1
|
Duot M, Viel R, Viet J, Le Goff-Gaillard C, Paillard L, Lachke SA, Gautier-Courteille C, Reboutier D. Eye Lens Organoids Made Simple: Characterization of a New Three-Dimensional Organoid Model for Lens Development and Pathology. Cells 2023; 12:2478. [PMID: 37887322 PMCID: PMC10605248 DOI: 10.3390/cells12202478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 10/09/2023] [Accepted: 10/13/2023] [Indexed: 10/28/2023] Open
Abstract
Cataract, the opacification of the lens, is the leading cause of blindness worldwide. Although effective, cataract surgery is costly and can lead to complications. Toward identifying alternate treatments, it is imperative to develop organoid models relevant for lens studies and drug screening. Here, we demonstrate that by culturing mouse lens epithelial cells under defined three-dimensional (3D) culture conditions, it is possible to generate organoids that display optical properties and recapitulate many aspects of lens organization and biology. These organoids can be rapidly produced in large amounts. High-throughput RNA sequencing (RNA-seq) on specific organoid regions isolated via laser capture microdissection (LCM) and immunofluorescence assays demonstrate that these lens organoids display a spatiotemporal expression of key lens genes, e.g., Jag1, Pax6, Prox1, Hsf4 and Cryab. Further, these lens organoids are amenable to the induction of opacities. Finally, the knockdown of a cataract-linked RNA-binding protein encoding gene, Celf1, induces opacities in these organoids, indicating their use in rapidly screening for genes that are functionally relevant to lens biology and cataract. In sum, this lens organoid model represents a compelling new tool to advance the understanding of lens biology and pathology and can find future use in the rapid screening of compounds aimed at preventing and/or treating cataracts.
Collapse
Affiliation(s)
- Matthieu Duot
- CNRS, UMR 6290, Institut de Génétique et Développement de Rennes (IGDR), Université de Rennes, 35000 Rennes, France
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA
| | - Roselyne Viel
- CNRS, Inserm UMS Biosit, H2P2 Core Facility, Université de Rennes, 35000 Rennes, France
| | - Justine Viet
- CNRS, UMR 6290, Institut de Génétique et Développement de Rennes (IGDR), Université de Rennes, 35000 Rennes, France
| | - Catherine Le Goff-Gaillard
- CNRS, UMR 6290, Institut de Génétique et Développement de Rennes (IGDR), Université de Rennes, 35000 Rennes, France
| | - Luc Paillard
- CNRS, UMR 6290, Institut de Génétique et Développement de Rennes (IGDR), Université de Rennes, 35000 Rennes, France
| | - Salil A. Lachke
- Department of Biological Sciences, University of Delaware, Newark, DE 19716, USA
- Center for Bioinformatics and Computational Biology, University of Delaware, Newark, DE 19716, USA
| | - Carole Gautier-Courteille
- CNRS, UMR 6290, Institut de Génétique et Développement de Rennes (IGDR), Université de Rennes, 35000 Rennes, France
| | - David Reboutier
- CNRS, UMR 6290, Institut de Génétique et Développement de Rennes (IGDR), Université de Rennes, 35000 Rennes, France
| |
Collapse
|
2
|
Duot M, Viel R, Viet J, Le Goff-Gaillard C, Paillard L, Lachke SA, Gautier-Courteille C, Reboutier D. Eye lens organoids going simple: characterization of a new 3-dimensional organoid model for lens development and pathology. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.12.548679. [PMID: 37503005 PMCID: PMC10370037 DOI: 10.1101/2023.07.12.548679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
The ocular lens, along with the cornea, focuses light on the retina to generate sharp images. Opacification of the lens, or cataract, is the leading cause of blindness worldwide. Presently, the best approach for cataract treatment is to surgically remove the diseased lens and replace it with an artificial implant. Although effective, this is costly and can have post-surgical complications. Toward identifying alternate treatments, it is imperative to develop organoid models relevant for lens studies and anti-cataract drug screening. Here, we demonstrate that by culturing mouse lens epithelial cells under defined 3-dimensional (3D) culture conditions, it is possible to generate organoids that display optical properties and recapitulate many aspects of lens organization at the tissue, cellular and transcriptomic levels. These 3D cultured lens organoids can be rapidly produced in large amounts. High-throughput RNA-sequencing (RNA-seq) on specific organoid regions isolated by laser capture microdissection (LCM) and immunofluorescence assays demonstrate that these lens organoids display spatiotemporal expression of key lens genes, e.g. , Jag1 , Pax6 , Prox1 , Hsf4 and Cryab . Further, these lens organoids are amenable to induction of opacities. Finally, knockdown of a cataract-linked RNA-binding protein encoding gene, Celf1 , induces opacities in these organoids, indicating their use in rapidly screening for genes functionally relevant to lens biology and cataract. In sum, this lens organoid model represents a compelling new tool to advance the understanding of lens biology and pathology, and can find future use in the rapid screening of compounds aimed at preventing and/or treating cataract.
Collapse
|
3
|
Wride MA. Lens fibre cell differentiation and organelle loss: many paths lead to clarity. Philos Trans R Soc Lond B Biol Sci 2011; 366:1219-33. [PMID: 21402582 DOI: 10.1098/rstb.2010.0324] [Citation(s) in RCA: 152] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The programmed removal of organelles from differentiating lens fibre cells contributes towards lens transparency through formation of an organelle-free zone (OFZ). Disruptions in OFZ formation are accompanied by the persistence of organelles in lens fibre cells and can contribute towards cataract. A great deal of work has gone into elucidating the nature of the mechanisms and signalling pathways involved. It is apparent that multiple, parallel and redundant pathways are involved in this process and that these pathways form interacting networks. Furthermore, it is possible that the pathways can functionally compensate for each other, for example in mouse knockout studies. This makes sense given the importance of lens clarity in an evolutionary context. Apoptosis signalling and proteolytic pathways have been implicated in both lens fibre cell differentiation and organelle loss, including the Bcl-2 and inhibitor of apoptosis families, tumour necrosis factors, p53 and its regulators (such as Mdm2) and proteolytic enzymes, including caspases, cathepsins, calpains and the ubiquitin-proteasome pathway. Ongoing approaches being used to dissect the molecular pathways involved, such as transgenics, lens-specific gene deletion and zebrafish mutants, are discussed here. Finally, some of the remaining unresolved issues and potential areas for future studies are highlighted.
Collapse
Affiliation(s)
- Michael A Wride
- Ocular Development and Neurobiology Research Group, Zoology Department, School of Natural Sciences, Trinity College Dublin, Dublin 2, Republic of Ireland.
| |
Collapse
|
4
|
Abstract
The ocular lens is a distinct system to study cell death for the following reasons. First, during animal development, the ocular lens is crafted into its unique shape. The crafting processes include cell proliferation, cell migration, and apoptosis. Moreover, the lens epithelial cells differentiate into lens fiber cells through a process, which utilizes the same regulators as those in apoptosis at multiple signaling steps. In addition, introduction of exogenous wild-type or mutant genes or knock-out of the endogenous genes leads to apoptosis of the lens epithelial cells followed by absence of the ocular lens or formation of abnormal lens. Finally, both in vitro and in vivo studies have shown that treatment of adult lens with stress factors induces apoptosis of lens epithelial cells, which is followed by cataractogenesis. The present review summarizes the current knowledge on apoptosis in the ocular lens with emphasis on its role in lens development and pathology.
Collapse
Affiliation(s)
- Qin Yan
- College of Life Sciences, Hunan Normal University, Changsha, Hunan 410081, China
| | | | | |
Collapse
|
5
|
Abstract
The intraocular lens has recently been recognized as a potential source for neuroprotective and neurite-promoting activities. The lens is ontogenetically and functionally a peculiar intraocular tissue with the unique feature of performing incomplete cellular apoptosis throughout the lifetime. The ectodermally derived epithelial cells permanently divide to produce the nuclei- and organelle-free lens fibre cells that allow for the optical transparency. The underlying extremely specific physical, biochemical, metabolic and structural mechanism lead to efficient protection from photo-oxidative stress caused by exposure to short-wavelength light. The fact that fibre cells undergo incomplete apoptosis is also of crucial importance to other cellular systems. In particular, injured nerve cells such as axotomized retinal ganglion cells may profit from the apoptosis-blocking mechanisms operating within the lens fibres. In this review we first discuss some factors involved in the lens differentiation and partial apoptosis as a basic principle of long-term survival. We then present recent experimental evidence that lenticular factors also operate outside the lens, and in particular within the retina to contribute to axonal regeneration, e.g. after a trauma. In turn, factors such as GAP-43 that were thought to be exclusively expressed within nervous tissue have now also been discovered within the lenticular tissue. Experiments of the direct confrontation of lenticular epithelial and fibre cells with regenerating ganglion cell axons in vitro are presented. It is concluded that survival factors supplied by the lens might be used to facilitate survival within neuronal tissue.
Collapse
Affiliation(s)
- T Stupp
- Department of Experimental Ophthalmology, School of Medicine, University Eye Hospital of Münster and Interdisciplinary Clinical Research Center (IZKF), Domagkstrasse 15, D-48149 Münster, Germany
| | | |
Collapse
|
6
|
Maruno KA, Lovicu FJ, Chamberlain CG, McAvoy JW. Apoptosis is a feature of TGF beta-induced cataract. Clin Exp Optom 2002; 85:76-82. [PMID: 11952402 DOI: 10.1111/j.1444-0938.2002.tb03012.x] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/14/2002] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND Studies in our laboratory have shown that transforming growth factor beta (TGF beta) induces rodent lens epithelial cells to undergo aberrant growth and differentiation that reproduces morphological and molecular features of human anterior subcapsular cataract and posterior capsule opacification. In addition, features of apoptosis have been described in some forms of human cataract. In the present study we investigated apoptotic changes induced by TGF beta in our rodent models. METHODS Lens epithelial explants and whole lenses from rats were cultured with TGF beta. Morphological analysis and TUNEL were used to detect apoptotic changes. Transgenic mice expressing a self-activating form of human TGF beta 1 in the lens were included in the analysis. RESULTS TGF beta-induced cell loss in epithelial explants coincided with increased numbers of pyknotic nuclei. Some of these nuclei were TUNEL-positive. Studies on lenses cultured with TGF beta and lenses from transgenic mice showed that the subcapsular plaques that developed contained pyknotic nuclei and that many of these were TUNEL-positive. DISCUSSION This study shows that cells develop morphological and molecular features of apoptosis in TGF beta-induced cataract models. This confirms that apoptosis can be included as another TGF beta-induced cellular change that mimics events in human cataract.
Collapse
Affiliation(s)
- Kevin A Maruno
- Department of Anatomy and Histology and Institute for Biomedical Research, University of Sydney, NSW, Australia
| | | | | | | |
Collapse
|
7
|
Wride MA, Parker E, Sanders EJ. Members of the bcl-2 and caspase families regulate nuclear degeneration during chick lens fibre differentiation. Dev Biol 1999; 213:142-56. [PMID: 10452852 DOI: 10.1006/dbio.1999.9375] [Citation(s) in RCA: 68] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The optical clarity of the lens is ensured by the programmed removal of nuclei and other organelles from the lens fibre cells during development. The morphology of the degenerating nuclei is similar to that observed during apoptosis and is accompanied by DNA fragmentation. Proteins encoded by the bcl-2 proto-oncogene family are important in either promoting or inhibiting apoptosis, and caspases are involved in downstream proteolytic events. Here, the expression of bcl-2 family members (bcl-2, bax, bad, and bcl-x(s/l)) and caspases-1, -2, -3, -4, and -6 was investigated through a range of stages of chick lens development using immunocytochemistry, Western blotting, and affinity labelling for caspases using biotinylated caspase inhibitors. Using differentiating lens epithelial cell cultures, it was demonstrated that the addition to cultures of synthetic peptide inhibitors of caspases -1, -2, -4, -6, and -9 brought about a 50-70% reduction in the number of degenerating nuclei per unit area of culture, as assessed by image analysis. These effects were comparable to those seen when general inhibitors of caspases were added to cultures. On the other hand, inhibitors of caspases-3 and -8 were not effective in significantly reducing the number of TUNEL-labelled nuclei. Expression of the caspase substrates poly(ADP-ribose) polymerase (PARP) and the 45-kDa subunit of DNA fragmentation factor (DFF 45) was also observed in the developing lens. Western blots of cultures to which caspase inhibitors were added revealed alterations in the PARP cleavage pattern, but not in that of DFF. These results demonstrate a role for members of the bcl-2 family and caspases in the degeneration of lens fibre cell nuclei during chick secondary lens fibre development and support the proposal that this process has many characteristics in common with apoptosis.
Collapse
Affiliation(s)
- M A Wride
- Department of Physiology, University of Alberta, Edmonton, Alberta, T6G 2H7, Canada.
| | | | | |
Collapse
|
8
|
Klok EJ, van Genesen ST, Civil A, Schoenmakers JG, Lubsen NH. Regulation of expression within a gene family. The case of the rat gammaB- and gammaD-crystallin promoters. J Biol Chem 1998; 273:17206-15. [PMID: 9642290 DOI: 10.1074/jbc.273.27.17206] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The six closely related and clustered rat gamma-crystallin genes, the gammaA- to gammaF-crystallin genes, are simultaneously activated in the embryonic lens but differentially shut down during postnatal development with the gammaB-crystallin gene, the last one to be active. We show here that developmental silencing of the gammaD-crystallin promoter correlates with delayed demethylation during lens fiber cell differentiation. Methylation silencing of the gammaD-crystallin promoter is a general effect and does not require the methylation of a specific CpG, nor does methylation interfere with factor binding to the proximal activator. In later development, the gammaD-crystallin promoter is also shut down earlier by a repressor that footprints to the -91/-78 region. A factor with identical properties is present in brain. Hence, a ubiquitous factor has been recruited as a developmental regulator by the lens. All gamma-crystallin promoters tested contain upstream silencers, but at least the gammaB-crystallin silencer is distinct from the gammaD-crystallin silencer. The gamma-crystallin promoters were found to share a proximal activator (the gamma-box; around -50), which behaves as a MARE. The gammaB-box is recognized with much lower avidity than the gammaD-box. By swapping elements between the gammaB- and the gammaD-crystallin promoter, we show that activation by the gammaB-box requires a directly adjacent -46/-38 AP-1 consensus site. These experiments also uncovered another positive element in the gammaD-crystallin promoter, around -10. In the context of the gammaD-crystallin promoter, this element is redundant; in the context of the gammaB-crystallin promoter, it can replace the -46/-38 element.
Collapse
Affiliation(s)
- E J Klok
- Department of Molecular Biology, University of Nijmegen, Toernooiveld 1, 6525 ED Nijmegen, The Netherlands
| | | | | | | | | |
Collapse
|
9
|
Abstract
There is increasing evidence that programmed cell death (PCD) depends on a novel family of intracellular cysteine proteases, called caspases, that includes the Ced-3 protease in the nematode Caenorhabditis elegans and the interleukin-1beta-converting enzyme (ICE)-like proteases in mammals. Some developing cells, including lens epithelial cells, erythroblasts, and keratinocytes, lose their nucleus and other organelles when they terminally differentiate, but it is not known whether the enzymatic machinery of PCD is involved in any of these normal differentiation events. We show here that at least one CPP32 (caspase-3)-like member of the caspase family becomes activated when rodent lens epithelial cells terminally differentiate into anucleate lens fibers in vivo, and that a peptide inhibitor of these proteases blocks the denucleation process in an in vitro model of lens fiber differentiation. These findings suggest that at least part of the machinery of PCD is involved in lens fiber differentiation.
Collapse
Affiliation(s)
- Y Ishizaki
- Department of Hygiene, Kobe University School of Medicine, Chuo-ku, Kobe 650, Japan
| | | | | |
Collapse
|
10
|
Chamberlain CG, McAvoy JW. Fibre differentiation and polarity in the mammalian lens: a key role for FGF. Prog Retin Eye Res 1997. [DOI: 10.1016/s1350-9462(96)00034-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
11
|
Abstract
In this paper, the more recent literature pertaining to differentiation in the developing vertebrate lens is reviewed in relation to previous work. The literature reviewed reveals that the developing lens has been, and will continue to be, a useful model system for the examination of many fundamental processes occurring during embryonic development. Areas of lens development reviewed here include: the induction and early embryology of the lens; lens cell culture techniques; the role of growth factors and cytokines; the involvement of gap junctions in lens cell-cell communication; the role of cell adhesion molecules, integrins, and the extracellular matrix; the role of the cytoskeleton; the processes of programmed cell death (apoptosis) and lens fibre cell denucleation; the involvement of Pax and Homeobox genes; and crystallin gene regulation. Finally, some speculation is provided as to possible directions for further research in lens development.
Collapse
Affiliation(s)
- M A Wride
- Department of Physiology, University of Alberta, Edmonton, Canada
| |
Collapse
|
12
|
Richardson NA, McAvoy JW, Chamberlain CG. Age of rats affects response of lens epithelial explants to fibroblast growth factor. Exp Eye Res 1992; 55:649-56. [PMID: 1478274 DOI: 10.1016/0014-4835(92)90169-s] [Citation(s) in RCA: 30] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Fibroblast growth factor (FGF) is a potent inducer of fibre differentiation in lens epithelial explants from neonatal rats. Previously, using explants prepared from the central region of the lens epithelium, we showed an age-related loss of ability to accumulate fibre-specific crystallins in response to basic FGF. These studies have now been extended to include the peripheral region of the lens epithelium. Firstly we cultured explants from the central or peripheral regions of neonatal lenses with varying doses of FGF for 5 days, then determined how much fibre-specific beta-crystallin they had accumulated. The concentration of FGF required to induce a half-maximal response was lower for peripheral than for central cells (7 ng ml-1 compared with 36 ng ml-1). We then compared the ability of peripheral explants from 3-, 21-, 100- and 175-day-old rats to undergo fibre differentiation during culture with FGF for 13 days. In these studies alpha-, beta- and gamma-crystallins were localized in explants or quantified by ELISAs. There was an age-related decrease in responsiveness to FGF, as already observed for central explants; however, unlike central explants, peripheral explants from the oldest rats still retained the ability to respond to FGF by accumulating beta-crystallin. This suggests that FGF in the eye may play an important role in inducing lens epithelial cells at the lens equator to differentiate into fibres throughout life.
Collapse
Affiliation(s)
- N A Richardson
- Department of Histology and Embryology, University of Sydney, Australia
| | | | | |
Collapse
|
13
|
Vrensen GF, Graw J, De Wolf A. Nuclear breakdown during terminal differentiation of primary lens fibres in mice: a transmission electron microscopic study. Exp Eye Res 1991; 52:647-59. [PMID: 1855541 DOI: 10.1016/0014-4835(91)90017-9] [Citation(s) in RCA: 76] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The pre and post-natal development of wild type mouse lenses was studied by transmission electron microscopy, with special emphasis on denucleation of primary lens fibres. Denucleation of primary fibres is characterized by nuclear accumulation of small granules, most likely nucleosomes, which are condensed to osmiophilic bodies in the nucleus and in the cytoplasm. The osmiophilic bodies are laid down in apposition to the fibre membrane and are invaded by vesicles and granules, which probably contain proteolytic enzymes. Part of the breakdown products are extruded into the extracellular space, transported to the anterior and posterior poles where they might be finally digested or discarded from the lens. The morphology of the denucleation process of primary fibres is different from the gradual fading of nuclei in secondary fibres as described by Kuwabara and Imaizumi (1974: Invest. Ophthalmol. Vis. Sci. 13, 973-81).
Collapse
Affiliation(s)
- G F Vrensen
- Department of Morphology, The Netherlands Ophthalmic Research Institute, Amsterdam
| | | | | |
Collapse
|
14
|
Richardson NA, McAvoy JW. Analysis of an inductive interaction between lens and neural retina in rats of different ages. Exp Eye Res 1986; 43:1031-42. [PMID: 3817023 DOI: 10.1016/0014-4835(86)90080-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Lens epithelial cells from neonatal rats cultured with neural retinas or neural retina-conditioned medium (RCM), undergo fibre differentiation. This is characterized by cell elongation, increased alpha-crystallin synthesis and the initiation of beta and gamma-crystallin synthesis. To determine if this tissue interaction continues in later life we developed an ELISA method to analyse patterns of alpha and beta-crystallin accumulation in epithelia from 3-day-, 10-day- and 21-day-old rats. Culture of lens epithelia with RCM resulted in the formation of multilayers of elongated fibres and the accumulation of alpha and beta-crystallins. The patterns of crystallin accumulation were essentially similar whether expressed as microgram crystallin per explant, or crystallin per DNA (ng per ng). alpha- and beta-Crystallins accumulated rapidly in explants after 2 days of culture in RCM, whereas explants grown in control medium showed no change in the crystallin levels from day 0 to day 10. Patterns of alpha- and beta-crystallin accumulation showed that there were no significant differences between the ability of lens epithelia from 3-day-, 10-day or 21-day-old rats to undergo fibre differentiation in response to RCM. Therefore we conclude that the inductive interaction between lens and neural retina is not restricted to embryonic or neonatal stages, but continues on throughout life maintaining normal patterns of fibre differentiation in the lens.
Collapse
|