1
|
Shah SN, Grunwell JR, Mohammad AF, Stephenson ST, Lee GB, Vickery BP, Fitzpatrick AM. Performance of Eosinophil Cationic Protein as a Biomarker in Asthmatic Children. THE JOURNAL OF ALLERGY AND CLINICAL IMMUNOLOGY-IN PRACTICE 2021; 9:2761-2769.e2. [PMID: 33781764 DOI: 10.1016/j.jaip.2021.02.053] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 02/07/2021] [Accepted: 02/25/2021] [Indexed: 11/19/2022]
Abstract
BACKGROUND Although blood eosinophils are a frequently used marker of type 2 inflammation in children with asthma, their sensitivity is relatively poor. Additional markers of type 2 inflammation are needed. OBJECTIVE We hypothesized that plasma concentrations of eosinophil cationic protein (ECP), a marker of eosinophil activation, would be useful for detection of type 2 inflammation and would predict poorer asthma outcomes over 1 year. METHODS Children and adolescents 6 through 17 years (N = 256) with confirmed asthma completed a baseline visit and a follow-up visit at 12 months. A subset also underwent systemic corticosteroid responsiveness testing with intramuscular triamcinolone. Outcome measures at 12 months included uncontrolled asthma, lung function, and asthma exacerbations treated with systemic corticosteroids. RESULTS Plasma ECP concentrations ranged from 0.03 to 413.61 ng/mL (median, 6.95 ng/mL) and were consistently associated with other markers of type 2 inflammation. At baseline, children in the highest ECP tertile had poorer asthma control, more airflow limitation, and more exacerbations, but also had greater symptom improvement with intramuscular triamcinolone. At 12 months, associations between the highest ECP tertile and exacerbations, but not lung function or asthma control, persisted after covariate adjustment. However, the sensitivity of ECP was modest and was not markedly different from that of blood eosinophil counts. CONCLUSION Plasma ECP concentrations may be a useful marker of type 2 inflammation in children and may help identify those children at highest risk for recurrent exacerbations who could benefit from corticosteroid treatment. However, additional markers may be needed to improve sensitivity for outcome detection.
Collapse
Affiliation(s)
- Sheel N Shah
- Department of Pediatrics, Emory University, Atlanta, Ga; Center for Cystic Fibrosis and Airways Disease Research, Children's Healthcare of Atlanta, Atlanta, Ga
| | - Jocelyn R Grunwell
- Department of Pediatrics, Emory University, Atlanta, Ga; Center for Cystic Fibrosis and Airways Disease Research, Children's Healthcare of Atlanta, Atlanta, Ga
| | | | | | - Gerald B Lee
- Department of Pediatrics, Emory University, Atlanta, Ga; Center for Cystic Fibrosis and Airways Disease Research, Children's Healthcare of Atlanta, Atlanta, Ga
| | - Brian P Vickery
- Department of Pediatrics, Emory University, Atlanta, Ga; Center for Cystic Fibrosis and Airways Disease Research, Children's Healthcare of Atlanta, Atlanta, Ga
| | - Anne M Fitzpatrick
- Department of Pediatrics, Emory University, Atlanta, Ga; Center for Cystic Fibrosis and Airways Disease Research, Children's Healthcare of Atlanta, Atlanta, Ga.
| |
Collapse
|
2
|
Shores DR, Everett AD. Children as Biomarker Orphans: Progress in the Field of Pediatric Biomarkers. J Pediatr 2018; 193:14-20.e31. [PMID: 29031860 PMCID: PMC5794519 DOI: 10.1016/j.jpeds.2017.08.077] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Revised: 08/04/2017] [Accepted: 08/30/2017] [Indexed: 12/20/2022]
Affiliation(s)
- Darla R Shores
- Division of Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, Johns Hopkins School of Medicine, Baltimore, MD.
| | - Allen D Everett
- Division of Cardiology, Department of Pediatrics, Johns Hopkins School of Medicine, Baltimore, MD
| |
Collapse
|
3
|
Arga M, Bakirtas A, Topal E, Turktas I. Can exhaled nitric oxide be a surrogate marker of bronchial hyperresponsiveness to adenosine 5'-monophosphate in steroid-naive asthmatic children? Clin Exp Allergy 2015; 45:758-66. [PMID: 25378028 DOI: 10.1111/cea.12447] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Revised: 10/14/2014] [Accepted: 10/28/2014] [Indexed: 11/27/2022]
Abstract
BACKGROUND The interrelation between airway inflammation, bronchial hyperresponsiveness (BHR) and atopy remains controversial. OBJECTIVE The aim of this study was to document whether exhaled nitric oxide (eNO) may be used as a surrogate marker that predicts BHR to adenosine 5'-monophosphate (AMP) in steroid-naive school children with asthma. METHODS This study was a retrospective analysis of steroid-naive school age children with atopic and non-atopic asthma. All patients whose eNO levels had been measured and who had been challenged with both methacholine (MCH) and AMP were included. Receiver operation characteristic analysis was performed, in both the atopic and the non-atopic groups, to evaluate the ability of eNO to detect the BHR to AMP. RESULTS One hundred and sixteen patients, sixty-nine (59.5%) of whom had been atopic, were included in the analysis. In the atopic group, eNO values were significantly higher in patients with BHR to AMP compared to those without BHR to AMP (51.9 ± 16.9 p.p.b. vs. 33.7 ± 16.4 p.p.b.; P < 0.001), whereas in the non-atopic group, the differences were not statistically significant (29.7 ± 16.9 p.p.b. vs. 22.6 ± 8.1 p.p.b.; P = 0.152). In the atopic group, eNO levels (R(2) : 0.401; β: 0.092; 95% CI: 1.19-14.42; OR: 7.12; P = 0.008) were found to be the only independent factor for BHR to AMP, whereas none of the parameters predicted BHR to AMP in the non-atopic group. The best cut-off value of eNO that significantly predicts BHR to AMP was 33.3 p.p.b. in the atopic group (P < 0.001), whereas a significant cut-off value for eNO that predicts BHR to AMP was not determined in the non-atopic group (P = 0.142). An eNO ≤ 17.4 p.p.b. has 100% negative predictive values and 100% sensitivity and 60.47% PPV for prediction of BHR to AMP in the atopic group. CONCLUSIONS Exhaled NO may be used to predict BHR to AMP in atopic but not in non-atopic steroid-naïve asthmatic children.
Collapse
Affiliation(s)
- M Arga
- Department of Pediatric Allergy and Asthma, Gazi University Faculty of Medicine, Ankara, Turkey
| | | | | | | |
Collapse
|
4
|
Wu F, Guan WJ, Gao Y, An JY, Xie YQ, Liu WT, Yu XX, Zheng JP. Adenosine monophosphate is not superior to histamine for bronchial provocation test for assessment of asthma control and symptoms. CLINICAL RESPIRATORY JOURNAL 2015; 11:470-480. [PMID: 26257384 DOI: 10.1111/crj.12360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 03/05/2015] [Revised: 07/03/2015] [Accepted: 08/03/2015] [Indexed: 11/28/2022]
Abstract
BACKGROUND Adenosine monophosphate (AMP) may reflect airway inflammation and hyperresponsiveness, but relationship between AMP and histamine (His, a conventional stimulus) bronchial provocation test (BPT) in asthma is not fully elucidated. OBJECTIVES To compare both BPTs and determine their utility in reflecting changes of asthmatic symptoms. METHODS BPTs were performed in a cross-over fashion, at 2-4 day intervals. Cumulative doses eliciting 20% FEV1 fall (PD20 FEV1 ), diagnostic performance and adverse events (AEs) were compared. Patients with PD20 FEV1 lower than geometric mean were defined as responders, otherwise poor responders. Patients with uncontrolled and partly controlled asthma, who maintained their original inhaled corticosteroids therapy, underwent reassessment of airway responsiveness and asthmatic symptoms 3 and 6 months after. RESULTS Nineteen uncontrolled, 22 partly controlled and 19 controlled asthmatic patients and 24 healthy subjects were recruited. Lower PD20 FEV1 geometric means were associated with poorer asthma control in His-BPT (0.424 μmol vs 1.684 μmol vs 3.757 μmol), but not AMP-BPT (11.810 μmol vs 7.781 μmol vs 10.220 μmol). Both BPTs yielded similar overall diagnostic performance in asthma (area under curve: 0.842 in AMP-BPT vs 0.850 in His-BPT). AEs, including wheezing and tachypnea, were similar and mild. Ten patients with uncontrolled and 10 partly controlled asthma were followed-up. At months 3 and 6, we documented an increase in PD20 FEV1 -AMP and PD20 FEV1 -His, which did not correlate with reduction asthmatic symptom scores. This overall applied in responders and poor responders of AMP-BPT and His-BPT. CONCLUSION Despite higher screening capacity of well-controlled asthma, AMP-BPT confers similar diagnostic performance and safety with His-BPT. AMP-BPT might not preferentially reflect changes asthmatic symptoms.
Collapse
Affiliation(s)
- Fan Wu
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Disease, First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, Guangdong, China.,Affiliated Liwan Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Wei-Jie Guan
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Disease, First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Yi Gao
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Disease, First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Jia-Ying An
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Disease, First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Yan-Qing Xie
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Disease, First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Wen-Ting Liu
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Disease, First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Xin-Xin Yu
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Disease, First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Jin-Ping Zheng
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Disease, First Affiliated Hospital of Guangzhou Medical University, Guangzhou Medical University, Guangzhou, Guangdong, China
| |
Collapse
|