for Sleep and Consciousness Research, Department of Psychology, University of Salzburg, Hellbrunnerstraße 34, 5020, Salzburg, Austria.
- Centre for Cognitive Neuroscience (CCNS), University of Salzburg, Salzburg, Austria.
| | - Tomasz Wielek
- Laboratory for Sleep and Consciousness Research, Department of Psychology, University of Salzburg, Hellbrunnerstraße 34, 5020, Salzburg, Austria
| | - Christine Blume
- Laboratory for Sleep and Consciousness Research, Department of Psychology, University of Salzburg, Hellbrunnerstraße 34, 5020, Salzburg, Austria
- Centre for Cognitive Neuroscience (CCNS), University of Salzburg, Salzburg, Austria
| | - Gerald Pichler
- Apallic Care Unit, Neurological Division, Albert-Schweitzer-Klinik, Graz, Austria
| | - Gabriele Michitsch
- Apallic Care Unit, Neurological Division, Sozialmedizinisches Zentrum Ost-Donauspital, Vienna, Austria
| | - Johann Donis
- Apallic Care Unit, Neurological Division, Sozialmedizinisches Zentrum Ost-Donauspital, Vienna, Austria
| | - Walter Gruber
- Centre for Cognitive Neuroscience (CCNS), University of Salzburg, Salzburg, Austria
| | - Manuel Schabus
- Laboratory for Sleep and Consciousness Research, Department of Psychology, University of Salzburg, Hellbrunnerstraße 34, 5020, Salzburg, Austria
- Centre for Cognitive Neuroscience (CCNS), University of Salzburg, Salzburg, Austria
| |
Collapse
|
27
|
Gosseries O, Laureys S. Current knowledge on severe acquired brain injury with disorders of consciousness. Brain Inj 2016; 28:1139-40. [PMID: 25099017 DOI: 10.3109/02699052.2014.932554] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- Olivia Gosseries
- Coma Science Group, Cyclotron Research Centre and Neurology Department, University and University Hospital of Liege , Liege , Belgium
| | | |
Collapse
|
28
|
Assessment of Event-Related EEG Power After Single-Pulse TMS in Unresponsive Wakefulness Syndrome and Minimally Conscious State Patients. Brain Topogr 2015; 29:322-33. [DOI: 10.1007/s10548-015-0461-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Accepted: 11/07/2015] [Indexed: 11/26/2022]
|
29
|
Rossini PM, Burke D, Chen R, Cohen LG, Daskalakis Z, Di Iorio R, Di Lazzaro V, Ferreri F, Fitzgerald PB, George MS, Hallett M, Lefaucheur JP, Langguth B, Matsumoto H, Miniussi C, Nitsche MA, Pascual-Leone A, Paulus W, Rossi S, Rothwell JC, Siebner HR, Ugawa Y, Walsh V, Ziemann U. Non-invasive electrical and magnetic stimulation of the brain, spinal cord, roots and peripheral nerves: Basic principles and procedures for routine clinical and research application. An updated report from an I.F.C.N. Committee. Clin Neurophysiol 2015; 126:1071-1107. [PMID: 25797650 PMCID: PMC6350257 DOI: 10.1016/j.clinph.2015.02.001] [Citation(s) in RCA: 1873] [Impact Index Per Article: 187.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2014] [Revised: 01/22/2015] [Accepted: 02/01/2015] [Indexed: 12/14/2022]
Abstract
These guidelines provide an up-date of previous IFCN report on “Non-invasive electrical and magnetic stimulation of the brain, spinal cord and roots: basic principles and procedures for routine clinical application” (Rossini et al., 1994). A new Committee, composed of international experts, some of whom were in the panel of the 1994 “Report”, was selected to produce a current state-of-the-art review of non-invasive stimulation both for clinical application and research in neuroscience. Since 1994, the international scientific community has seen a rapid increase in non-invasive brain stimulation in studying cognition, brain–behavior relationship and pathophysiology of various neurologic and psychiatric disorders. New paradigms of stimulation and new techniques have been developed. Furthermore, a large number of studies and clinical trials have demonstrated potential therapeutic applications of non-invasive brain stimulation, especially for TMS. Recent guidelines can be found in the literature covering specific aspects of non-invasive brain stimulation, such as safety (Rossi et al., 2009), methodology (Groppa et al., 2012) and therapeutic applications (Lefaucheur et al., 2014). This up-dated review covers theoretical, physiological and practical aspects of non-invasive stimulation of brain, spinal cord, nerve roots and peripheral nerves in the light of more updated knowledge, and include some recent extensions and developments.
Collapse
Affiliation(s)
- P M Rossini
- Institute of Neurology, Department of Geriatrics, Neuroscience and Orthopedics, Catholic University, Policlinic A. Gemelli, Rome, Italy
| | - D Burke
- Department of Neurology, Royal Prince Alfred Hospital, University of Sydney, Sydney, Australia
| | - R Chen
- Division of Neurology, Toronto Western Research Institute, University of Toronto, Toronto, Ontario, Canada
| | - L G Cohen
- Human Cortical Physiology and Neurorehabilitation Section, NINDS, NIH, Bethesda, MD, USA
| | - Z Daskalakis
- Temerty Centre for Therapeutic Brain Intervention, Centre for Addiction and Mental Health, University of Toronto, Toronto, Ontario, Canada
| | - R Di Iorio
- Institute of Neurology, Department of Geriatrics, Neuroscience and Orthopedics, Catholic University, Policlinic A. Gemelli, Rome, Italy.
| | - V Di Lazzaro
- Department of Neurology, University Campus Bio-medico, Rome, Italy
| | - F Ferreri
- Department of Neurology, University Campus Bio-medico, Rome, Italy; Department of Clinical Neurophysiology, University of Eastern Finland, Kuopio, Finland
| | - P B Fitzgerald
- Monash Alfred Psychiatry Research Centre, Monash University Central Clinical School and The Alfred, Melbourne, Australia
| | - M S George
- Medical University of South Carolina, Ralph H. Johnson VA Medical Center, Charleston, SC, USA
| | - M Hallett
- Human Motor Control Section, Medical Neurology Branch, NINDS, NIH, Bethesda, MD, USA
| | - J P Lefaucheur
- Department of Physiology, Henri Mondor Hospital, Assistance Publique - Hôpitaux de Paris, Créteil, France; EA 4391, Nerve Excitability and Therapeutic Team, Faculty of Medicine, Paris Est Créteil University, Créteil, France
| | - B Langguth
- Department of Psychiatry and Psychotherapy, University of Regensburg, Regensburg, Germany
| | - H Matsumoto
- Department of Neurology, Japanese Red Cross Medical Center, Tokyo, Japan
| | - C Miniussi
- Department of Clinical and Experimental Sciences University of Brescia, Brescia, Italy; IRCCS Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - M A Nitsche
- Department of Clinical Neurophysiology, University Medical Center Göttingen, Georg-August-University, Göttingen, Germany
| | - A Pascual-Leone
- Berenson-Allen Center for Non-invasive Brain Stimulation, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - W Paulus
- Department of Clinical Neurophysiology, Georg-August University, Göttingen, Germany
| | - S Rossi
- Brain Investigation & Neuromodulation Lab, Unit of Neurology and Clinical Neurophysiology, Department of Neuroscience, University of Siena, Siena, Italy
| | - J C Rothwell
- Institute of Neurology, University College London, London, United Kingdom
| | - H R Siebner
- Department of Neurology, Copenhagen University Hospital Bispebjerg, Copenhagen, Denmark; Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Copenhagen University Hospital Hvidovre, Hvidovre, Denmark
| | - Y Ugawa
- Department of Neurology, School of Medicine, Fukushima Medical University, Fukushima, Japan
| | - V Walsh
- Institute of Cognitive Neuroscience, University College London, London, United Kingdom
| | - U Ziemann
- Department of Neurology & Stroke, and Hertie Institute for Clinical Brain Research, Eberhard Karls University, Tübingen, Germany
| |
Collapse
|