1
|
Saucedo Rizo JS, Hernandez Rodriguez OA. Sutural Cataract Associated With Pupillary Membrane: A Case Report of an Unusual Relation. Cureus 2024; 16:e69027. [PMID: 39385854 PMCID: PMC11464097 DOI: 10.7759/cureus.69027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/09/2024] [Indexed: 10/12/2024] Open
Abstract
Sutural cataracts and pupillary membranes are congenital abnormalities, the former being an atypical type of congenital cataract resulting from the opacification of the lens sutures, and the latter developing from the remnants of the tunica vasculosa lentis. While genetic mutations related to sutural cataracts are becoming increasingly known and pupillary membranes are sometimes related to polar cataracts, no genetic studies have been conducted to link these two alterations. We present an unusual case of a woman with an unnoticed congenital sutural cataract and a pupillary membrane in opposite eyes.
Collapse
Affiliation(s)
- Jorge S Saucedo Rizo
- Department of Ophthalmology, Hospital Central Sur de Alta Especialidad, Ciudad de México, MEX
| | | |
Collapse
|
2
|
Zhao Z, Chen J, Jiang Y, Lu Y. The E156K mutation in the CRYAA gene affects the epithelial-mesenchymal transition and migration of human lens epithelial cells. Heliyon 2024; 10:e23690. [PMID: 38187316 PMCID: PMC10770500 DOI: 10.1016/j.heliyon.2023.e23690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 11/30/2023] [Accepted: 12/09/2023] [Indexed: 01/09/2024] Open
Abstract
Purpose To investigated the biological effects of E156K-mutated αA-crystallin (CRYAA) in human lens epithelial cells (HLECs). Methods FLAG-tagged, human, full-length, wild-type (WT), or E156K-mutated CRYAA was expressed in HLECs under CRYAA knockdown. CRYAA expression was determined by quantitative reverse transcription polymerase chain reaction and western blotting (WB). Rhodamine cytoskeleton staining was used to observe the changes in cell morphology following transfection with WT or E156K-mutated CRYAA plasmids. WB was performed to assess the expression of markers related to epithelial-mesenchymal transition (EMT) and migration. Results Rhodamine cytoskeleton staining revealed changes in the morphology of cells transfected with E156K-mutated CRYAA and opposite responses occurred after treatment with a β-catenin inhibitor. Cells transfected with E156K-mutated CRYAA expressed remarkably higher levels of the mesenchymal biomarkers N-cadherin and vimentin but decreased levels of the epithelial biomarker E-cadherin, whereas opposite trends were observed in cells treated with the β-catenin inhibitor, ICG001. The migratory capability of E156K-mutated CRYAA cells was significantly greater than that of WT cells (P < 0.001). This effect was accompanied by significantly increased expression levels of phosphorylated (p)-focal adhesion kinase (FAK) and p-Src. These changes were decreased significantly by treatment with FAK and Src inhibitors. Conclusion E156K-mutated CRYAA induced EMT, in which the HLECs lost cell polarity, and acquired a mesenchymal phenotype with greater migratory capability. These biological effects may be associated with activation of the Wnt/β-Catenin and FAK/Src signaling pathways.
Collapse
Affiliation(s)
- Zhennan Zhao
- Department of Ophthalmology and Vision Science, Eye Ear Nose and Throat Hospital of Fudan University, Shanghai, China
- National Health Commission Key Laboratory of Myopia (Fudan University), Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai, China
- Key Laboratory of Visual Impairment and Restoration of Shanghai, Shanghai, China
| | - Jiahui Chen
- Department of Ophthalmology and Vision Science, Eye Ear Nose and Throat Hospital of Fudan University, Shanghai, China
- National Health Commission Key Laboratory of Myopia (Fudan University), Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai, China
- Key Laboratory of Visual Impairment and Restoration of Shanghai, Shanghai, China
| | - Yongxiang Jiang
- Department of Ophthalmology and Vision Science, Eye Ear Nose and Throat Hospital of Fudan University, Shanghai, China
- National Health Commission Key Laboratory of Myopia (Fudan University), Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai, China
- Key Laboratory of Visual Impairment and Restoration of Shanghai, Shanghai, China
| | - Yi Lu
- Department of Ophthalmology and Vision Science, Eye Ear Nose and Throat Hospital of Fudan University, Shanghai, China
- National Health Commission Key Laboratory of Myopia (Fudan University), Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai, China
- Key Laboratory of Visual Impairment and Restoration of Shanghai, Shanghai, China
| |
Collapse
|
3
|
Zhao Z, Chen J, Yuan W, Jiang Y, Lu Y. Association between single nucleotide polymorphisms in exon 3 of the alpha-A-crystallin gene and susceptibility to age-related cataract. Ophthalmic Genet 2023; 44:127-132. [PMID: 36380611 DOI: 10.1080/13816810.2022.2092757] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
BACKGROUND The mutations in the αA-crystallin (CRYAA) gene may contribute to the development of age-related cataract (ARC). In this study, we searched for single nucleotide polymorphisms (SNP) in exons of CRYAA and investigated the associations between the identified SNPs and the subtypes of ARC. MATERIALS AND METHODS Peripheral venous blood was collected for the extraction of genomic DNA. Three exons of CRYAA were sequenced to detect SNPs. The frequency distributions of alleles and genotypes were compared between the ARC and control groups. RESULTS There were 618 patients with various subtypes of ARC (nuclear cataract [NC], cortical cataract [CC], posterior subcapsular cataract [PSC]). The control group comprised 236 patients. The incidence of early-onset cataract was significantly greater in PSC patients (P = .002 for NC; P = .036 for CC). One SNP was detected in exon 3 of CRYAA (rs76740365 G>A). When the distribution of rs76740365 was compared among the ARC subtypes, only the difference between the PSC group and the control group was statistically significant (allele frequency: P = .000057, OR 2.945; genotype distribution frequency: P = .000458). The heterozygote genotype (GA) carried a significantly greater risk than the homozygous wild-type genotype (GG) by 1.742 times for all types of cataracts and 2.369 times for the PSC subtype. CONCLUSIONS The SNP rs76740365 G>A in exon 3 of the CRYAA gene is associated with greater susceptibility of ARC, particularly the PSC subtype. Individuals carrying the SNP rs76740365 G>A may be more likely to develop PSC at a younger age than other subtypes.
Collapse
Affiliation(s)
- Zhennan Zhao
- Department of Ophthalmology and Vision Science, Eye Ear Nose and Throat Hospital of Fudan University, Shanghai, China
- National Health Commission Key Laboratory of Myopia (Fudan University), Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai, China
- Key Laboratory of Visual Impairment and Restoration of Shanghai, Shanghai, China
| | - Jiahui Chen
- Department of Ophthalmology and Vision Science, Eye Ear Nose and Throat Hospital of Fudan University, Shanghai, China
- National Health Commission Key Laboratory of Myopia (Fudan University), Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai, China
- Key Laboratory of Visual Impairment and Restoration of Shanghai, Shanghai, China
| | - Wenyi Yuan
- Department of Ophthalmology and Vision Science, Eye Ear Nose and Throat Hospital of Fudan University, Shanghai, China
- National Health Commission Key Laboratory of Myopia (Fudan University), Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai, China
- Key Laboratory of Visual Impairment and Restoration of Shanghai, Shanghai, China
| | - Yongxiang Jiang
- Department of Ophthalmology and Vision Science, Eye Ear Nose and Throat Hospital of Fudan University, Shanghai, China
- National Health Commission Key Laboratory of Myopia (Fudan University), Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai, China
- Key Laboratory of Visual Impairment and Restoration of Shanghai, Shanghai, China
| | - Yi Lu
- Department of Ophthalmology and Vision Science, Eye Ear Nose and Throat Hospital of Fudan University, Shanghai, China
- National Health Commission Key Laboratory of Myopia (Fudan University), Laboratory of Myopia, Chinese Academy of Medical Sciences, Shanghai, China
- Key Laboratory of Visual Impairment and Restoration of Shanghai, Shanghai, China
| |
Collapse
|
4
|
Computational study of peptide interaction with mutant γ-crystallin with the aim of preventing dimerization. Struct Chem 2022. [DOI: 10.1007/s11224-022-02015-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
5
|
Saleem RS, Siddiqui SN, Irshad S, Ashraf NM, Hamid A, Khan MAU, Khan MI, Micheal S. Targeted gene sequencing of FYCO1 identified a novel mutation in a Pakistani family for autosomal recessive congenital cataract. Mol Genet Genomic Med 2022; 10:e1985. [PMID: 35638468 PMCID: PMC9356559 DOI: 10.1002/mgg3.1985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 04/10/2022] [Accepted: 05/03/2022] [Indexed: 11/16/2022] Open
Abstract
Background Congenital cataract is causing one‐third of blindness worldwide. Congenital cataract is heterogeneous in its inheritance patterns. The current study is aimed to explore the unknown genetic causes underlying congenital cataracts. Methods Blood samples from affected and normal individuals of n = 25 Pakistani families identified with congenital cataracts were collected. Genomic DNA was extracted and Sanger sequencing was performed to identify novel pathogenic variants in the FYCO1 (MIM#607182) gene. Later structural bioinformatics tools and molecular dynamics simulations were performed to analyze the impact of these variants on protein structure and function. Results Sanger sequencing resulted in the identification of a novel splice site mutation (NM_024513.3: c.3151‐29_3151‐7del) segregating in an autosomal recessive manner. This novel variant was confirmed to be absent in the n = 300 population controls. Further, bioinformatics tools revealed the formation of a mutant protein with a loss of the Znf domain. In addition, we also found a previously known (c.4127 T > C; p.Leu1376Pro) mutation in four families. We also report a novel heterozygous variant (c.3419G > A; p.Arg1140Gln) in another family. Conclusions In conclusion, we report a novel deletion (NM_024513.3: c.3151‐29_3151‐7del) in one family and a frequent homozygous missense mutation (c.4127 T > C; p.Leu1376Pro) in four Pakistani families. The current research highlights the importance of autophagy in lens development and maintaining its transparency.
Collapse
Affiliation(s)
- Rani Saira Saleem
- School of Biochemistry and Biotechnology, University of Punjab, Lahore, Pakistan
| | - Sorath Noorani Siddiqui
- Department of Pediatric Ophthalmology and Strabismus, Al-Shifa Eye Trust Hospital, Rawalpindi, Pakistan
| | - Saba Irshad
- School of Biochemistry and Biotechnology, University of Punjab, Lahore, Pakistan
| | - Naeem Mahmood Ashraf
- Department of Biochemistry and Biotechnology, University of Gujrat, Punjab, Pakistan
| | - Arslan Hamid
- LIMES Institute, University of Bonn, Bonn, Germany
| | | | - Muhammad Imran Khan
- Department of Human Genetics, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Shazia Micheal
- Department of Clinical Genetics, AcademicMedical Centre, Amsterdam, The Netherlands
| |
Collapse
|
6
|
Budnar P, Tangirala R, Bakthisaran R, Rao CM. Protein Aggregation and Cataract: Role of Age-Related Modifications and Mutations in α-Crystallins. BIOCHEMISTRY. BIOKHIMIIA 2022; 87:225-241. [PMID: 35526854 DOI: 10.1134/s000629792203004x] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
* The article is published as a part of the Special Issue "Protein Misfolding and Aggregation in Cataract Disorders" (Vol. 87, No. 2). ** To whom correspondence should be addressed. Cataract is a major cause of blindness. Due to the lack of protein turnover, lens proteins accumulate age-related and environmental modifications that alter their native conformation, leading to the formation of aggregation-prone intermediates, as well as insoluble and light-scattering aggregates, thus compromising lens transparency. The lens protein, α-crystallin, is a molecular chaperone that prevents protein aggregation, thereby maintaining lens transparency. However, mutations or post-translational modifications, such as oxidation, deamidation, truncation and crosslinking, can render α-crystallins ineffective and lead to the disease exacerbation. Here, we describe such mutations and alterations, as well as their consequences. Age-related modifications in α-crystallins affect their structure, oligomerization, and chaperone function. Mutations in α-crystallins can lead to the aggregation/intracellular inclusions attributable to the perturbation of structure and oligomeric assembly and resulting in the rearrangement of aggregation-prone regions. Such rearrangements can lead to the exposure of hitherto buried aggregation-prone regions, thereby populating aggregation-prone state(s) and facilitating amorphous/amyloid aggregation and/or inappropriate interactions with cellular components. Investigations of the mutation-induced changes in the structure, oligomer assembly, aggregation mechanisms, and interactomes of α-crystallins will be useful in fighting protein aggregation-related diseases.
Collapse
Affiliation(s)
- Prashanth Budnar
- Centre for Cellular and Molecular Biology (CCMB), Council of Scientific and Industrial Research (CSIR), Uppal Road, Hyderabad, 500007, India
| | - Ramakrishna Tangirala
- Centre for Cellular and Molecular Biology (CCMB), Council of Scientific and Industrial Research (CSIR), Uppal Road, Hyderabad, 500007, India
| | - Raman Bakthisaran
- Centre for Cellular and Molecular Biology (CCMB), Council of Scientific and Industrial Research (CSIR), Uppal Road, Hyderabad, 500007, India
| | - Ch Mohan Rao
- Centre for Cellular and Molecular Biology (CCMB), Council of Scientific and Industrial Research (CSIR), Uppal Road, Hyderabad, 500007, India.
| |
Collapse
|
7
|
Tedesco B, Cristofani R, Ferrari V, Cozzi M, Rusmini P, Casarotto E, Chierichetti M, Mina F, Galbiati M, Piccolella M, Crippa V, Poletti A. Insights on Human Small Heat Shock Proteins and Their Alterations in Diseases. Front Mol Biosci 2022; 9:842149. [PMID: 35281256 PMCID: PMC8913478 DOI: 10.3389/fmolb.2022.842149] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 01/19/2022] [Indexed: 11/13/2022] Open
Abstract
The family of the human small Heat Shock Proteins (HSPBs) consists of ten members of chaperones (HSPB1-HSPB10), characterized by a low molecular weight and capable of dimerization and oligomerization forming large homo- or hetero-complexes. All HSPBs possess a highly conserved centrally located α-crystallin domain and poorly conserved N- and C-terminal domains. The main feature of HSPBs is to exert cytoprotective functions by preserving proteostasis, assuring the structural maintenance of the cytoskeleton and acting in response to cellular stresses and apoptosis. HSPBs take part in cell homeostasis by acting as holdases, which is the ability to interact with a substrate preventing its aggregation. In addition, HSPBs cooperate in substrates refolding driven by other chaperones or, alternatively, promote substrate routing to degradation. Notably, while some HSPBs are ubiquitously expressed, others show peculiar tissue-specific expression. Cardiac muscle, skeletal muscle and neurons show high expression levels for a wide variety of HSPBs. Indeed, most of the mutations identified in HSPBs are associated to cardiomyopathies, myopathies, and motor neuropathies. Instead, mutations in HSPB4 and HSPB5, which are also expressed in lens, have been associated with cataract. Mutations of HSPBs family members encompass base substitutions, insertions, and deletions, resulting in single amino acid substitutions or in the generation of truncated or elongated proteins. This review will provide an updated overview of disease-related mutations in HSPBs focusing on the structural and biochemical effects of mutations and their functional consequences.
Collapse
Affiliation(s)
- B. Tedesco
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy
- Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - R. Cristofani
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy
| | - V. Ferrari
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy
| | - M. Cozzi
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy
| | - P. Rusmini
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy
| | - E. Casarotto
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy
| | - M. Chierichetti
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy
| | - F. Mina
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy
| | - M. Galbiati
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy
| | - M. Piccolella
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy
| | - V. Crippa
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy
| | - A. Poletti
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Milan, Italy
- *Correspondence: A. Poletti,
| |
Collapse
|
8
|
Anasagasti A, Ezquerra-Inchausti M, Barandika O, Muñoz-Culla M, Caffarel MM, Otaegui D, López de Munain A, Ruiz-Ederra J. Expression Profiling Analysis Reveals Key MicroRNA-mRNA Interactions in Early Retinal Degeneration in Retinitis Pigmentosa. Invest Ophthalmol Vis Sci 2019; 59:2381-2392. [PMID: 29847644 PMCID: PMC5939684 DOI: 10.1167/iovs.18-24091] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Purpose The aim of this study was to identify differentially expressed microRNAs (miRNAs) that might play an important role in the etiology of retinal degeneration in a genetic mouse model of retinitis pigmentosa (rd10 mice) at initial stages of the disease. Methods miRNAs–mRNA interaction networks were generated for analysis of biological pathways involved in retinal degeneration. Results Of more than 1900 miRNAs analyzed, we selected 19 miRNAs on the basis of (1) a significant differential expression in rd10 retinas compared with control samples and (2) an inverse expression relationship with predicted mRNA targets involved in biological pathways relevant to retinal biology and/or degeneration. Seven of the selected miRNAs have been associated with retinal dystrophies, whereas, to our knowledge, nine have not been previously linked to any disease. Conclusions This study contributes to our understanding of the etiology and progression of retinal degeneration.
Collapse
Affiliation(s)
- Ander Anasagasti
- Neuroscience Area, Sensorial Neurodegeneration Group, Biodonostia Health Research Institute, San Sebastian, Spain
| | - Maitane Ezquerra-Inchausti
- Neuroscience Area, Sensorial Neurodegeneration Group, Biodonostia Health Research Institute, San Sebastian, Spain.,RETICS OFTARED, National Institute of Health Carlos III, Ministry of Economy and Competitiveness, Spain
| | - Olatz Barandika
- Neuroscience Area, Sensorial Neurodegeneration Group, Biodonostia Health Research Institute, San Sebastian, Spain
| | - Maider Muñoz-Culla
- Neuroscience Area, Multiple Sclerosis Group, Biodonostia Health Research Institute, San Sebastian, Spain.,Spanish Network on Multiple Sclerosis (Red Española de Esclerosis Múltiple)
| | - María M Caffarel
- Oncology Area, Biodonostia Health Research Institute, San Sebastian, Spain.,Ikerbasque, Basque Foundation for Science, Bilbao, Spain
| | - David Otaegui
- Neuroscience Area, Multiple Sclerosis Group, Biodonostia Health Research Institute, San Sebastian, Spain.,Spanish Network on Multiple Sclerosis (Red Española de Esclerosis Múltiple)
| | - Adolfo López de Munain
- Neuroscience Area, Sensorial Neurodegeneration Group, Biodonostia Health Research Institute, San Sebastian, Spain.,Department of Neurology, Donostia University Hospital, San Sebastian, Spain.,Centro de Investigaciones Biomédicas en Red Sobre Enfermedades Neurodegenerativas, Instituto Carlos III, Ministerio de Economía y Competitividad, Spain.,Department of Neuroscience, University of the Basque Country, San Sebastian, Spain
| | - Javier Ruiz-Ederra
- Neuroscience Area, Sensorial Neurodegeneration Group, Biodonostia Health Research Institute, San Sebastian, Spain.,RETICS OFTARED, National Institute of Health Carlos III, Ministry of Economy and Competitiveness, Spain
| |
Collapse
|
9
|
Two novel mutations identified in ADCC families impair crystallin protein distribution and induce apoptosis in human lens epithelial cells. Sci Rep 2017; 7:17848. [PMID: 29259299 PMCID: PMC5736644 DOI: 10.1038/s41598-017-18222-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Accepted: 12/07/2017] [Indexed: 01/20/2023] Open
Abstract
Congenital cataract (CC) is a clinical and genetically heterogeneous eye disease that primarily causes lens disorder and even amblyopic blindness in children. As the mechanism underlying CC is genetically inherited, identification of CC-associated gene mutations and their role in protein distribution are topics of both pharmacological and biological research. Through physical and ophthalmic examinations, two Chinese pedigrees with autosomal dominant congenital cataract (ADCC) were recruited for this study. Mutation analyses of CC candidate genes by next-generation sequencing (NGS) and Sanger sequencing revealed a novel missense mutation in CRYBB2 (p.V146L) and a deletion mutation in CRYAA (p.116_118del). Both mutations fully co-segregated were not observed in unaffected family members or in 100 unrelated healthy controls. The CRYBB2 missense mutation disrupts the distribution of CRYBB2 in human lens epithelial cells (HLEpiCs), and the CRYAA deletion mutation causes hyperdispersion of CRYAA. Furthermore, these two crystallin mutations result in aberrant expression of unfolded protein response (UPR) marker genes as well as apoptosis in HLEpiCs. Collectively, these findings broaden the genetic spectrum of ADCC.
Collapse
|
10
|
Protective role of antioxidant compounds against peroxynitrite-mediated modification of R54C mutant αA-crystallin. Arch Biochem Biophys 2017; 629:43-53. [PMID: 28720375 DOI: 10.1016/j.abb.2017.07.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2017] [Revised: 07/11/2017] [Accepted: 07/14/2017] [Indexed: 11/22/2022]
Abstract
As a highly potent reactive oxygen and nitrogen species, peroxynitrite (PON) has endogenous production in the eye ball and contributes to a variety of ocular disorders. In the current study the structural characteristics, chaperone-like activity and conformational stability of R54C mutant αA-crystallin (αA-Cry) were studied upon modification with PON and in the presence of three antioxidant compounds such as ascorbic acid (ASA), glutathione (GSH) and N-acetylcysteine (NAC) using gel electrophoresis and different spectroscopy methods. The results of both fluorescence analysis and gel electrophoresis suggested that PON modification leads to dityrosine-mediated intermolecular cross-linking of this cataractogenic mutant protein. Also, the propensity of R54C mutant αA-Cry for disulfide cross-linking was increased upon PON modification. In addition, the PON-modified protein indicated structural alteration, reduced chemical stability and different pattern of proteolysis. Upon modification with PON, mutant αA-Cry displayed a significant increase in the chaperone-like activity against aggregation of γ-crystallin and insulin. In addition, different antioxidant compounds indicated a prominent role in neutralizing the PON damaging effects on structural integrity and stability of this protein. The results of this study may highlight the importance of antioxidant-rich foods or potent antioxidant supplements in protection of lens crystallins against PON-mediated structural damages and cataract development.
Collapse
|
11
|
Cui XJ, Lv FY, Li FH, Zeng K. Correlations of single nucleotide polymorphisms of CRYAA and CRYAB genes with the risk and clinicopathological features of children suffering from congenital cataract. Medicine (Baltimore) 2017; 96:e7158. [PMID: 28640093 PMCID: PMC5484201 DOI: 10.1097/md.0000000000007158] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND The study aims to explore the correlations of the single nucleotide polymorphisms (SNPs) of CRYAA and CRYAB with the risk and clinicopathological features of children with congenital cataract. METHODS The study enrolled 168 children diagnosed as congenital cataract (case group) and 172 normal children (control group) from May 2015 to May 2016. Genomic DNA extraction was performed using a QIAamp DNA blood mini kit. Polymerase chain reaction (PCR) products were genotyped using an ABI direct sequencer. Haplotype, allele, and genotype frequencies of CRYAA and CRYAB gene polymorphisms analyses were carried out using the SHEsis software. Logistic regression analysis was performed in order to analyze the risk factors for children suffering from congenital cataract. RESULTS Presence of significant differences between the case and control groups' genotype and allele frequencies of CRYAA rs7278468 and CRYAB rs370803064/rs387907338. TA of CRYAB gene might increase congenital cataract risk in children, while GCG of CRYAA gene and GC of CRYAB gene might decrease congenital cataract risk in children. CRYAA rs7278468, CRYAB rs370803064/rs387907338 polymorphisms were significantly correlated to uncorrected visual acuity, best-corrected visual acuity, nystagmus, visual axis opacification, microcornea, lens opacity, posterior capsular thickening, and degrees of posterior capsule opacification after operation in children with congenital cataract. Logistic regression analysis revealed that the T allele of CRYAA rs7278468, A allele of CRYAB rs370803064, T allele of CRYAB rs387907338, family history, and TA haplotype of CRYAB gene were risk factors for children with congenital cataract. CONCLUSION Our findings demonstrated that CRYAA rs7278468 and CRYAB rs370803064/rs387907338 are correlated with the risk and clinicopathological features of children suffering from congenital cataract.
Collapse
Affiliation(s)
- Xian-Jin Cui
- Department of Ophthalmology, Linyi People's Hospital
| | - Feng-Yan Lv
- Department of Infectious Diseases, Affiliated Hospital of Shandong Medical College, Linyi
| | - Feng-Hua Li
- Department of Ophthalmology, Linyi People's Hospital
| | - Kun Zeng
- Shenzhen Key Laboratory of Ophthalmology, Shenzhen Eye Hospital, Shenzhen, P.R. China
| |
Collapse
|
12
|
Khoshaman K, Yousefi R, Tamaddon AM, Abolmaali SS, Oryan A, Moosavi-Movahedi AA, Kurganov BI. The impact of different mutations at Arg54 on structure, chaperone-like activity and oligomerization state of human αA-crystallin: The pathomechanism underlying congenital cataract-causing mutations R54L, R54P and R54C. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2017; 1865:604-618. [DOI: 10.1016/j.bbapap.2017.02.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Revised: 01/01/2017] [Accepted: 02/03/2017] [Indexed: 11/30/2022]
|
13
|
Messina-Baas O, Cuevas-Covarrubias SA. Inherited Congenital Cataract: A Guide to Suspect the Genetic Etiology in the Cataract Genesis. Mol Syndromol 2017; 8:58-78. [PMID: 28611546 DOI: 10.1159/000455752] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/05/2016] [Indexed: 01/23/2023] Open
Abstract
Cataracts are the principal cause of treatable blindness worldwide. Inherited congenital cataract (CC) shows all types of inheritance patterns in a syndromic and nonsyndromic form. There are more than 100 genes associated with cataract with a predominance of autosomal dominant inheritance. A cataract is defined as an opacity of the lens producing a variation of the refractive index of the lens. This variation derives from modifications in the lens structure resulting in light scattering, frequently a consequence of a significant concentration of high-molecular-weight protein aggregates. The aim of this review is to introduce a guide to identify the gene involved in inherited CC. Due to the manifold clinical and genetic heterogeneity, we discarded the cataract phenotype as a cardinal sign; a 4-group classification with the genes implicated in inherited CC is proposed. We consider that this classification will assist in identifying the probable gene involved in inherited CC.
Collapse
|
14
|
Javadiyan S, Craig JE, Souzeau E, Sharma S, Lower KM, Pater J, Casey T, Hodson T, Burdon KP. Recurrent mutation in the crystallin alpha A gene associated with inherited paediatric cataract. BMC Res Notes 2016; 9:83. [PMID: 26867756 PMCID: PMC4750205 DOI: 10.1186/s13104-016-1890-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Accepted: 01/27/2016] [Indexed: 12/18/2022] Open
Abstract
Background Cataract is a major cause of childhood blindness worldwide. The purpose of this study was to determine the genetic cause of paediatric cataract in a South Australian family with a bilateral lamellar paediatric cataract displaying variable phenotypes. Case presentation Fifty-one genes implicated in congenital cataract in human or mouse were sequenced in an affected individual from an Australian (Caucasian) family using a custom Ampliseq library on the Ion Torrent Personal Genome Machine. Reads were mapped against the human genome (hg19) and variants called with the Torrent Suite software. Variants were annotated to dbSNP 137 using Ion Reporter (IR 1.6.2) and were prioritised for validation if they were novel or rare and were predicted to be protein changing. We identified a previously reported oligomerization disrupting mutation, c.62G > A (p.R21Q), in the Crystallin alpha A (CRYAA) gene segregating in this three generation family. No other novel or rare coding mutations were detected in the known cataract genes sequenced. Microsatellite markers were used to compare the haplotypes between the family reported here and a previously published family with the same segregating mutation. Haplotype analysis indicated a potential common ancestry between the two South Australian families with this mutation. The work strengthens the genotype-phenotype correlations between this functional mutation in the crystallin alpha A (CRYAA) gene and paediatric cataract. Conclusion The p.R21Q mutation is the most likely cause of paediatric cataract in this family. The recurrence of this mutation in paediatric cataract families is likely due to a familial relationship. Electronic supplementary material The online version of this article (doi:10.1186/s13104-016-1890-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Shari Javadiyan
- Department of Ophthalmology, School of Medicine, Flinders Medical Centre, Flinders University, Rm 4D 111.1, Flinders Dr, Bedford Park, Adelaide, 5042, Australia.
| | - Jamie E Craig
- Department of Ophthalmology, School of Medicine, Flinders Medical Centre, Flinders University, Rm 4D 111.1, Flinders Dr, Bedford Park, Adelaide, 5042, Australia.
| | - Emmanuelle Souzeau
- Department of Ophthalmology, School of Medicine, Flinders Medical Centre, Flinders University, Rm 4D 111.1, Flinders Dr, Bedford Park, Adelaide, 5042, Australia.
| | - Shiwani Sharma
- Department of Ophthalmology, School of Medicine, Flinders Medical Centre, Flinders University, Rm 4D 111.1, Flinders Dr, Bedford Park, Adelaide, 5042, Australia.
| | - Karen M Lower
- Department of Haematology and Genetic Pathology, School of Medicine, Flinders University, Adelaide, Australia.
| | - John Pater
- Ophthalmology Department, Women's and Children's Hospital, Adelaide, Australia.
| | - Theresa Casey
- Ophthalmology Department, Women's and Children's Hospital, Adelaide, Australia.
| | | | - Kathryn P Burdon
- Department of Ophthalmology, School of Medicine, Flinders Medical Centre, Flinders University, Rm 4D 111.1, Flinders Dr, Bedford Park, Adelaide, 5042, Australia. .,Menzies Institute for Medical Research, University of Tasmania, Hobart, Australia.
| |
Collapse
|
15
|
Andley UP, Goldman JW. Autophagy and UPR in alpha-crystallin mutant knock-in mouse models of hereditary cataracts. Biochim Biophys Acta Gen Subj 2015; 1860:234-9. [PMID: 26071686 DOI: 10.1016/j.bbagen.2015.06.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Revised: 06/03/2015] [Accepted: 06/04/2015] [Indexed: 11/28/2022]
Abstract
BACKGROUND Knock-in mice provide useful models of congenital and age-related cataracts caused by α-crystallin mutations. R49C αA-crystallin and R120G αB-crystallin mutations are linked with hereditary cataracts. Knock-in αA-R49C+/- heterozygotes develop cataracts by 1-2months, whereas homozygote mice have cataracts at birth. The R49C mutation drastically reduces lens protein water solubility and causes cell death in knock-in mouse lenses. Mutant crystallin cannot function as a chaperone, which leads to protein aggregation and lens opacity. Protein aggregation disrupts the lens fiber cell structure and normal development and causes cell death in epithelial and fiber cells. We determined what aspects of the wild-type phenotype are age-dependently altered in the mutant lens. METHODS Wild-type, heterozygote (αA-R49C+/-), and homozygote (αA-R49C+/+) mouse lenses were assessed pre- and postnatally for lens morphology (electron microscopy, immunohistochemistry), and autophagy or unfolded protein response markers (immunoblotting). RESULTS Morphology was altered by embryonic day 17 in R49C+/+ lenses; R49C+/- lens morphology was unaffected at this stage. Active autophagy in the lens epithelium of mutant lenses was indicated by the presence of autophagosomes using electron microscopy. Protein p62 levels, which are degraded specifically by autophagy, increased in αA-R49C mutant versus wild-type lenses, suggesting autophagy inhibition in the mutant lenses. The unfolded protein response marker XBP-1 was upregulated in adult lenses of αB-R120G+/+ mice, suggesting its role in lens opacification. CONCLUSIONS Mutated crystallins alter lens morphology, autophagy, and stress responses. GENERAL SIGNIFICANCE Therapeutic modulation of autophagic pathways may improve protein degradation in cataractous lenses and reduce lens opacity. This article is part of a Special Issue entitled Crystallin Biochemistry in Health and Disease.
Collapse
Affiliation(s)
- Usha P Andley
- Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, MO 63110, USA.
| | - Joshua W Goldman
- Department of Ophthalmology and Visual Sciences, Washington University School of Medicine, St. Louis, MO 63110, USA
| |
Collapse
|
16
|
Ramkumar S, Thankappan B, Fujii N, Natarajaseenivasan K, Anbarasu K. Interaction of αA-crystallin F71L mutant with wild type αA- and αB-crystallins by mammalian two hybrid assay. Int J Biol Macromol 2015; 76:102-8. [DOI: 10.1016/j.ijbiomac.2015.02.025] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2014] [Revised: 02/13/2015] [Accepted: 02/16/2015] [Indexed: 11/26/2022]
|
17
|
Der Perng M, Quinlan RA. The Dynamic Duo of Small Heat Proteins and IFs Maintain Cell Homeostasis, Resist Cellular Stress and Enable Evolution in Cells and Tissues. HEAT SHOCK PROTEINS 2015. [DOI: 10.1007/978-3-319-16077-1_17] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
18
|
Yang Z, Li Q, Ma X, Zhu SQ. Mutation analysis in Chinese families with autosomal dominant hereditary cataracts. Curr Eye Res 2014; 40:1225-31. [PMID: 25549162 DOI: 10.3109/02713683.2014.997885] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
PURPOSE To identify the molecular basis and clinical phenotype in three Chinese families with hereditary cataracts. METHODS Detailed family history and clinical data were recorded. The phenotypes were documented using slit-lamp photography. Candidate genes sequencing was performed to screen out the disease causing mutation. Bioinformatics analysis was performed to predict the function of mutant genes. RESULTS The phenotypes of the families were identified as nuclear cataract in Family 1, pulverulent cataract in Family 2, and nuclear cataract in Family 3. Direct sequencing revealed transversions of C > T at c.218 (p. S73F) in GJA8 in Family 1, A > C at c.125 (p. E42A) in GJA3 in Family 2, and C > T at c.268 (p. L90F) in GJA3 in Family 3. These mutations co-segregated with all affected individuals in the family and were not found in unaffected family members nor in the 100 unrelated controls. Bioinformatics analysis indicated that S73F in GJA8, E42A and L90F in GJA3 are highly conserved. S73F in GJA8, E42A and L90F in GJA3 could possibly be damaging predicted by PolyPhen-2, with score of 0.858, 1.000, 1.000, respectively. CONCLUSIONS This study identified three mutations in three Chinese families with hereditary cataracts. Of the three mutations, two were novel (c.125 A > C in GJA3 and c.268 C > T in GJA3), one was previously reported (c.218 C > T in GJA8).
Collapse
Affiliation(s)
- Zhenfei Yang
- a Beijing Ophthalmology & Visual Sciences Key Lab, Beijing Tongren Eye Center , Beijing Tongren Hospital, Capital Medical University , Beijing , China
| | - Qian Li
- b Graduate School, Peking Union Medical College , Beijing , China
- c National Research Institute for Family Planning , Beijing , China and
| | - Xu Ma
- b Graduate School, Peking Union Medical College , Beijing , China
- c National Research Institute for Family Planning , Beijing , China and
- d World Health Organization Collaborating Center for Research in Human Reproduction , Beijing , China
| | - Si Quan Zhu
- a Beijing Ophthalmology & Visual Sciences Key Lab, Beijing Tongren Eye Center , Beijing Tongren Hospital, Capital Medical University , Beijing , China
| |
Collapse
|
19
|
Liao J, Su X, Chen P, Wang X, Xu L, Li X, Thean L, Tan C, Tan AG, Tay WT, Jun G, Zheng Y, Chew M, Wang YX, Tan QS, Barathi VA, Klein BE, Saw SM, Vithana EN, Tai ES, Iyengar SK, Mitchell P, Khor CC, Aung T, Wang JJ, Jonas JB, Teo YY, Wong TY, Cheng CY. Meta-analysis of genome-wide association studies in multiethnic Asians identifies two loci for age-related nuclear cataract. Hum Mol Genet 2014; 23:6119-28. [DOI: 10.1093/hmg/ddu315] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
|