1
|
Gong R, Han R, Zhuang X, Tang W, Xu G, Zhang L, Wu J, Ma J. MiR-375 mitigates retinal angiogenesis by depressing the JAK2/STAT3 pathway. Aging (Albany NY) 2022; 14:6594-6604. [PMID: 35980290 PMCID: PMC9467412 DOI: 10.18632/aging.204232] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 07/21/2022] [Indexed: 02/06/2023]
Abstract
Aberrant neovascularization in the retina is an important threat to vision and closely related to several retinal diseases, such as wet form of age-related macular degeneration, diabetic retinopathy, and retinopathy of prematurity. However, the pathogenesis remains largely unknown. MicroRNAs (miRNAs) have been demonstrated to play critical regulatory roles in angiogenesis. Therefore, we aimed to identify the key miRNAs that regulate retinal neovascularization and elucidate the potential underlying mechanisms. In the present study, we performed RNA sequencing of microRNAs in the retina and found that miR-375 was significantly downregulated in the retina of oxygen-induced retinopathy mice. In retinal microvascular endothelial cells (RMECs), overexpression of miR-375 inhibited cell proliferation and angiogenesis. Conversely, inhibition of miR-375 had the opposite effects. Moreover, our results showed that miR-375 negatively regulated the protein expression of JAK2 by inhibiting its translation. The promoting effects of anti-miR-375 on cell proliferation and angiogenesis were attenuated by an inhibitor of STAT3. These results indicate that miR-375 mitigates cell proliferation and angiogenesis, at least in part, through the JAK2/STAT3 pathway in RMECs, which implies an important underlying mechanism of retinal angiogenesis and provides potential therapeutic targets for retinal microangiopathy.
Collapse
Affiliation(s)
- Ruowen Gong
- Eye Institute, Eye and ENT Hospital, Shanghai Medical College, Fudan University, Shanghai 200031, China.,Department of Ophthalmology, Eye and ENT Hospital of Fudan University, Shanghai 200031, China.,Shanghai Key Laboratory of Visual Impairment and Restoration, Fudan University, Shanghai 200031, China
| | - Ruyi Han
- Department of Ophthalmology, Eye and ENT Hospital of Fudan University, Shanghai 200031, China.,Shanghai Key Laboratory of Visual Impairment and Restoration, Fudan University, Shanghai 200031, China
| | - Xiaonan Zhuang
- Department of Ophthalmology, Eye and ENT Hospital of Fudan University, Shanghai 200031, China.,Shanghai Key Laboratory of Visual Impairment and Restoration, Fudan University, Shanghai 200031, China
| | - Wenyi Tang
- Department of Ophthalmology, Eye and ENT Hospital of Fudan University, Shanghai 200031, China.,Shanghai Key Laboratory of Visual Impairment and Restoration, Fudan University, Shanghai 200031, China
| | - Gezhi Xu
- Eye Institute, Eye and ENT Hospital, Shanghai Medical College, Fudan University, Shanghai 200031, China.,Department of Ophthalmology, Eye and ENT Hospital of Fudan University, Shanghai 200031, China.,Shanghai Key Laboratory of Visual Impairment and Restoration, Fudan University, Shanghai 200031, China
| | - Lei Zhang
- Department of Radiation Oncology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200127, China
| | - Jihong Wu
- Eye Institute, Eye and ENT Hospital, Shanghai Medical College, Fudan University, Shanghai 200031, China.,Shanghai Key Laboratory of Visual Impairment and Restoration, Fudan University, Shanghai 200031, China
| | - Jun Ma
- Eye Institute, Eye and ENT Hospital, Shanghai Medical College, Fudan University, Shanghai 200031, China.,Shanghai Key Laboratory of Visual Impairment and Restoration, Fudan University, Shanghai 200031, China
| |
Collapse
|
2
|
Li X, Yang Y, Song Y, Nie F, Fu C, Qin Y. Effect of Shuangdan Mingmu Capsule on Diabetic Retinopathy in Rats via Regulation of miRNAs. Diabetes Metab Syndr Obes 2022; 15:3181-3194. [PMID: 36268199 PMCID: PMC9578787 DOI: 10.2147/dmso.s379611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 10/06/2022] [Indexed: 11/06/2022] Open
Abstract
PURPOSE To evaluate the effects of Shuangdan Mingmu (SDMM) capsule on diabetic retinopathy in rats by regulating miRNAs. MATERIALS AND METHODS Streptozotocin (STZ) (50 mg/kg) was successfully used to induce diabetes in male Sprague-Dawley rats, which were randomly assigned to a group taking SDMM capsules ("diabetic+SDMM") or a control group ("diabetic"), and the normal group (n=10/group). The diabetic+SDMM capsule group received 1.89g/kg/d of SDMM capsule by gavage, whereas the other groups received the same amount of distilled water. After 12-weeks of gavage, the retina was removed from all rats for histopathological analysis, and miRNA sequencing experiments were carried out to identify the differential expression of miRNAs. These results were then confirmed by quantitative real-time polymerase chain reaction (qRT-PCR). RESULTS SDMM capsules improved retinal morphology, restored the number of cells in the ganglion cell layer (p<0.0001) and reduced apoptosis in all retinal layers (p values in the outer nuclear layers, inner nuclear layers and ganglion cell layers 0.0001, 0.0147, 0.0034, respectively). In addition, miRNA expression was changed in rats taking SDMM capsules. Compared with the diabetic group, six miRNAs were up-regulated and four miRNAs were down-regulated in the diabetic+SDMM capsule group. The qRT-PCR validation results showed that the expression levels of miR-450b-5p, miR-1249 and miR-155-5p were consistent with the trend of miRNA sequencing results, and were all up-regulated after SDMM capsule treatment. Target gene prediction and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis of differentially expressed miRNAs showed that these pathways were mainly concentrated in the focal adhesions and PI3K/Akt, MAPK, and neural factor signaling pathways. CONCLUSION SDMM capsules may prevent and treat diabetic retinopathy by regulating the expression of miR-450b-5p, miR-1249 and miR-155-5p.
Collapse
Affiliation(s)
- Xiang Li
- Ophthalmology Department, the First Affiliated Hospital, Hunan University of Chinese Medicine, Changsha, 410007, People’s Republic of China
- Hunan Provincial Key Laboratory for the Prevention and Treatment of Ophthalmology and Otolaryngology Diseases with Chinese Medicine, Hunan University of Chinese Medicine, Changsha, 410208, People’s Republic of China
- Hunan Engineering Technological Research Center for the Prevention and Treatment of Otolaryngologic Disease and Protection of Visual Function with Chinese Medicine, Changsha, 410208, People’s Republic of China
| | - Yijing Yang
- Hunan Provincial Key Laboratory for the Prevention and Treatment of Ophthalmology and Otolaryngology Diseases with Chinese Medicine, Hunan University of Chinese Medicine, Changsha, 410208, People’s Republic of China
- Hunan Engineering Technological Research Center for the Prevention and Treatment of Otolaryngologic Disease and Protection of Visual Function with Chinese Medicine, Changsha, 410208, People’s Republic of China
| | - Yan Song
- Ophthalmology Department, the First Affiliated Hospital, Hunan University of Chinese Medicine, Changsha, 410007, People’s Republic of China
- Hunan Provincial Key Laboratory for the Prevention and Treatment of Ophthalmology and Otolaryngology Diseases with Chinese Medicine, Hunan University of Chinese Medicine, Changsha, 410208, People’s Republic of China
- Hunan Engineering Technological Research Center for the Prevention and Treatment of Otolaryngologic Disease and Protection of Visual Function with Chinese Medicine, Changsha, 410208, People’s Republic of China
| | - Fujiao Nie
- Ophthalmology Department, the First Affiliated Hospital, Hunan University of Chinese Medicine, Changsha, 410007, People’s Republic of China
- Hunan Provincial Key Laboratory for the Prevention and Treatment of Ophthalmology and Otolaryngology Diseases with Chinese Medicine, Hunan University of Chinese Medicine, Changsha, 410208, People’s Republic of China
- Hunan Engineering Technological Research Center for the Prevention and Treatment of Otolaryngologic Disease and Protection of Visual Function with Chinese Medicine, Changsha, 410208, People’s Republic of China
| | - Chaojun Fu
- Hunan Provincial Key Laboratory for the Prevention and Treatment of Ophthalmology and Otolaryngology Diseases with Chinese Medicine, Hunan University of Chinese Medicine, Changsha, 410208, People’s Republic of China
- Hunan Engineering Technological Research Center for the Prevention and Treatment of Otolaryngologic Disease and Protection of Visual Function with Chinese Medicine, Changsha, 410208, People’s Republic of China
| | - Yuhui Qin
- Hunan Provincial Key Laboratory for the Prevention and Treatment of Ophthalmology and Otolaryngology Diseases with Chinese Medicine, Hunan University of Chinese Medicine, Changsha, 410208, People’s Republic of China
- Hunan Engineering Technological Research Center for the Prevention and Treatment of Otolaryngologic Disease and Protection of Visual Function with Chinese Medicine, Changsha, 410208, People’s Republic of China
- Institute of Chinese Medicine of Hunan Province, Changsha, 410006, People’s Republic of China
- Correspondence: Yuhui Qin, Institute of Chinese Medicine of Hunan Province, Lushan Road, Yuelu District, Changsha, 410006, People’s Republic of China, Tel +86 13873120865, Email
| |
Collapse
|
3
|
Rajool Dezfuly A, Safaee A, Salehi H. Therapeutic effects of mesenchymal stem cells-derived extracellular vesicles' miRNAs on retinal regeneration: a review. Stem Cell Res Ther 2021; 12:530. [PMID: 34620234 PMCID: PMC8499475 DOI: 10.1186/s13287-021-02588-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 09/09/2021] [Indexed: 02/07/2023] Open
Abstract
Extracellular vesicles (EVs), which consist of microvesicles and exosomes, are secreted from all cells to transform vital information in the form of lipids, proteins, mRNAs and small RNAs such as microRNAs (miRNAs). Many studies demonstrated that EVs' miRNAs have effects on target cells. Numerous people suffer from the blindness caused by retinal degenerations. The death of retinal neurons is irreversible and creates permanent damage to the retina. In the absence of acceptable cures for retinal degenerative diseases, stem cells and their paracrine agents including EVs have become a promising therapeutic approach. Several studies showed that the therapeutic effects of stem cells are due to the miRNAs of their EVs. Considering the effects of microRNAs in retinal cells development and function and studies which provide the possible roles of mesenchymal stem cells-derived EVs miRNA content on retinal diseases, we focused on the similarities between these two groups of miRNAs that could be helpful for promoting new therapeutic techniques for retinal degenerative diseases.
Collapse
Affiliation(s)
- Ali Rajool Dezfuly
- Department of Anatomical and Molecular Biology Sciences, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Azadeh Safaee
- Department of Anatomical and Molecular Biology Sciences, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Hossein Salehi
- Department of Anatomical and Molecular Biology Sciences, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran.
| |
Collapse
|
4
|
Zhang H, Li T, Cai X, Wang X, Li S, Xu B, Wu Q. MicroRNA-203a-3p regulates CoCl 2-induced apoptosis in human retinal pigment epithelial cells by targeting suppressor of cytokine signaling 3. J Diabetes Complications 2020; 34:107668. [PMID: 32660795 DOI: 10.1016/j.jdiacomp.2020.107668] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 06/02/2020] [Accepted: 06/03/2020] [Indexed: 02/06/2023]
Abstract
PURPOSE The apoptosis of human retinal pigment epithelial cells (RPEs) plays a critical role in the pathogenesis of diabetic retinopathy (DR), but the molecular mechanisms remain unclear. In this study, we explored the function of miR-203a-3p in CoCl2-induced RPEs apoptosis. METHODS The cellular localization of miR-203a-3p was assessed by in situ hybridization. Luciferase reporter assays were performed to validate that suppressor of cytokine signaling 3(SOCS3) as a direct target of miR-203a-3p. Effects of miR-203a-3p manipulation on RPEs apoptosis were evaluated using TdT-mediated dUTP Nick-End Labeling (TUNEL) and Flow Cytometry. Expression levels of miR-203a-3p was analyzed by RT-PCR, the expression of target proteins was detected by western blot. RESULTS miR-203a-3p was found to be located in the RPE layer of the retinas from normal and diabetic rats and SOCS3 was a direct target of miR-203a-3p. miR-203a-3p mimics resulted in improved CoCl2-induced apoptosis of RPEs, overexpression of SOCS3 or c-Jun N-terminal kinase (JNK) inhibitor SP600125 reversed the pro-apoptotic effect of miR-203a-3p, to a certain extent. CONCLUSIONS Our data implied a crucial role of miR-203a-3p as a novel regulator of CoCl2-induced RPEs apoptosis through SOCS3. Deregulation of miR-203a-3p/SOCS3/JNK/c-Jun cascade thus may serve as an important contributor to RPEs apoptosis in DR.
Collapse
Affiliation(s)
- Hui Zhang
- Department of Ophthalmology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Tingting Li
- Department of Ophthalmology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Xuan Cai
- Department of Ophthalmology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Xiangning Wang
- Department of Ophthalmology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Shiwei Li
- Department of Ophthalmology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Biwei Xu
- Department of Ophthalmology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Qiang Wu
- Department of Ophthalmology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China.
| |
Collapse
|
5
|
Greco M, Chiefari E, Accattato F, Corigliano DM, Arcidiacono B, Mirabelli M, Liguori R, Brunetti FS, Pullano SA, Scorcia V, Fiorillo AS, Foti DP, Brunetti A. MicroRNA-1281 as a Novel Circulating Biomarker in Patients With Diabetic Retinopathy. Front Endocrinol (Lausanne) 2020; 11:528. [PMID: 32849308 PMCID: PMC7417427 DOI: 10.3389/fendo.2020.00528] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 06/29/2020] [Indexed: 01/10/2023] Open
Abstract
Objective: Recently, the role of circulating miRNAs as non-invasive biomarkers for the identification and monitoring of diabetes microvascular complications has emerged. Herein, we aimed to: identify circulating miRNAs differentially expressed in patients with and without diabetic retinopathy (DR); examine their predictive value; and understand their pathogenic impact. Methods: Pooled serum samples from randomly selected matched patients with type 2 diabetes, either with or without DR, were used for initial serum miRNA profiling. Validation of the most relevant miRNAs was thereafter conducted by RT-qPCR in an extended sample of patients with DR and matched controls. Results: Following miRNA profiling, 43 miRNAs were significantly up- or down-regulated in patients with DR compared with controls. After individual validation, 5 miRNAs were found significantly overexpressed in patients with DR. One of them, miR-1281, was the most up-regulated and appeared to be specifically related to DR. Furthermore, secreted levels of miR-1281 were increased in high glucose-cultured retinal cells, and there was evidence of a potential link between glucose-induced miR-1281 up-regulation and DR. Conclusion: Our findings suggest miR-1281 as a circulating biomarker of DR. Also, they highlight the pathogenic significance of miR-1281, providing insights for a new potential target in treating DR.
Collapse
Affiliation(s)
- Marta Greco
- Department of Health Sciences, University of Catanzaro “Magna Græcia,”Catanzaro, Italy
| | - Eusebio Chiefari
- Department of Health Sciences, University of Catanzaro “Magna Græcia,”Catanzaro, Italy
| | - Francesca Accattato
- Department of Health Sciences, University of Catanzaro “Magna Græcia,”Catanzaro, Italy
| | | | - Biagio Arcidiacono
- Department of Health Sciences, University of Catanzaro “Magna Græcia,”Catanzaro, Italy
| | - Maria Mirabelli
- Department of Health Sciences, University of Catanzaro “Magna Græcia,”Catanzaro, Italy
| | - Rossella Liguori
- Department of Health Sciences, University of Catanzaro “Magna Græcia,”Catanzaro, Italy
| | - Francesco S. Brunetti
- Department of Health Sciences, University of Catanzaro “Magna Græcia,”Catanzaro, Italy
| | - Salvatore A. Pullano
- Department of Health Sciences, University of Catanzaro “Magna Græcia,”Catanzaro, Italy
| | - Vincenzo Scorcia
- Department of Medical and Surgical Sciences, University of Catanzaro “Magna Græcia,”Catanzaro, Italy
| | - Antonino S. Fiorillo
- Department of Health Sciences, University of Catanzaro “Magna Græcia,”Catanzaro, Italy
| | - Daniela P. Foti
- Department of Health Sciences, University of Catanzaro “Magna Græcia,”Catanzaro, Italy
| | - Antonio Brunetti
- Department of Health Sciences, University of Catanzaro “Magna Græcia,”Catanzaro, Italy
| |
Collapse
|
6
|
MiR-221-3p regulates the microvascular dysfunction in diabetic retinopathy by targeting TIMP3. Pflugers Arch 2020; 472:1607-1618. [PMID: 32648125 DOI: 10.1007/s00424-020-02432-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 06/11/2020] [Accepted: 07/02/2020] [Indexed: 01/08/2023]
Abstract
Diabetic retinopathy is one of the major complications of diabetes and the main cause to lead to blindness for diabetic patients. However, the exact mechanisms involved in the progression of diabetic retinopathy are not completely known. Herein, we demonstrated a novel role of miR-221-3p in the microvascular dysfunction in diabetic retinopathy. MiR-221-3p expression was found to be substantially upregulated in the retina samples of diabetic rats. Besides, ganglion cell layer, inner nuclear layer, outer nuclear layer, and retinal pigment epithelium layer of diabetic rats expressed higher miR-221-3p than the matched areas of normal rats. High glucose-treated retinal microvascular endothelial cells RF/6A and HRECs exhibited higher miR-221-3p than that in normal condition. MiR-221-3p inhibition could alleviate the retinal vascular leakage induced by diabetes in vivo as evaluated by Evans blue leakage assay, and reduce the proliferation, accelerate the apoptosis development, and inhibit the migration capacity of high glucose-treated RF/6A cells in vitro, while miR-221-3p overexpression partially enhanced the detrimental effects. By bioinformatics analysis and luciferase reporter assay, we identified that TIMP3 is the direct target of miR-221-3p. TIMP3 overexpression counteracted the effect of miR-221-3p on the vessel leakage and endothelial cell function. In conclusion, this study highlights the negative role of miR-221-3p in the microvascular dysfunction in diabetic retinopathy by targeting TIMP3, representing a potential therapeutic target for human diabetic retinopathy.
Collapse
|
7
|
Nammian P, Razban V, Tabei SMB, Asadi-Yousefabad SL. MicroRNA-126: Dual Role in Angiogenesis Dependent Diseases. Curr Pharm Des 2020; 26:4883-4893. [PMID: 32364067 DOI: 10.2174/1381612826666200504120737] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Accepted: 04/07/2020] [Indexed: 12/13/2022]
Abstract
BACKGROUND MicroRNA-126, a microRNA implicated in blood vessel integrity and angiogenesis is significantly up/down regulated in different physiological and pathological conditions related to angiogenesis such as cardiovascular formation and angiogenesis dependent diseases. MicroRNA-126 plays a critical role in angiogenesis via regulating the proliferation, differentiation, migration, and apoptosis of angiogenesis related cells such as endothelial cells. OBJECTIVE The aim of this review is to investigate the molecular mechanisms and the effects of microRNA-126 on the process of angiogenesis in pathophysiological conditions. METHODS To conduct this review, related articles published between 2001 and 2019 were collected from the PubMed, Web of Science, Google Scholar, Scopus and Scientific Information Database using search terms such as microRNA-126, angiogenesis, cardiovascular disorders, hypoxia, VEFG-A, endothelial cells, VEGF pathway, and gene silencing. Then, the qualified articles were reviewed. RESULTS MicroRNA-126 regulates the response of endothelial cells to VEGF, through directly repressing multiple targets, including Sprouty-related EVH1 domain-containing protein 1 (SPRED1) and phosphoinositol-3 kinase regulatory subunit 2 (PIK3R2/p85-b). MicroRNA-126 -3p and microRNA-126 -5p have cell-type and strandspecific functions and also various targets in angiogenesis that lead to the regulation of angiogenesis via different pathways and consequently diverse responses. CONCLUSION MicroRNA-126 can bind to multiple targets and potentially be both positive and negative regulators of gene expression. Thus, microRNA-126 could cause the opposite biological effects depending on the context. As a result, understanding the different cellular pathways through which microRNA-126 regulates angiogenesis in various situations is a critical aspect in the development of novel and effective treatments for diseases with insufficient angiogenesis.
Collapse
Affiliation(s)
- Pegah Nammian
- Department of Molecular Medicine, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Vahid Razban
- Department of Molecular Medicine, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | | |
Collapse
|
8
|
Aghaei Zarch SM, Dehghan Tezerjani M, Talebi M, Vahidi Mehrjardi MY. Molecular biomarkers in diabetes mellitus (DM). Med J Islam Repub Iran 2020; 34:28. [PMID: 32617267 PMCID: PMC7320976 DOI: 10.34171/mjiri.34.28] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Indexed: 12/14/2022] Open
Abstract
Background: Diabetes mellitus (DM) is a growing epidemic metabolic syndrome, which affects near 5.6% of the world's population. Almost 12% of health expenditure is dedicated to this disorder. Discovering and developing biomarkers as a practical guideline with high specificity and sensitivity for the diagnosis, prognosis, and clinical management of DM is one of the subjects of great interest among DM researchers due to the long-lasting asymptomatic clinical manifestation of DM. In this study, we described a recently identified molecular biomarker involved in DM. Methods: This review study was done at the Diabetes Research Center affiliated to Shahid Sadoughi University of Medical Sciences. PubMed, Scopus, Google Scholar, and Web of Science were searched using the following keywords: "diabetes mellitus", "biomarker", "microRNA", "diagnostic tool" and "clinical manifestation." Results: A total of 107 studies were finally included in this review. After evaluating numerous articles, including original, metaanalysis, and review studies, we focused on molecular biomarkers involved in DM diagnosis and management. Conclusion: Increasing interest in biomarkers associated with DM goes back to its role in decreasing diabetes-related morbidity and mortality. This review focused on major molecular biomarkers such as proteomic and microRNA (miRNAs) as novel and interesting DM biomarkers that can help achieve timely diagnosis of DM.
Collapse
Affiliation(s)
| | - Masoud Dehghan Tezerjani
- Yazd Reproductive Sciences Institute, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Mehrdad Talebi
- Department of Medical Genetics, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | | |
Collapse
|
9
|
Zhou H, Peng C, Huang DS, Liu L, Guan P. microRNA Expression Profiling Based on Microarray Approach in Human Diabetic Retinopathy: A Systematic Review and Meta-Analysis. DNA Cell Biol 2020; 39:441-450. [PMID: 32101049 DOI: 10.1089/dna.2019.4942] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Diabetes mellitus (DM) is one of the growing public health threats globally and as one of the common serious microvascular complications of DM, diabetic retinopathy (DR) is the leading cause of irreversible visual impairments and blindness. There is growing concern about the role of microRNAs (miRNAs) in the pathogenesis of DR. This meta-analysis was designed to collect those published miRNA expression profiling studies that compared the miRNA expression profiles in the biological samples of DR patients with those in the control group. Eight publications were finally included in the meta-analysis, and a total of 93 differentially expressed miRNAs were reported. Although six miRNAs were reported in at least two studies and with the consistent direction, after stratification by the type of biological samples, miR-320a was consistently reported to be upregulated in two serum sample-based studies and miR-423-5p was consistently reported to be upregulated in two vitreous humor sample-based studies. miR-27b was consistently reported to be downregulated in two serum sample-based studies. In conclusion, the results of this meta-analysis of human DR miRNAs' expression profiling studies might provide some clues of the potential biomarkers of DR. Further investigation of the mechanisms of miRNAs and more external validation studies are warranted with the aim of developing new diagnostic markers for preventing or reversing DR.
Collapse
Affiliation(s)
- Hao Zhou
- Department of Epidemiology, School of Public Health, China Medical University, Shenyang, China.,Department of Impression Evidence Examination Technology, Criminal Investigation Police University of China, Shenyang, China
| | - Cheng Peng
- Department of Epidemiology, School of Public Health, China Medical University, Shenyang, China
| | - De-Sheng Huang
- Department of Epidemiology, School of Public Health, China Medical University, Shenyang, China.,Department of Mathematics, School of Fundamental Sciences, China Medical University, Shenyang, China
| | - Lei Liu
- Department of Epidemiology, School of Public Health, China Medical University, Shenyang, China.,Department of Ophthalmology, The First Affiliated Hospital of China Medical University, Shenyang, China
| | - Peng Guan
- Department of Epidemiology, School of Public Health, China Medical University, Shenyang, China
| |
Collapse
|
10
|
Gui F, You Z, Fu S, Wu H, Zhang Y. Endothelial Dysfunction in Diabetic Retinopathy. Front Endocrinol (Lausanne) 2020; 11:591. [PMID: 33013692 PMCID: PMC7499433 DOI: 10.3389/fendo.2020.00591] [Citation(s) in RCA: 88] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Accepted: 07/20/2020] [Indexed: 12/21/2022] Open
Abstract
Diabetic retinopathy (DR) is a diabetic complication which affects retinal function and results in severe loss of vision and relevant retinal diseases. Retinal vascular dysfunction caused by multifactors, such as advanced glycosylation end products and receptors, pro-inflammatory cytokines and chemokines, proliferator-activated receptor-γ disruption, growth factors, oxidative stress, and microRNA. These factors promote retinal endothelial dysfunction, which results in the development of DR. In this review, we summarize the contributors in the pathophysiology of DR for a better understanding of the molecular and cellular mechanism in the development of DR with a special emphasis on retinal endothelial dysfunction.
Collapse
|
11
|
Ji H, Yi Q, Chen L, Wong L, Liu Y, Xu G, Zhao J, Huang T, Li B, Yang Y, Li W, Han L, Duan S. Circulating miR-3197 and miR-2116-5p as novel biomarkers for diabetic retinopathy. Clin Chim Acta 2019; 501:147-153. [PMID: 31678272 DOI: 10.1016/j.cca.2019.10.036] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 10/21/2019] [Accepted: 10/24/2019] [Indexed: 12/13/2022]
Abstract
Diabetic retinopathy (DR) is the leading cause of vision loss among older adults. The goal of this case-control study was to identify circulating miRNAs for the diagnosis of DR. The miRNeasy Serum/Plasma Kit was used to extract serum miRNAs. The μParaflo™ MicroRNA microarray was used to detect the expression levels of the miRNAs. The miRWalk algorithm was applied to predict the target genes of the miRNAs, which were further confirmed by the dual luciferase reporter gene system in HEK293T cells. A microarray was performed between 5 DR cases and 5 age-, sex-, body mass index-, and duration of diabetes-matched type 2 diabetic (T2DM) controls. The quantitative reverse transcription polymerase chain reaction technique was used to validate the differentially expressed circulating miRNAs in 45 DR cases and 45 well-matched controls. Receiver operating characteristic (ROC) curve analysis was used to evaluate the performance of the circulating miRNAs as diagnostic biomarkers for DR. Our microarray analysis screened out miR-2116-5p and miR-3197 as significantly up-regulated in DR cases compared with the controls. Furthermore, two miRNAs were validated in the 45 DR cases and 45 controls. The ROC analysis suggested that both miR-3197 and miR-2116-5p distinguished DR cases from controls. An additional dual-luciferase reporter gene assay confirmed that notch homolog 2 (NOTCH2) was the target gene of miR-2116-5p. Both miR-3197 and miR-2116-5p were identified as promising diagnostic biomarkers for DR. Future research is still needed to explore the molecular mechanisms of miR-3197 and miR-2116-5p in the pathogenesis of DR.
Collapse
Affiliation(s)
- Huihui Ji
- Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo, Zhejiang, China; Departmant of Obstetrics and Gynecology, The Second Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Quanyong Yi
- Ningbo Eye Hospital, Minan Road 855, Ningbo, Zhejiang, China
| | - Lishuang Chen
- Ningbo Eye Hospital, Minan Road 855, Ningbo, Zhejiang, China
| | - Liping Wong
- Department of Social and Preventive Medicine, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Yanfen Liu
- Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo, Zhejiang, China
| | - Guodong Xu
- Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo, Zhejiang, China
| | - Jun Zhao
- Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo, Zhejiang, China
| | - Tianyi Huang
- Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo, Zhejiang, China
| | - Bin Li
- Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo, Zhejiang, China
| | - Yong Yang
- Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo, Zhejiang, China
| | - Wenxia Li
- Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo, Zhejiang, China
| | - Liyuan Han
- Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo, Zhejiang, China.
| | - Shiwei Duan
- Zhejiang Provincial Key Laboratory of Pathophysiology, School of Medicine, Ningbo University, Ningbo, Zhejiang, China.
| |
Collapse
|
12
|
Han N, Tian W, Yu N, Yu L. YAP1 is required for the angiogenesis in retinal microvascular endothelial cells via the inhibition of MALAT1‐mediated miR‐200b‐3p in high glucose‐induced diabetic retinopathy. J Cell Physiol 2019; 235:1309-1320. [PMID: 31313295 DOI: 10.1002/jcp.29047] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Accepted: 06/12/2019] [Indexed: 12/15/2022]
Affiliation(s)
- Ning Han
- Department of Ophthalmology The Second Hospital of Jilin University Changchun P.R. China
| | - Wen Tian
- Department of Blood Transfusion The Second Hospital of Jilin University Changchun P.R. China
| | - Na Yu
- Department of Blood Transfusion The Second Hospital of Jilin University Changchun P.R. China
| | - Li Yu
- Department of Ophthalmology The Second Hospital of Jilin University Changchun P.R. China
| |
Collapse
|
13
|
Gong Q, Li F, Xie J, Su G. Upregulated VEGF and Robo4 correlate with the reduction of miR-15a in the development of diabetic retinopathy. Endocrine 2019; 65:35-45. [PMID: 30980286 PMCID: PMC6606763 DOI: 10.1007/s12020-019-01921-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Accepted: 04/01/2019] [Indexed: 02/07/2023]
Abstract
PURPOSE Vascular endothelial growth factor (VEGF) plays implicated roles in diabetic retinopathy (DR). The role of roundabout 4 (Robo 4) in angiogenesis and vasculogenesis is controversial; however, the interdependent relationship between these two factors has not been studied in DR. This study determined the colocalization of VEGF and Robo4 in fibrovascular membranes (FVM) from patients with proliferative diabetic retinopathy (PDR). MicroRNA (miRNA)-mediated modulation of VEGF and Robo4 was explored in diabetic rats and ARPE-19 tissue culture cells under hyperglycemia. METHODS VEGF and Robo4 co-expression in the FVM was analyzed using immunofluorescence. VEGF and Robo4 levels were determined in diabetic retinas and ARPE-19 tissue culture cells under high glucose using western blotting and RT-qPCR. MicroRNA agomir was intraocularly injected to increase miR-15a expression and downregulate VEGF and Robo4 levels in diabetic retinas. RESULTS VEGF and Robo4 colocalization in FVM vessels was observed. Increased VEGF levels were consistent in diabetic retinas and ARPE-19 tissue culture cells cultured under hyperglycemia. Robo4 decreased in ARPE-19 tissue culture cells exposed to hyperglycemia for 72 h, whereas it increased in diabetic rat retinas. Several miRNAs were differentially expressed during DR progression. Furthermore, miR-15a agomir injection inhibited high levels of VEGF and Robo4 in diabetic retinas. CONCLUSIONS VEGF and Robo4 were co-expressed in FVMs from PDR patients. In the early stages of DR, VEGF was upregulated and contributed to DR development, whereas, in the late stage of DR, VEGF and Robo4 worked together to aggravate DR progression. However, miR-15a could downregulate VEGF and Robo4 to ameliorate DR development.
Collapse
Affiliation(s)
- Qiaoyun Gong
- Eye Center, The Second Hospital of Jilin University, #218 Ziqiang Street, 130021, Changchun, Jilin, China
- Department of Ophthalmology, Shanghai General Hospital, #100 Haining Road, 200080, Shanghai, China
| | - Fuqiang Li
- Eye Center, The Second Hospital of Jilin University, #218 Ziqiang Street, 130021, Changchun, Jilin, China
| | - Jia'nan Xie
- Eye Center, The Second Hospital of Jilin University, #218 Ziqiang Street, 130021, Changchun, Jilin, China
| | - Guanfang Su
- Eye Center, The Second Hospital of Jilin University, #218 Ziqiang Street, 130021, Changchun, Jilin, China.
| |
Collapse
|
14
|
Epigenetically dysregulated genes and pathways implicated in the pathogenesis of non-syndromic high myopia. Sci Rep 2019; 9:4145. [PMID: 30858441 PMCID: PMC6411983 DOI: 10.1038/s41598-019-40299-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Accepted: 11/30/2018] [Indexed: 12/20/2022] Open
Abstract
Myopia, commonly referred to as nearsightedness, is one of the most common causes of visual disability throughout the world. It affects more people worldwide than any other chronic visual impairment condition. Although the prevalence varies among various ethnic groups, the incidence of myopia is increasing in all populations across globe. Thus, it is considered a pressing public health problem. Both genetics and environment play a role in development of myopia. To elucidate the epigenetic mechanism(s) underlying the pathophysiology of high-myopia, we conducted methylation profiling in 18 cases and 18 matched controls (aged 4–12 years), using Illumina MethylationEPIC BeadChips array. The degree of myopia was variable among subjects, ranging from −6 to −15D. We identified 1541 hypermethylated CpGs, representing 1745 genes (2.0-fold or higher) (false discovery rate (FDR) p ≤ 0.05), multiple CpGs were p < 5 × 10−8 with a receiver operating characteristic area under the curve (ROC-AUC) ≥ 0.75 in high-myopia subjects compared to controls. Among these, 48 CpGs had excellent correlation (AUC ≥ 0.90). Herein, we present the first genome-wide DNA methylation analysis in a unique high-myopia cohort, showing extensive and discrete methylation changes relative to controls. The genes we identified hold significant potential as targets for novel therapeutic intervention either alone, or in combination.
Collapse
|
15
|
Shaker OG, Abdelaleem OO, Mahmoud RH, Abdelghaffar NK, Ahmed TI, Said OM, Zaki OM. Diagnostic and prognostic role of serum miR-20b, miR-17-3p, HOTAIR, and MALAT1 in diabetic retinopathy. IUBMB Life 2018; 71:310-320. [PMID: 30468285 DOI: 10.1002/iub.1970] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2018] [Revised: 10/12/2018] [Accepted: 10/22/2018] [Indexed: 12/22/2022]
Abstract
Noncoding RNAs are emerging biomarkers for many diseases including diabetic retinopathy (DR). This study aimed to measure the expression levels of serum miR-20b, miR-17-3p, HOTAIR, and MALAT1 in DR patients. A total of 80 patients diagnosed as type 2 diabetes (T2D) and 81 healthy subjects were recruited in this study. T2D patients were divided into three groups: nondiabetic retinopathy (NDR) group (30 patients), nonproliferative diabetic retinopathy (NPDR) group (30 patients), and proliferative diabetic retinopathy (PDR) group (20 patients). Quantitative real-time polymerase chain reaction (PCR) was used to assess the expression of serum miR-20b, miR-17-3p, HOTAIR, and MALAT1. We found a significant decrease in serum miR-20b and a significant increase in serum HOTAIR and MALAT1 in NDR patients compared to healthy subjects. Also, we revealed a significant decrease in serum miR-20b and miR-17-3p and a significant increase in serum HOTAIR and MALAT1 in each of NPDR and PDR groups when compared with healthy subjects. Furthermore, we reported a significant decrease in miR-20b and miR-17-3p and a significant increase in HOTAIR and MALAT1in DR as well as in PDR patients when compared with NDR patients. However, on comparing NPDR with NDR patients, no significant difference was observed regarding the expression levels of miR-20b and miR-17-3p, in contrast, significant elevation of serum HOTAIR and MALAT1 was found in NPDR. Moreover, we observed a significant decrease in serum miR-20b and miR-17-3p and a significant increase in serum HOTAIR and MALAT1 in PDR group relative to NPDR group. Receiver operating characteristic (ROC) curve was used for evaluating the diagnostic value of the examined serum noncoding RNAs as novel biochemical indicators detecting severity of DR. Our analyses suggested that the examined serum noncoding RNAs may discriminate DR (PDR and NPDR) from NDR. Furthermore, these noncoding RNAs (less importantly miR-17) can be used as promising novel biomarkers for prediction DR severity, distinguishing PDR from NPDR patients. We can conclude that serum miR-20b, miR-17-3p, HOTAIR, and MALAT1 may be used as noninvasive biomarkers for screening of DR and early diagnosis of PDR. © 2018 IUBMB Life, 71(3):310-320, 2019.
Collapse
Affiliation(s)
- Olfat G Shaker
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Omayma O Abdelaleem
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Fayoum University, Fayoum, Egypt
| | - Rania H Mahmoud
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Fayoum University, Fayoum, Egypt
| | - Noha K Abdelghaffar
- Department of Clinical pathology, Faculty of Medicine, Fayoum University, Fayoum, Egypt
| | - Tarek I Ahmed
- Department of Internal medicine, Faculty of Medicine, Fayoum University, Fayoum, Egypt
| | - Omar M Said
- Department of Ophthalmology, Faculty of Medicine, Fayoum University, Fayoum, Egypt
| | - Othman M Zaki
- Department of Clinical pathology, Faculty of Medicine, Fayoum University, Fayoum, Egypt
| |
Collapse
|
16
|
Qiu F, Tong H, Wang Y, Tao J, Wang H, Chen L. Inhibition of miR-21-5p suppresses high glucose-induced proliferation and angiogenesis of human retinal microvascular endothelial cells by the regulation of AKT and ERK pathways via maspin. Biosci Biotechnol Biochem 2018; 82:1366-1376. [PMID: 29658404 DOI: 10.1080/09168451.2018.1459179] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The aim of the present study is to investigate the role of miR-21-5p in angiogenesis of human retinal microvascular endothelial cells (HRMECs). HRMECs were incubated with 5 mM glucose, 30 mM glucose or 30 mM mannitol for 24 h, 48 h or 72 h. Then, HRMECs exposed to 30 mM glucose were transfected with miR-21-5p inhibitor. We found that high glucose increased the expression of miR-21-5p, VEGF, VEGFR2 and cell proliferation activity. Inhibition of miR-21-5p reduced high glucose-induced proliferation, migration, tube formation of HRMECs, and reversed the decreased expression of maspin as well as the abnormal activation of PI3K/AKT and ERK pathways. Down-regulation of maspin by siRNA significantly increased the activities of PI3K/AKT and ERK pathways. In conclusion, inhibition of miR-21-5p could suppress high glucose-induced proliferation and angiogenesis of HRMECs, and these effects may partly dependent on the regulation of PI3K/AKT and ERK pathways via its target protein maspin.
Collapse
Affiliation(s)
- Feng Qiu
- a Department of Ophthalmology , The First Affiliated Hospital of China Medical University , Shenyang , People's Republic of China.,b Department of Ophthalmology , Shenyang Fourth People's Hospital , Shenyang , People's Republic of China
| | - Huijuan Tong
- c Department of Nursing , Shenyang Medical College , Shenyang , People's Republic of China
| | - Yawen Wang
- b Department of Ophthalmology , Shenyang Fourth People's Hospital , Shenyang , People's Republic of China
| | - Jun Tao
- b Department of Ophthalmology , Shenyang Fourth People's Hospital , Shenyang , People's Republic of China
| | - Hailin Wang
- b Department of Ophthalmology , Shenyang Fourth People's Hospital , Shenyang , People's Republic of China
| | - Lei Chen
- a Department of Ophthalmology , The First Affiliated Hospital of China Medical University , Shenyang , People's Republic of China
| |
Collapse
|
17
|
Roles of miRNAs and long noncoding RNAs in the progression of diabetic retinopathy. Biosci Rep 2017; 37:BSR20171157. [PMID: 29074557 PMCID: PMC5705777 DOI: 10.1042/bsr20171157] [Citation(s) in RCA: 88] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Revised: 10/22/2017] [Accepted: 10/25/2017] [Indexed: 02/07/2023] Open
Abstract
Diabetic retinopathy (DR) is the leading cause of blindness in working-age adults across the world. The pathogenesis of DR is multifactorial and the molecular mechanisms are still not fully understood. Accumulating evidence has demonstrated that noncoding RNAs (ncRNAs) may be aberrantly expressed and may play vital roles in the development of DR. Amongst ncRNAs, miRNAs and long ncRNAs (lncRNAs) are known for their regulatory functions. Here, we summarize the functions and mechanisms of known aberrantly expressed miRNAs and lncRNAs in DR. Additionally, a novel lncRNA–mRNA–miRNA network is included in this review. We highlight original studies that provide detailed data about the mechanisms of miRNAs and lncRNAs, their applications as diagnostic or prognostic biomarkers, and their potential therapeutic targets. In conclusion, this review will help us gain a better understanding of the molecular mechanisms by which miRNAs and lncRNAs perform their functions in DR, and provide general strategies and directions for future research.
Collapse
|
18
|
Assmann TS, Recamonde-Mendoza M, De Souza BM, Crispim D. MicroRNA expression profiles and type 1 diabetes mellitus: systematic review and bioinformatic analysis. Endocr Connect 2017; 6:773-790. [PMID: 28986402 PMCID: PMC5682418 DOI: 10.1530/ec-17-0248] [Citation(s) in RCA: 100] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Accepted: 10/06/2017] [Indexed: 12/15/2022]
Abstract
Growing evidence indicates that microRNAs (miRNAs) have a key role in processes involved in type 1 diabetes mellitus (T1DM) pathogenesis, including immune system functions and beta-cell metabolism and death. Although dysregulated miRNA profiles have been identified in T1DM patients, results are inconclusive; with only few miRNAs being consistently dysregulated among studies. Thus, we performed a systematic review of the literature on the subject, followed by bioinformatic analysis, to point out which miRNAs are dysregulated in T1DM-related tissues and in which pathways they act. PubMed and EMBASE were searched to identify all studies that compared miRNA expressions between T1DM patients and non-diabetic controls. Search was completed in August, 2017. Those miRNAs consistently dysregulated in T1DM-related tissues were submitted to bioinformatic analysis, using six databases of miRNA-target gene interactions to retrieve their putative targets and identify potentially affected pathways under their regulation. Thirty-three studies were included in the systematic review: 19 of them reported miRNA expressions in human samples, 13 in murine models and one in both human and murine samples. Among 278 dysregulated miRNAs reported in these studies, 25.9% were reported in at least 2 studies; however, only 48 of them were analyzed in tissues directly related to T1DM pathogenesis (serum/plasma, pancreas and peripheral blood mononuclear cells (PBMCs)). Regarding circulating miRNAs, 11 were consistently dysregulated in T1DM patients compared to controls: miR-21-5p, miR-24-3p, miR-100-5p, miR-146a-5p, miR-148a-3p, miR-150-5p, miR-181a-5p, miR-210-5p, miR-342-3p, miR-375 and miR-1275. The bioinformatic analysis retrieved a total of 5867 validated and 2979 predicted miRNA-target interactions for human miRNAs. In functional enrichment analysis of miRNA target genes, 77 KEGG terms were enriched for more than one miRNA. These miRNAs are involved in pathways related to immune system function, cell survival, cell proliferation and insulin biosynthesis and secretion. In conclusion, eleven circulating miRNAs seem to be dysregulated in T1DM patients in different studies, being potential circulating biomarkers of this disease.
Collapse
Affiliation(s)
- Taís S Assmann
- Endocrine DivisionHospital de Clínicas de Porto Alegre, Porto Alegre, Rio Grande do Sul, Brazil
- Postgraduation Program in Medical Sciences: EndocrinologyFaculdade de Medicina, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Mariana Recamonde-Mendoza
- Institute of InformaticsUniversidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Bianca M De Souza
- Endocrine DivisionHospital de Clínicas de Porto Alegre, Porto Alegre, Rio Grande do Sul, Brazil
- Postgraduation Program in Medical Sciences: EndocrinologyFaculdade de Medicina, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| | - Daisy Crispim
- Endocrine DivisionHospital de Clínicas de Porto Alegre, Porto Alegre, Rio Grande do Sul, Brazil
- Postgraduation Program in Medical Sciences: EndocrinologyFaculdade de Medicina, Universidade Federal do Rio Grande do Sul, Porto Alegre, Rio Grande do Sul, Brazil
| |
Collapse
|
19
|
Ye EA, Liu L, Steinle JJ. miR-15a/16 inhibits TGF-beta3/VEGF signaling and increases retinal endothelial cell barrier proteins. Vision Res 2017; 139:23-29. [PMID: 28774775 DOI: 10.1016/j.visres.2017.07.007] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Revised: 07/12/2017] [Accepted: 07/18/2017] [Indexed: 01/28/2023]
Abstract
Hyperglycemia is a significant risk factor for diabetic retinopathy and induces multiple biochemical changes, including inflammation and endothelial dysfunction in the retina. Alterations in microRNA expression have been implicated in the pathological responses of diabetic retinopathy and the manipulation of microRNA may provide powerful strategy for therapeutics. Among the predicted targets of miR-15a and -16 are TGF-beta3, SMAD2/3, and VEGF, all of which are known to play a role in vascular endothelial functions. The purpose of this study was to investigate the hypothesis that miR-15a/16 inhibits TGF-beta3/VEGF signaling to maintain retinal endothelial cell barrier protein levels. Human primary retinal endothelial cells (REC) were maintained in normal (5mM) glucose or transferred to high glucose medium (25mM) for 3days. REC were transfected with miRNA mimics (hsa-miR-15a-5p and -16-5p). Retinal lysates from miR-15a-transgenic mice were also analyzed. We demonstrated that overexpression of miR-15a/16 resulted in decreased TGF-beta3 signaling and VEGF levels in cultured REC grown in high glucose conditions. In addition, the levels of tight junction proteins, zonula occludens-1 (ZO-1) and occludin, were elevated in REC following overexpression of miR-15a and -16. Overexpression of miR-15a and -16 played a role in reducing cellular permeability through inhibition of VEGF signaling in REC cultured under high glucose conditions. Using miR-15a-transgenic mice, we demonstrated the regulatory role of miR-15a on TGF-beta3 signaling and tight junction proteins in vivo. Our outcomes suggest that miR-15a/16 maintain the retinal endothelial cell barrier by reducing TGFbeta3/VEGF signaling and increasing levels of key tight junction proteins.
Collapse
Affiliation(s)
- Eun-Ah Ye
- Department of Anatomy and Cell Biology, Wayne State University, Detroit, MI, USA
| | - Li Liu
- Department of Anatomy and Cell Biology, Wayne State University, Detroit, MI, USA
| | - Jena J Steinle
- Department of Anatomy and Cell Biology, Wayne State University, Detroit, MI, USA; Department of Ophthalmology, Wayne State University, Detroit, MI, USA.
| |
Collapse
|
20
|
Ye EA, Steinle JJ. miR-146a suppresses STAT3/VEGF pathways and reduces apoptosis through IL-6 signaling in primary human retinal microvascular endothelial cells in high glucose conditions. Vision Res 2017; 139:15-22. [PMID: 28433754 DOI: 10.1016/j.visres.2017.03.009] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Revised: 03/26/2017] [Accepted: 03/30/2017] [Indexed: 01/10/2023]
Abstract
microRNA (miRNA) play critical roles in the pathological processes of diabetic retinopathy, including inflammatory responses, insulin signaling, and angiogenesis. In addition to their regulatory functions on gene expression, miRNA is considered as a potential therapeutic target, as well as a diagnostic marker for many diseases. Our understanding on the pathological mechanisms underlying diabetic retinopathy is still incomplete and additional investigations are required to develop novel therapeutic strategies. The aim of this study was to investigate our hypothesis that miR-146a plays a role in suppressing pro-inflammatory pathways, involving STAT3 and VEGF, through regulating IL-6 signaling to reduce apoptosis of human retinal endothelial cells (REC) in high glucose conditions. Human REC were cultured in normal (5mM) glucose or high glucose medium (25mM) for 3days. We performed transfections on REC with miRNA mimics (hsa-miR-146a-5p). Overexpression of miR-146a reduced IL-6 levels, STAT3 phosphorylation, and VEGF levels in REC cultured in high glucose. Cellular apoptosis was decreased in REC overexpressing miR-146a, as demonstrated by the inhibition of DNA fragmentation. More importantly, we demonstrated that the regulatory role of miR-146a on STAT3/VEGF and apoptosis was mediated by IL-6 receptor signaling in REC. Overall, we report that miR-146a suppressed IL-6 signaling, leading to reduced levels of STAT3 and VEGF in REC in high glucose conditions, leading to decreased apoptosis. The outcome suggests that miR-146a is a potential molecular target for inhibiting inflammation and apoptosis in the diabetic retina through the suppression of the IL-6-mediated STAT3/VEGF pathway.
Collapse
Affiliation(s)
- Eun-Ah Ye
- Department of Anatomy and Cell Biology, Wayne State University School of Medicine, Detroit, MI, United States
| | - Jena J Steinle
- Department of Anatomy and Cell Biology, Wayne State University School of Medicine, Detroit, MI, United States; Ophthalmology, Wayne State University School of Medicine, Detroit, MI, United States.
| |
Collapse
|
21
|
Yang WZ, Yang J, Xue LP, Xiao LB, Li Y. MiR-126 overexpression inhibits high glucose-induced migration and tube formation of rhesus macaque choroid-retinal endothelial cells by obstructing VEGFA and PIK3R2. J Diabetes Complications 2017; 31:653-663. [PMID: 28131600 DOI: 10.1016/j.jdiacomp.2016.12.004] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Revised: 11/27/2016] [Accepted: 12/19/2016] [Indexed: 12/26/2022]
Abstract
AIM The aims of this study are to investigate the relative regulation between miR-126 and VEGF/PI3K/AKT signaling pathway in retinal vascular endothelial cells. METHODS Rhesus macaque choroid-retinal endothelial cell line (RF/6A) cells were cultured in high glucose to imitate the conditions occurring in DR. First, we detected the expression of miR-126, VEGFA and PIK3R2 in RF/6A cells on the condition of high glucose by q-PCR and western blot. Then, after addition of miR-126 mimics and miR-126 inhibitor, we investigated the function of miR-126 in RF/6A cells by scratch wound, Transwell migration and tube formation assays, and the effect of miR-126 on the expression of VEGFA, PIK3R2 and AKT. Moreover, bioinformatics analysis and luciferase array were used to confirm the direct or specific regulation of miR-126 to VEGFA or PIK3R2. RESULTS Here, first, we found that high glucose could induce the decrease of miR-126 and the increase of VEGFA and PIK3R2 in RF/6A. Then, by scratch wound, Transwell migration and tube formation assays, we found that miR-126 overexpression could inhibit the migration and sprouting of RF/6A cells induced by high glucose, while knockdown of miR-126 led to the opposite results. Moreover, overexpression of miR-126 inhibited the increased expression of VEGFA, PIK3R2, SDF-1α, VCAM-1, and SPRED1, and the activation of AKT1 induced by high glucose and miR-126 inhibitor caused the opposite results which were determined by q-PCR and western blot. In addition, by luciferase assay, we found that miR-126 could directly negatively regulate VEGFA and PIK3R2. CONCLUSION Our results suggest that miR-126 overexpression inhibits the migration and sprouting of RF/6A cells induced by high glucose which might possibly be by blocking VEGFA and PIK3R2 in the VEGF/PI3K/AKT signaling pathway.
Collapse
Affiliation(s)
- Wen-Zhi Yang
- Department of Ophthalmology, Fourth Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650021, China
| | - Jin Yang
- Department of Osteology, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, China
| | - Li-Ping Xue
- Department of Ophthalmology, Fourth Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650021, China
| | - Li-Bo Xiao
- Department of Ophthalmology, Fourth Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650021, China
| | - Yan Li
- Department of Ophthalmology, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, China.
| |
Collapse
|
22
|
Abstract
microRNAs (miRNAs) are a broad group of endogenous small non-coding molecules that reduce the transcription of mRNA and play a key role in post-transcriptional gene processes. miRNAs are involved in onset and progression of several human disorders such as infectious and immune non-infectious diseases, cancers, metabolic and cardiovascular disorders. They regulate the expression of gene targets (e.g. oncogenes and tumor suppressor genes) and act as gene repressors with mRNA binding and cleavage. The increasing evidence that miRNAs play a key role in the pathogenesis of cardiovascular conditions could radically change the future management approach to these disorders. This review focuses on current knowledge about the influence of miRNAs on cardiovascular disease, with particular regard to common conditions such as atherosclerosis, diabetes and migraine. Key messages miRNAs are a group of endogenous small non-coding RNA segments measuring 19-25 nucleotides that are involved in physiologic processes and onset and progression of disorders such as infectious and immune non-infectious diseases, cancers, metabolic and cardiovascular disorders. miRNAs expression guarantees vascular integrity, by regulating apoptosis, VEGF pathway and VCAM 1 expression (-126), and is involved in atherosclerotic plaque formation process and progression. Hyperglycemia, overt diabetes, and their complications are associated with overexpression of several miRNAs. An altered expression of miRNAs has also been postulated in migraine patients, although only a few preliminary studies have so far been performed with this respect.
Collapse
Affiliation(s)
- Claudio Tana
- a Internal Medicine Unit, Medical Department, Guastalla Hospital, AUSL Reggio Emilia , Italy
| | - Maria Adele Giamberardino
- b Geriatrics Clinic, Department of Medicine and Science of Aging , "G. D'Annunzio" University of Chieti , Italy
| | - Francesco Cipollone
- b Geriatrics Clinic, Department of Medicine and Science of Aging , "G. D'Annunzio" University of Chieti , Italy.,c Geriatrics Clinic and European Center of Excellence on Atherosclerosis, Hypertension and Dyslipidemia, Department of Medicine and Science of Aging, "G. D'Annunzio" University of Chieti , Italy
| |
Collapse
|
23
|
Villegas-Ruiz V, Hendlmeier F, Buentello-Volante B, Rodríguez-Loaiza JL, Miranda-Duarte A, Zenteno JC. Genome-wide mRNA analysis reveals a TUBD1 isoform profile as a potential biomarker for diabetic retinopathy development. Exp Eye Res 2017; 155:99-106. [DOI: 10.1016/j.exer.2017.01.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Revised: 12/23/2016] [Accepted: 01/21/2017] [Indexed: 01/23/2023]
|
24
|
Ma J, Wang J, Liu Y, Wang C, Duan D, Lu N, Wang K, Zhang L, Gu K, Chen S, Zhang T, You D, Han L. Comparisons of serum miRNA expression profiles in patients with diabetic retinopathy and type 2 diabetes mellitus. Clinics (Sao Paulo) 2017; 72:111-115. [PMID: 28273235 PMCID: PMC5304385 DOI: 10.6061/clinics/2017(02)08] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Accepted: 12/15/2016] [Indexed: 01/18/2023] Open
Abstract
OBJECTIVES: The aim of this study was to compare the expression levels of serum miRNAs in diabetic retinopathy and type 2 diabetes mellitus. METHODS: Serum miRNA expression profiles from diabetic retinopathy cases (type 2 diabetes mellitus patients with diabetic retinopathy) and type 2 diabetes mellitus controls (type 2 diabetes mellitus patients without diabetic retinopathy) were examined by miRNA-specific microarray analysis. Quantitative real-time polymerase chain reaction was used to validate the significantly differentially expressed serum miRNAs from the microarray analysis of 45 diabetic retinopathy cases and 45 age-, sex-, body mass index- and duration-of-diabetes-matched type 2 diabetes mellitus controls. The relative changes in serum miRNA expression levels were analyzed using the 2-ΔΔCt method. RESULTS: A total of 5 diabetic retinopathy cases and 5 type 2 diabetes mellitus controls were included in the miRNA-specific microarray analysis. The serum levels of miR-3939 and miR-1910-3p differed significantly between the two groups in the screening stage; however, quantitative real-time polymerase chain reaction did not reveal significant differences in miRNA expression for 45 diabetic retinopathy cases and their matched type 2 diabetes mellitus controls. CONCLUSION: Our findings indicate that miR-3939 and miR-1910-3p may not play important roles in the development of diabetic retinopathy; however, studies with a larger sample size are needed to confirm our findings.
Collapse
Affiliation(s)
- Jianping Ma
- Shenzhen Nanshan Center for Chronic Disease Control, Department of Chronic Disease Prevention and Control, Shenzhen, 518054, China
- #Co-first authors
| | - Jufang Wang
- Ningbo Medical Center Lihuili Eastern Hospital, Department of Endocrinology, Ningbo 315040, China
- #Co-first authors
| | - Yanfen Liu
- Ningbo University, School of Medicine, Zhejiang Provincial Key Laboratory of Pathophysiology, Ningbo 315211, China
- #Co-first authors
| | - Changyi Wang
- Shenzhen Nanshan Center for Chronic Disease Control, Department of Chronic Disease Prevention and Control, Shenzhen, 518054, China
- #Co-first authors
| | - Donghui Duan
- Ningbo University, School of Medicine, Zhejiang Provincial Key Laboratory of Pathophysiology, Ningbo 315211, China
| | - Nanjia Lu
- Ningbo University, School of Medicine, Zhejiang Provincial Key Laboratory of Pathophysiology, Ningbo 315211, China
| | - Kaiyue Wang
- Ningbo University, School of Medicine, Zhejiang Provincial Key Laboratory of Pathophysiology, Ningbo 315211, China
| | - Lu Zhang
- Ningbo University, School of Medicine, Zhejiang Provincial Key Laboratory of Pathophysiology, Ningbo 315211, China
| | - Kaibo Gu
- Ningbo University, School of Medicine, Zhejiang Provincial Key Laboratory of Pathophysiology, Ningbo 315211, China
| | - Sihan Chen
- Shenzhen Nanshan Center for Chronic Disease Control, Department of Chronic Disease Prevention and Control, Shenzhen, 518054, China
| | - Tao Zhang
- Shenzhen Nanshan Center for Chronic Disease Control, Department of Chronic Disease Prevention and Control, Shenzhen, 518054, China
| | - Dingyun You
- Kunming Medical University, Department of Science and Technology, Kunming, 650500, China
- *Corresponding author. E-mail: /
| | - Liyuan Han
- Ningbo University, School of Medicine, Zhejiang Provincial Key Laboratory of Pathophysiology, Ningbo 315211, China
- *Corresponding author. E-mail: /
| |
Collapse
|
25
|
Wang JH, Ling D, Tu L, van Wijngaarden P, Dusting GJ, Liu GS. Gene therapy for diabetic retinopathy: Are we ready to make the leap from bench to bedside? Pharmacol Ther 2017; 173:1-18. [PMID: 28132907 DOI: 10.1016/j.pharmthera.2017.01.003] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Diabetic retinopathy (DR), a chronic and progressive complication of diabetes mellitus, is a sight-threatening disease characterized in the early stages by neuronal and vascular dysfunction in the retina, and later by neovascularization that further damages vision. A major contributor to the pathology is excess production of vascular endothelial growth factor (VEGF), a growth factor that induces formation of new blood vessels and increases permeability of existing vessels. Despite the recent availability of effective treatments for the disease, including laser photocoagulation and therapeutic VEGF antibodies, DR remains a significant cause of vision loss worldwide. Existing anti-VEGF agents, though generally effective, are limited by their short therapeutic half-lives, necessitating frequent intravitreal injections and the risk of attendant adverse events. Management of DR with gene therapies has been proposed for several years, and pre-clinical studies have yielded enticing findings. Gene therapy holds several advantages over conventional treatments for DR, such as a longer duration of therapeutic effect, simpler administration, the ability to intervene at an earlier stage of the disease, and potentially fewer side-effects. In this review, we summarize the current understanding of the pathophysiology of DR and provide an overview of research into DR gene therapies. We also examine current barriers to the clinical application of gene therapy for DR and evaluate future prospects for this approach.
Collapse
Affiliation(s)
- Jiang-Hui Wang
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, East Melbourne, Victoria, Australia; Ophthalmology, Department of Surgery, University of Melbourne, Melbourne, Victoria, Australia
| | - Damien Ling
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, East Melbourne, Victoria, Australia; Discipline of Ophthalmology, Sydney Medical School, University of Sydney, Sydney, New South Wales, Australia
| | - Leilei Tu
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, East Melbourne, Victoria, Australia; Department of Ophthalmology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Peter van Wijngaarden
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, East Melbourne, Victoria, Australia; Ophthalmology, Department of Surgery, University of Melbourne, Melbourne, Victoria, Australia
| | - Gregory J Dusting
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, East Melbourne, Victoria, Australia; Ophthalmology, Department of Surgery, University of Melbourne, Melbourne, Victoria, Australia
| | - Guei-Sheung Liu
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, East Melbourne, Victoria, Australia; Ophthalmology, Department of Surgery, University of Melbourne, Melbourne, Victoria, Australia; Menzies Institute for Medical Research, University of Tasmania, Tasmania, Australia.
| |
Collapse
|
26
|
Pusparajah P, Lee LH, Abdul Kadir K. Molecular Markers of Diabetic Retinopathy: Potential Screening Tool of the Future? Front Physiol 2016; 7:200. [PMID: 27313539 PMCID: PMC4887489 DOI: 10.3389/fphys.2016.00200] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Accepted: 05/17/2016] [Indexed: 12/13/2022] Open
Abstract
Diabetic retinopathy (DR) is among the leading causes of new onset blindness in adults. Effective treatment may delay the onset and progression of this disease provided it is diagnosed early. At present retinopathy can only be diagnosed via formal examination of the eye by a trained specialist, which limits the population that can be effectively screened. An easily accessible, reliable screening biomarker of diabetic retinopathy would be of tremendous benefit in detecting the population in need of further assessment and treatment. This review highlights specific biomarkers that show promise as screening markers to detect early diabetic retinopathy or even to detect patients at increased risk of DR at the time of diagnosis of diabetes. The pathobiology of DR is complex and multifactorial giving rise to a wide array of potential biomarkers. This review provides an overview of these pathways and looks at older markers such as advanced glycation end products (AGEs), inflammatory markers, vascular endothelial growth factor (VEGF) as well as other newer proteins with a role in the pathogenesis of DR including neuroprotective factors such as brain derived neurotrophic factor (BDNF) and Pigment Epithelium Derived Factor (PEDF); SA100A12, pentraxin 3, brain natriuretic peptide, apelin 3, and chemerin as well as various metabolites such as lipoprotein A, folate, and homocysteine. We also consider the possible role of proteins identified through proteomics work whose levels are altered in the sera of patients with DR as screening markers though their role in pathophysiology remains to be characterized. The role of microRNA as a promising new screening marker is also discussed.
Collapse
Affiliation(s)
- Priyia Pusparajah
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia Bandar Sunway, Malaysia
| | - Learn-Han Lee
- School of Pharmacy, Monash University MalaysiaBandar Sunway, Malaysia; Center of Health Outcomes Research and Therapeutic Safety (Cohorts), School of Pharmaceutical Sciences, University of PhayaoPhayao, Thailand
| | - Khalid Abdul Kadir
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia Bandar Sunway, Malaysia
| |
Collapse
|
27
|
Cai X, McGinnis JF. Diabetic Retinopathy: Animal Models, Therapies, and Perspectives. J Diabetes Res 2016; 2016:3789217. [PMID: 26881246 PMCID: PMC4736804 DOI: 10.1155/2016/3789217] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Accepted: 12/06/2015] [Indexed: 12/12/2022] Open
Abstract
Diabetic retinopathy (DR) is one of the major complications of diabetes. Although great efforts have been made to uncover the mechanisms underlying the pathology of DR, the exact causes of DR remain largely unknown. Because of multifactor involvement in DR etiology, currently no effective therapeutic treatments for DR are available. In this paper, we review the pathology of DR, commonly used animal models, and novel therapeutic approaches. Perspectives and future directions for DR treatment are discussed.
Collapse
Affiliation(s)
- Xue Cai
- Department of Ophthalmology, Dean McGee Eye Institute, Oklahoma University Health Sciences Center, Oklahoma City, OK 73104, USA
- *Xue Cai: and
| | - James F. McGinnis
- Department of Ophthalmology, Dean McGee Eye Institute, Oklahoma University Health Sciences Center, Oklahoma City, OK 73104, USA
- Department of Cell Biology, Oklahoma University Health Sciences Center, Oklahoma City, OK 73104, USA
- Oklahoma Center for Neuroscience, Oklahoma University Health Sciences Center, Oklahoma City, OK 73104, USA
- *James F. McGinnis:
| |
Collapse
|
28
|
Moura J, Børsheim E, Carvalho E. The Role of MicroRNAs in Diabetic Complications-Special Emphasis on Wound Healing. Genes (Basel) 2014; 5:926-56. [PMID: 25268390 PMCID: PMC4276920 DOI: 10.3390/genes5040926] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2014] [Revised: 09/05/2014] [Accepted: 09/10/2014] [Indexed: 12/19/2022] Open
Abstract
Overweight and obesity are major problems in today’s society, driving the prevalence of diabetes and its related complications. It is important to understand the molecular mechanisms underlying the chronic complications in diabetes in order to develop better therapeutic approaches for these conditions. Some of the most important complications include macrovascular abnormalities, e.g., heart disease and atherosclerosis, and microvascular abnormalities, e.g., retinopathy, nephropathy and neuropathy, in particular diabetic foot ulceration. The highly conserved endogenous small non-coding RNA molecules, the micro RNAs (miRNAs) have in recent years been found to be involved in a number of biological processes, including the pathogenesis of disease. Their main function is to regulate post-transcriptional gene expression by binding to their target messenger RNAs (mRNAs), leading to mRNA degradation, suppression of translation or even gene activation. These molecules are promising therapeutic targets and demonstrate great potential as diagnostic biomarkers for disease. This review aims to describe the most recent findings regarding the important roles of miRNAs in diabetes and its complications, with special attention given to the different phases of diabetic wound healing.
Collapse
Affiliation(s)
- João Moura
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra 3004-517, Portugal.
| | - Elisabet Børsheim
- Arkansas Children's Nutrition Center, Little Rock, Arkansas, AR 72202, USA.
| | - Eugenia Carvalho
- Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra 3004-517, Portugal.
| |
Collapse
|