1
|
Ge D, Chen Q, Xie X, Li Q, Yang Y. Unveiling the potent effect of vitamin D: harnessing Nrf2/HO-1 signaling pathways as molecular targets to alleviate urban particulate matter-induced asthma inflammation. BMC Pulm Med 2024; 24:55. [PMID: 38273268 PMCID: PMC10809564 DOI: 10.1186/s12890-024-02869-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 01/18/2024] [Indexed: 01/27/2024] Open
Abstract
BACKGROUND Asthma is the most common allergic disease characterized by an inflammatory response in the airways. Mechanismly, urban particulate matter (PM) is the most widely air pollutant associated with increased asthma morbidity and airway inflammation. Current research found that vitamin D is an essential vitamin with anti-inflammatory, antioxidant and other medical efficacy. Inadequate or deficient vitamin D often leads to the pathogenesis and stability of asthma. NGF exacerbates airway inflammation in asthma by promoting smooth muscle cell proliferation and inducing the Th2 immune response. Activation of the Nrf2/HO-1 signaling pathway can exert a protective effect on the inflammatory response in bronchial asthma. However, the specific mechanism of this pathway in PM-involved asthmatic airway smooth muscle cells remains unclear. METHODS Mice were sensitized and challenged with Ovalbumin (OVA) to establish an asthma model. They were then exposed to either PM, vitamin D or a combination of both, and inflammatory responses were observed. Including, acetylcholine stimulation at different concentrations measured airway hyperresponsiveness in mice. Bronchoalveolar lavage fluid (BALF) and serum were collected for TNF-α, IL-1β, IL-6, and Nerve growth factor (NGF) analysis. Additionally, lung tissues underwent histopathological examination to observe alveolar structure and inflammatory cell infiltration. Specific ELISA kits were utilized to determine the levels of the inflammatory factors TNF-α, IL-1β, IL-6, and Nerve growth factor (NGF). Nrf2/HO-1 signaling pathways were examined by western blot analysis. Meanwhile, we constructed a cell system with low HO-1 expression by lentiviral transfection of airway smooth muscle cells. The changes of Nrf2, HO-1, and NGF were observed after the treatment of OVA, PM, and Vit D were given. RESULTS The in vivo results showed that vitamin D significantly alleviated pathological changes in lung tissue of PM-exposed mice models. Mechanismly, vitamin D decreased substantial inflammatory cell infiltration in lung tissue, as well as the number of inflammatory cells in BALF. Furthermore, vitamin D reduced the heightened inflammatory factors including of TNF-α, IL-1β, IL-6, and NGF caused by PM exposure, and triggered the activity of nucleus Nrf2 and HO-1 in PM-exposed asthmatic mice. Notably, knockdown HO-1 weakens the Vitamin D- mediated inhibition to pollution toxicity in asthma. Importantly, in vitro experiments on OVA-stimulated mice airway smooth muscle cells, the results showed that OVA and PM, respectively, reduced Nrf2/HO-1 and increased NGF's expression, while vitamin D reversed the process. And in the HO-1 knockdown cell line of Lenti-si-HO-1 ASMCs, OVA and PM reduced Nrf2's expression, while HO-1 and NGF's expression were unchanged. CONCLUSIONS The above results demastrate that vitamin D downregulated the inflammatory response and the expression of NGF by regulating the Nrf2/HO-1 signaling pathways in airway smooth muscle cells, thereby showing potent anti-inflammatory activity in asthma.
Collapse
Affiliation(s)
- Dandan Ge
- Department of Pediatrics, Pediatric Key Laboratory of Xiamen, Institute of Pediatrics, School of Medicine, The First Affiliated Hospital of Xiamen University, Xiamen University, Zhenhai Road No.55, Xiamen, 361003, China
| | - Qihong Chen
- Department of Pediatrics, Pediatric Key Laboratory of Xiamen, Institute of Pediatrics, School of Medicine, The First Affiliated Hospital of Xiamen University, Xiamen University, Zhenhai Road No.55, Xiamen, 361003, China
| | - Xiaohua Xie
- Department of Pediatrics, Pediatric Key Laboratory of Xiamen, Institute of Pediatrics, School of Medicine, The First Affiliated Hospital of Xiamen University, Xiamen University, Zhenhai Road No.55, Xiamen, 361003, China
| | - Qiyuan Li
- National Institute for Data Science in Health and Medicine, School of Medicine, Xiamen University, Xiang'an South Road, Xiamen, 361102, China
| | - Yungang Yang
- Department of Pediatrics, Pediatric Key Laboratory of Xiamen, Institute of Pediatrics, School of Medicine, The First Affiliated Hospital of Xiamen University, Xiamen University, Zhenhai Road No.55, Xiamen, 361003, China.
| |
Collapse
|
2
|
Zajac D, Wojciechowski P. The Role of Vitamins in the Pathogenesis of Asthma. Int J Mol Sci 2023; 24:ijms24108574. [PMID: 37239921 DOI: 10.3390/ijms24108574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/27/2023] [Accepted: 05/09/2023] [Indexed: 05/28/2023] Open
Abstract
Vitamins play a crucial role in the proper functioning of organisms. Disturbances of their levels, seen as deficiency or excess, enhance the development of various diseases, including those of the cardiovascular, immune, or respiratory systems. The present paper aims to summarize the role of vitamins in one of the most common diseases of the respiratory system, asthma. This narrative review describes the influence of vitamins on asthma and its main symptoms such as bronchial hyperreactivity, airway inflammation, oxidative stress, and airway remodeling, as well as the correlation between vitamin intake and levels and the risk of asthma in both pre- and postnatal life.
Collapse
Affiliation(s)
- Dominika Zajac
- Department of Respiration Physiology, Mossakowski Medical Research Institute, Polish Academy of Sciences, 02-106 Warszawa, Poland
| | - Piotr Wojciechowski
- Department of Respiration Physiology, Mossakowski Medical Research Institute, Polish Academy of Sciences, 02-106 Warszawa, Poland
| |
Collapse
|
3
|
Zhou Y, Xue Y, Bao A, Han L, Bao W, Xia C, Tian X, Zhang M. Effect of Vitamin D Deficiency and Supplementation in Lactation and Early Life on Allergic Airway Inflammation and the Expression of Autophagy-Related Genes in an Ovalbumin Mouse Model. J Inflamm Res 2021; 14:4125-4141. [PMID: 34466017 PMCID: PMC8403027 DOI: 10.2147/jir.s321642] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 08/13/2021] [Indexed: 12/03/2022] Open
Abstract
Background and Objective Vitamin D is involved in various physiological and pathological processes, including inflammation and autophagy. We aimed to investigate the effects of dietary vitamin D deficiency or supplementation initiated in lactation and early life on inflammation and autophagy in an ovalbumin (OVA) mouse model. Methods Female BALB/c were fed with vitamin D-deficient, sufficient or supplemented diets throughout lactation and their offspring followed the same diet after weaning. Offspring were then sensitized and challenged with OVA, airway resistance (RL) was measured, and their serum, bronchoalveolar lavage fluid (BALF), and lung tissue were collected. Alveolar macrophages (AMs) were isolated from lung tissue and cultured with different concentrations of 1,25(OH)2D3. The expressions of autophagy-related (ATG) proteins including light-chain 3 (LC3), Beclin-1, and ATG5, and NF-κB p65 in lung tissue and AMs were measured. Results OVA sensitization and challenge induced dramatic allergic airway inflammation and higher RL in the vitamin D-deficient group compared with vitamin D-sufficient or the supplemented group. The expression of ATGs including LC3, Beclin-1, and ATG5, and NF-κB p65 in lung tissue in the vitamin D-deficient OVA-mediated group was increased compared with vitamin D-supplemented OVA-mediated group. There was correlation between the expression of LC3 mRNA and inflammatory cell numbers and cytokines in BALF. In vitro, 1,25(OH)2D3 also regulated the expression of LC3, Beclin-1, ATG5, and NF-κB p65 mRNA in AMs in a time- and dose-dependent manner. Conclusion Deficiency of vitamin D in early life may aggravate allergic airway inflammation, and maintaining sufficient vitamin D during early life is necessary for lung health. Vitamin D may modulate autophagy in lungs of OVA sensitized/challenged mice, thus playing a protective role in OVA-induced allergic airway inflammation.
Collapse
Affiliation(s)
- Yan Zhou
- Department of Respiratory and Critical Care Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200081, People's Republic of China
| | - Yishu Xue
- Department of Respiratory and Critical Care Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200081, People's Republic of China
| | - Aihua Bao
- Department of Respiratory and Critical Care Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200081, People's Republic of China
| | - Lei Han
- Department of Respiratory and Critical Care Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200081, People's Republic of China
| | - Wuping Bao
- Department of Respiratory and Critical Care Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200081, People's Republic of China
| | - Chao Xia
- Department of Gerontology, Xin Hua Hospital Affiliated with Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, People's Republic of China
| | - Xue Tian
- Department of Respiratory and Critical Care Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200081, People's Republic of China
| | - Min Zhang
- Department of Respiratory and Critical Care Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200081, People's Republic of China
| |
Collapse
|
4
|
Zhan S, Wang W, Kong L. Protective effects and mechanism of action of ruscogenin in a mouse model of ovalbumin-induced asthma. J Asthma 2021; 59:1079-1086. [PMID: 33780307 DOI: 10.1080/02770903.2021.1901914] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
OBJECTIVE Ruscogenin is a natural product exhibiting anti-inflammatory, antioxidant, and anti-apoptotic effects; however, its effectiveness for asthma management has not yet been reported. The aim of this study was to explore the role of ruscogenin in airway inflammation and apoptosis in asthma. METHODS In vivo, female 6- to 8-week-old CL57 mice were sensitized to ovalbumin and challenged intranasally for 7 days. One group was gavaged with ruscogenin before ovalbumin challenge. At the end of the challenge period, airway hyperresponsiveness and airway inflammation were evaluated. Enzyme-linked immunosorbent assay was used to estimate the oxidative stress levels. A terminal deoxynucleotidyl transferase dUDP nick-end labeling assay was used to determine the extent of apoptosis. Immunohistochemistry and western blotting were performed to examine VDAC1 expression. In vitro, human bronchial epithelial (HBE) cells were treated with H2O2, ruscogenin, or disulfonate salt, and flow cytometry was used to calculate the apoptosis ratio and detect mitochondrial calcium levels. RESULTS In vivo, ruscogenin improved airway hyperresponsiveness and airway inflammation, while reducing oxidative stress, the apoptosis ratio and VDAC1 expression in asthmatic lungs. In vitro, ruscogenin attenuated apoptosis in HBE cells by decreasing the levels of VDAC1 expression and mitochondrial calcium. CONCLUSION Ruscogenin reduced oxidative stress and apoptosis in the airway epithelium by inhibiting VDAC1 expression and mitochondrial handling of calcium.
Collapse
Affiliation(s)
- Shanshan Zhan
- Department of Respiratory and Critical Care Medicine, Institute of Respiratory Diseases, the First Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| | - Wei Wang
- Department of Respiratory and Critical Care Medicine, Institute of Respiratory Diseases, the First Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| | - Lingfei Kong
- Department of Respiratory and Critical Care Medicine, Institute of Respiratory Diseases, the First Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| |
Collapse
|
5
|
The potency of lncRNA MALAT1/miR-155/CTLA4 axis in altering Th1/Th2 balance of asthma. Biosci Rep 2021; 40:221794. [PMID: 31909418 PMCID: PMC7024843 DOI: 10.1042/bsr20190397] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 11/14/2019] [Accepted: 11/15/2019] [Indexed: 12/14/2022] Open
Abstract
Objectives: The present study examined if the metastasis-associated lung adenocarcinoma transcript 1 (MALAT1)/miR-155/CTLA-4 axis was involved in modifying Th1/Th2 balance, a critical indicator for asthma progression. Methods: Altogether 772 asthma patients and 441 healthy controls were recruited, and their blood samples were collected to determine expressional levels of MALAT1, miR-155, CTLA-4, T-bet, GATA3, Th1-type cytokines and Th2-type cytokines. The CD4+ T cells were administered with pcDNA3.1-MALAT1, si-MALAT1, miR-155 mimic and miR-155 inhibitor to assess their effects on cytokine release. The luciferase reporter gene assay was also adopted to evaluate the sponging relationships between MALAT1 and miR-155, as well as between miR-155 and CTLA-4. Results: Over-expressed MALAT1 and under-expressed miR-155 were more frequently detected among asthma patients who showed traits of reduced forced expiratory failure volume in 1 s (FEV1), FEV1/forced vital capacity (FVC) and FEV1% of predicted (P<0.05). Moreover, MALAT1 expression was negatively expressed with the Th1/Th2 and T-bet/GATA3 ratios, yet miR-155 expression displayed a positively correlation with the ratios (P<0.05). Additionally, the IFN-γ, IL-2 and T-bet levels were reduced under the influence of pcDNA3.1-MALAT1 and miR-155 inhibitor, while levels of IL-4, IL-10 and GATA3 were raised under identical settings (P<0.05). Furthermore, MALAT1 constrained expression of miR-155 within CD4+ T cells by sponging it, and CTLA-4 could interfere with the effects of MALAT1 and miR-155 on Th1/Th2 balance and T-bet/Gata3 ratio (P<0.05). Conclusion: MALAT1 sponging miR-155 was involved with regulation of Th1/Th2 balance within CD4+ T cells, which might aid to develop therapies for amelioration of asthmatic inflammation.
Collapse
|
6
|
Kianian F, Karimian SM, Kadkhodaee M, Takzaree N, Seifi B, Sadeghipour HR. Protective effects of ascorbic acid and calcitriol combination on airway remodelling in ovalbumin-induced chronic asthma. PHARMACEUTICAL BIOLOGY 2020; 58:107-115. [PMID: 31942829 PMCID: PMC7006747 DOI: 10.1080/13880209.2019.1710218] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Context: Airway remodelling is one of the most refractory problems in asthma. According to the critical roles of oxidative stress and inflammation in airway remodelling, it is supposed that ascorbic acid and calcitriol have beneficial effects. However, a combination of antioxidants may be more effective for asthma therapy.Objective: This study investigated the protective effects of ascorbic acid in combination with calcitriol on airway remodelling in ovalbumin (OVA)-induced chronic asthma.Materials and methods: BALB/c mice were assigned into seven groups: (1) Control; (2) Asthma; (3) Ineffective C (orally 39 mg/kg ascorbic acid); (4) Ineffective D (intraperitoneally 1.5 μg/kg calcitriol); (5) Effective C (orally 130 mg/kg ascorbic acid); (6) Effective D (intraperitoneally 5 μg/kg calcitriol); (7) Combination (orally 39 mg/kg ascorbic acid + intraperitoneally 1.5 μg/kg calcitriol). All animals were sensitized and challenged with OVA except in the control group (normal saline). In all treatment groups, mice were administrated vitamins 30 min before each challenge (three times per week for 8 consecutive weeks).Results: In comparison with the asthma group, co-administration of ineffective doses of ascorbic acid and calcitriol led to the decreased levels of IL-13 (50.5 ± 1.85 vs. 42.13 ± 0.37 pg/mL, p = 0.02) and IgE (58.74 ± 0.43 vs. 45.78 ± 2.05 ng/mL, p = 0.003) as well as the reduction of goblet hyperplasia and subepithelial fibrosis (5 vs. 1 score, p = 0.001 and 5 vs. 2 score, p = 0.001, respectively).Discussion and conclusions: Combination of ascorbic acid with calcitriol in ineffective doses improves airway remodelling due to additive effects possibly through reduction of oxidative stress and inflammation. This study provides a scientific basis for further research and clinical applications of ascorbic acid and calcitriol and can be generalized to the broader pharmacological studies.
Collapse
Affiliation(s)
- Farzaneh Kianian
- Department of Physiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Seyed Morteza Karimian
- Department of Physiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mehri Kadkhodaee
- Department of Physiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Nasrin Takzaree
- Department of Anatomy and Histology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Behjat Seifi
- Department of Physiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Hamid Reza Sadeghipour
- Department of Physiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- CONTACT Hamid Reza Sadeghipour Department of Physiology, Tehran, University of Medical Sciences, Poorsina Ave, Tehran, Iran
| |
Collapse
|
7
|
Hogenkamp A, Ehlers A, Garssen J, Willemsen LEM. Allergy Modulation by N-3 Long Chain Polyunsaturated Fatty Acids and Fat Soluble Nutrients of the Mediterranean Diet. Front Pharmacol 2020; 11:1244. [PMID: 32973501 PMCID: PMC7472571 DOI: 10.3389/fphar.2020.01244] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Accepted: 07/29/2020] [Indexed: 12/12/2022] Open
Abstract
The Mediterranean diet, containing valuable nutrients such as n-3 long chain poly-unsaturated fatty acids (LCPUFAs) and other fat-soluble micronutrients, is known for its health promoting and anti-inflammatory effects. Its valuable elements might help in the battle against the rising prevalence of non-communicable diseases (NCD), including the development of allergic diseases and other (chronic) inflammatory diseases. The fat fraction of the Mediterranean diet contains bioactive fatty acids but can also serve as a matrix to dissolve and increase the uptake of fat-soluble vitamins and phytochemicals, such as luteolin, quercetin, resveratrol and lycopene with known immunomodulatory and anti-inflammatory capacities. Especially n-3 LCPUFAs such as eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) derived from marine oils can target specific receptors or signaling cascades, act as eicosanoid precursors and/or alter membrane fluidity and lipid raft formation, hereby exhibiting anti-inflammatory properties. Beyond n-3 LCPUFAs, fat-soluble vitamins A, D, E, and K1/2 have the potential to affect pro-inflammatory signaling cascades by interacting with receptors or activating/inhibiting signaling proteins or phosphorylation in immune cells (DCs, T-cells, mast cells) involved in allergic sensitization or the elicitation/effector phase of allergic reactions. Moreover, fat-soluble plant-derived phytochemicals can manipulate signaling cascades, mostly by interacting with other receptors or signaling proteins compared to those modified by fat-soluble vitamins, suggesting potential additive or synergistic actions by applying a combination of these nutrients which are all part of the regular Mediterranean diet. Research concerning the effects of phytochemicals such as polyphenols has been hampered due to their poor bio-availability. However, their solubility and uptake are improved by applying them within the dietary fat matrix. Alternatively, they can be prepared for targeted delivery by means of pharmaceutical approaches such as encapsulation within liposomes or even unique nanoparticles. This review illuminates the molecular mechanisms of action and possible immunomodulatory effects of n-3 LCPUFAs and fat-soluble micronutrients from the Mediterranean diet in allergic disease development and allergic inflammation. This will enable us to further appreciate how to make use of the beneficial effects of n-3 LCPUFAs, fat-soluble vitamins and a selection of phytochemicals as active biological components in allergy prevention and/or symptom reduction.
Collapse
Affiliation(s)
- Astrid Hogenkamp
- Division of Pharmacology, Department of Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, Netherlands
| | - Anna Ehlers
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands.,Department of Dermatology/Allergology, University Medical Center Utrecht, Utrecht University, Utrecht, Netherlands
| | - Johan Garssen
- Division of Pharmacology, Department of Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, Netherlands.,Global Centre of Excellence Immunology, Danone Nutricia Research B.V., Utrecht, Netherlands
| | - Linette E M Willemsen
- Division of Pharmacology, Department of Pharmaceutical Sciences, Faculty of Science, Utrecht University, Utrecht, Netherlands
| |
Collapse
|
8
|
Plesa M, Gaudet M, Mogas A, Olivenstein R, Al Heialy S, Hamid Q. Action of 1,25(OH) 2D 3 on Human Asthmatic Bronchial Fibroblasts: Implications for Airway Remodeling in Asthma. J Asthma Allergy 2020; 13:249-264. [PMID: 32982316 PMCID: PMC7492716 DOI: 10.2147/jaa.s261271] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 07/11/2020] [Indexed: 11/23/2022] Open
Abstract
Background Airway fibroblasts are major contributors to the histopathological feature of airway remodeling in asthma by their implication in the cell invasiveness and profibrogenic secretory phenotype observed in subepithelial fibrosis. 1,25 Dihydroxy vitamin D3 (1,25(OH)2D3) is an important therapeutic agent that blocks many features of airway remodeling induced by profibrogenic mediators, such as transforming growth factor beta 1 (TGF-β1) or T helper type 1 inflammatory cytokines. Objective We hypothesized that 1,25(OH)2D3 opposes the TGF-β1 or tumor necrosis factor alpha (TNF-α)-Interleukin 1 beta (IL-1β) stimulation on airway fibroblast profibrogenic secretory phenotype observed in severe asthmatic patients. Our aim was to investigate the anti-fibrogenic effect of 1,25(OH)2D3 in TGF-β1 or TNF-α-IL-1β-stimulated human bronchial fibroblast cells (HBFCs) from severe asthmatic compared with non-asthmatic subjects. Patients and Methods All experiments were performed on primary HBFCs from asthmatic (DHBFCs, n=4) and non-asthmatic subjects (NHBFCs, n=4). mRNA expression and protein quantification of key fibrogenic markers were analyzed by RT-qPCR and ELISA, comparing HBFCs from asthmatic and non-asthmatic subjects. Vitamin D receptor (VDR) mRNA expression and its functionality in HBFCs were assessed by RT-qPCR. HBFCs proliferation was assessed by flow cytometry using BrdU-FITC/7AAD bivariate staining, while HBFCs apoptosis by Annexin V-FITC/7AAD. Results VDR is constitutively expressed in HBFCs and the addition of 1,25(OH)2D3 significantly increased mRNA expression of CYP24A1 (a direct VDRs’ target gene) in both HBFCs groups. DHBFCs cultured in the presence of TGF-β1 or TNF-α-IL-1β showed increased mRNA expression and protein secretion of fibrogenic markers when compared to NHBFCs. Additionally, we observed decreased mRNA expression of FN 1, LUM, BGN, MMP2, COL5A1, TIMP1 and CC-chemokines (CCL2, CCL5, CCL11) in response to 1,25(OH)2D3 addition to the TGF-β1 or TNF-α-IL-1β-stimulated HBFCs. Cell culture media obtained from TGF-β1 or TNF-α-IL-1β-stimulated DHBFCs showed decreased protein secretion (fibronectin 1, lumican, MCP1, RANTES and eotaxin-1) in response to 1,25(OH)2D3 when compared to NHBFCs. 1,25(OH)2D3 inhibited proliferation in TGF-β1-stimulated HBFCs through G0/G1 cell cycle arrest and these effects were not correlated with the induction of apoptosis. Conclusion DHBFCs under TGF-β1 or TNF-α-IL-1β stimulation showed higher fibrogenic capacity when compared to NHBFCs. 1,25(OH)2D3 significantly blocked these effects and highlight 1,25(OH)2D3 as a possible therapeutic target for severe asthma.
Collapse
Affiliation(s)
- Maria Plesa
- Translational Research in Respiratory Diseases, Meakins-Christie Laboratories, Research Institute of the McGill University Health Center, Montréal, QC, Canada
| | - Mellissa Gaudet
- Translational Research in Respiratory Diseases, Meakins-Christie Laboratories, Research Institute of the McGill University Health Center, Montréal, QC, Canada
| | - Andrea Mogas
- Translational Research in Respiratory Diseases, Meakins-Christie Laboratories, Research Institute of the McGill University Health Center, Montréal, QC, Canada
| | - Ronald Olivenstein
- Translational Research in Respiratory Diseases, Meakins-Christie Laboratories, Research Institute of the McGill University Health Center, Montréal, QC, Canada.,Faculty of Medicine, McGill University, Montréal, QC, Canada
| | - Saba Al Heialy
- Translational Research in Respiratory Diseases, Meakins-Christie Laboratories, Research Institute of the McGill University Health Center, Montréal, QC, Canada.,Mohammed Bin Rashid University of Medicine and Health Sciences, College of Medicine, Dubai, United Arab Emirates
| | - Qutayba Hamid
- Translational Research in Respiratory Diseases, Meakins-Christie Laboratories, Research Institute of the McGill University Health Center, Montréal, QC, Canada.,Faculty of Medicine, McGill University, Montréal, QC, Canada.,College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
| |
Collapse
|
9
|
Park HW, Lim G, Park YM, Chang M, Son JS, Lee R. Association between vitamin D level and bronchopulmonary dysplasia: A systematic review and meta-analysis. PLoS One 2020; 15:e0235332. [PMID: 32628705 PMCID: PMC7337306 DOI: 10.1371/journal.pone.0235332] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 06/14/2020] [Indexed: 12/14/2022] Open
Abstract
Neonatal vitamin D deficiency is common and is associated with development of pulmonary disease in children and adults. While the role of vitamin D in normal lung development is well established, the association between vitamin D deficiency and bronchopulmonary dysplasia (BPD) remains unclear. The present meta-analysis was conducted to evaluate the relationship between vitamin D and BPD. We identified relevant studies (n = 8) using the PubMed, EMBASE, Cochrane Library, and KoreaMed databases and applied the Newcastle–Ottawa Scale to assess the methodological components of each study, and used I2 statistic to evaluate heterogeneity. Comprehensive Meta-Analysis software version 3.3 was used for the statistical analysis. A total of 909 infants were included, of whom 251 (27.6%) were diagnosed with BPD. We found that both vitamin D deficiency at birth (four studies; OR 2.405; 95% CI 1.269 to 4.560; p = 0.007) and low levels of vitamin D at birth (four studies; standardized mean difference -1.463; 95% CI -2.900 to -0.027; p = 0.046) were associated with BPD. The compiled data suggest that antenatal vitamin D deficiency and low vitamin D levels are associated with neonatal BPD.
Collapse
Affiliation(s)
- Hye Won Park
- Department of Pediatrics, Konkuk University Medical Center, Seoul, Republic of Korea
- Konkuk University School of Medicine, Seoul, Republic of Korea
- * E-mail:
| | - Gina Lim
- Department of Pediatrics, Ulsan University Hospital, University of Ulsan College of Medicine, Ulsan, Republic of Korea
| | - Yong-Mean Park
- Department of Pediatrics, Konkuk University Medical Center, Seoul, Republic of Korea
- Konkuk University School of Medicine, Seoul, Republic of Korea
| | - Misoo Chang
- Research Coordinating Center, Konkuk University Medical Center, Seoul, Republic of Korea
| | - Jae Sung Son
- Department of Pediatrics, Konkuk University Medical Center, Seoul, Republic of Korea
- Konkuk University School of Medicine, Seoul, Republic of Korea
| | - Ran Lee
- Department of Pediatrics, Konkuk University Medical Center, Seoul, Republic of Korea
- Konkuk University School of Medicine, Seoul, Republic of Korea
| |
Collapse
|
10
|
Szymczak-Pajor I, Kleniewska P, Wieczfinska J, Pawliczak R. Wide-Range Effects of 1,25(OH)2D3 on Group 4A Phospholipases Is Related to Nuclear Factor κ-B and Phospholipase-A2 Activating Protein Activity in Mast Cells. Int Arch Allergy Immunol 2019; 181:56-70. [PMID: 31707382 DOI: 10.1159/000503628] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Accepted: 09/24/2019] [Indexed: 11/19/2022] Open
Abstract
INTRODUCTION Phospholipases are enzymes that occur in many types of human cells, including mast cells, and play an important role in the molecular background of asthma pathogenesis, and the development of inflammation NF-κB activities that affect numerous biological processes has been reported in many inflammatory diseases including asthma. Vitamin D is a widely studied factor that affects many diseases, including asthma. The aim of this study is to assess the influence of 1,25-(OH)2D3 on regulation of chosen phospholipase-A2 (PLA2) expression-selected inflammation mediators. METHODS LUVA mast cells were stimulated with 1,25(OH)2D3, and inhibitors of NF-κB p65 and ubiquitination. Expression analysis of phospholipases (PLA2G5, PLA2G10, PLA2G12, PLA2G15, PLA2G4A, PLA2G4B, PLA2G4C, PLAA, NF-κB p65, and UBC) was done utilizing real-time PCR and Western blot. Eicosanoid (LTC4, LXA4, 15[S]-HETE, and PGE2) levels and sPLA2 were also measured. RESULTS We found that 1,25(OH)2D3 decreased the expression of PLA2G5, PLA2G15, PLA2G5,UBC, and NF-κB p65 but increased expression of PLAA and PLA2G4C (p < 0.05). Moreover, the expression of PLA2G5 and PLA2G15 decreased after inhibition of NF-κB p65 and UBC. Increased levels of released LXA4 and 15(S)-HETE, decreased levels of LTC4, and sPLA2s enzymatic activity in response to 1,25(OH)2D3 were also observed. Additionally, NF-κB p65 inhibition led to an increase in the LXA4 concentration. CONCLUSION Future investigations will be needed to further clarify the role of 1,25(OH)2D3 in the context of asthma and the inflammatory process; however, these results confirm a variety of effects which can be caused by this vitamin. 1,25(OH)2D3-mediated action may result in the development of new therapeutic strategies for asthma treatment.
Collapse
Affiliation(s)
- Izabela Szymczak-Pajor
- Department of Immunopathology, Faculty of Biomedical Science and Postgraduate Training, Medical University of Lodz, Lodz, Poland
| | - Paulina Kleniewska
- Department of Immunopathology, Faculty of Biomedical Science and Postgraduate Training, Medical University of Lodz, Lodz, Poland
| | - Joanna Wieczfinska
- Department of Immunopathology, Faculty of Biomedical Science and Postgraduate Training, Medical University of Lodz, Lodz, Poland
| | - Rafal Pawliczak
- Department of Immunopathology, Faculty of Biomedical Science and Postgraduate Training, Medical University of Lodz, Lodz, Poland,
| |
Collapse
|
11
|
Xu Y, Qian J, Yu Z. Budesonide up-regulates vitamin D receptor expression in human bronchial fibroblasts and enhances the inhibitory effect of calcitriol on airway remodeling. Allergol Immunopathol (Madr) 2019; 47:585-590. [PMID: 31204163 DOI: 10.1016/j.aller.2019.05.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Revised: 05/02/2019] [Accepted: 05/06/2019] [Indexed: 01/21/2023]
Abstract
INTRODUCTION AND OBJECTIVES Transforming growth factor β1 (TGFβ1) and dysregulated microRNA-21 (miR-21) expression is associated with TGFβ/Smad signaling pathway activation and fibrosis. While calcitriol has been shown to improve airway remodeling in asthmatic mice, its mechanism remains unknown. In this study, the effect of calcitriol on the TGFβ/Smad signaling pathway and miR-21 expression in human bronchial fibroblasts was investigated to explore the mechanism of action of calcitriol and the inhaled glucocorticoid, budesonide, in airway remodeling. MATERIALS AND METHODS Human bronchial fibroblasts were pretreated with budesonide, calcitriol, or budesonide plus calcitriol, and stimulated with TGFβ1 for 48h. Quantitative real-time PCR was used to determine the expression of miR-21. Western blot was used to determine airway remodeling-related proteins, TGFβ/Smad signaling pathway-related proteins, glucocorticoid receptor, and vitamin D receptor (VDR) expression. RESULTS Both budesonide and calcitriol down-regulated miR-21 expression in human bronchial fibroblasts, up-regulated Smad7 expression, and inhibited the expression of airway remodeling-related proteins. Both budesonide and calcitriol up-regulated the low expression of VDR induced by TGFβ1 in human bronchial fibroblasts. The expression of VDR in the combined treatment group (budesonide plus calcitriol) was significantly higher than that in the calcitriol treatment group. The expression of collagen type I in the combined treatment group was significantly lower than that in the calcitriol treatment group. CONCLUSIONS Calcitriol can up-regulate the expression of VDR in human bronchial fibroblasts and exert an anti-airway remodeling effect. Budesonide can up-regulate the expression of VDR in human bronchial fibroblasts and enhance the inhibitory effect of calcitriol on airway remodeling.
Collapse
Affiliation(s)
- Yaqin Xu
- Department of Pediatrics, Wuxi Children's Hospital Affiliated to Nanjing Medical University, Wuxi, Jiangsu, China
| | - Jun Qian
- Department of Pediatrics, Wuxi Children's Hospital Affiliated to Nanjing Medical University, Wuxi, Jiangsu, China
| | - Zhiwei Yu
- Department of Pediatrics, Wuxi Children's Hospital Affiliated to Nanjing Medical University, Wuxi, Jiangsu, China.
| |
Collapse
|
12
|
Abstract
PURPOSE OF REVIEW To examine the relationship between vitamin D and otitis media. RECENT FINDINGS Vitamin D deficiency has been associated with several respiratory diseases, including otitis media. Vitamin D supplementation may reduce the risk of otitis media. This relationship may be explained by vitamin D supporting the immune system by upregulating antimicrobial peptides which are effective against otopathogens and biofilm formation, supporting a less inflammatory immune response, or promoting beneficial commensal bacteria. This review will explore risk factors of both otitis media and vitamin D deficiency, the evidence of vitamin D being beneficial for various forms of otitis media, and possible mechanisms of action.
Collapse
|
13
|
Huang Y, Wang L, Jia XX, Lin XX, Zhang WX. Vitamin D alleviates airway remodeling in asthma by down-regulating the activity of Wnt/β-catenin signaling pathway. Int Immunopharmacol 2019; 68:88-94. [PMID: 30616171 DOI: 10.1016/j.intimp.2018.12.061] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 12/25/2018] [Accepted: 12/27/2018] [Indexed: 01/04/2023]
Abstract
Vitamin D exerts a protective role in asthma; however, the molecular mechanisms underlying the vitamin D-attenuated asthma airway remodeling are yet to be elucidated. In this study, Sprague-Dawley (SD) rats were randomly divided into four groups: control, asthma, vitamin D 50 ng/mL, and vitamin D 100 ng/mL. The treatment with 100 ng/mL vitamin D remarkably reduced the thickness of the airway smooth muscle, collagen deposition, and the alpha-smooth muscle actin (α-SMA) mass and airway inflammation. Conversely, the treatment by vitamin D significantly up-regulated the serum levels of 25(OH)2D3 that were decreased in asthma. The putative signaling pathway of vitamin D was based on Wnt5a and β-catenin expression assessed by quantitative real-time reverse transcription polymerase chain reaction (RT-qPCR) and Western blot, which revealed that the administration of vitamin D significantly decreased the activity of Wnt/β-catenin signaling pathway. These results suggested that administration of vitamin D alleviated the airway remodeling in asthma by down-regulating the activity of Wnt/β-catenin signaling pathway.
Collapse
Affiliation(s)
- Yue Huang
- Department of Pediatric Allergy and Immunology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China
| | - Lei Wang
- Department of Pediatric Allergy and Immunology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China
| | - Xiao-Xiao Jia
- Department of Pediatric Allergy and Immunology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China
| | - Xi-Xi Lin
- Department of Pharmacy, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China.
| | - Wei-Xi Zhang
- Department of Pediatric Allergy and Immunology, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325027, China.
| |
Collapse
|
14
|
Vitamin D: Immunomodulatory Aspects. J Clin Gastroenterol 2018; 52 Suppl 1, Proceedings from the 9th Probiotics, Prebiotics and New Foods, Nutraceuticals and Botanicals for Nutrition & Human and Microbiota Health Meeting, held in Rome, Italy from September 10 to 12, 2017:S86-S88. [PMID: 30300262 DOI: 10.1097/mcg.0000000000001112] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Vitamin D is a group of liposoluble prohormones consisting of 5 different vitamins, the most important forms being vitamin D2 and vitamin D3. The ergocalciferol (vitamin D2) is less efficacious and derives from irradiated fungi, while colecalciferol (vitamin D3), derived from cholesterol, is synthesized via ultraviolet B rays in animal organisms. Only the ultraviolet B rays (290 to 315 nm) portion of the solar ray photolyzes 7-dehydrocholesterol in the skin to previtamin D3, which is converted subsequently to vitamin D3. Moreover, the skin makes little vitamin D from the sun at latitudes above 37 degrees north or below 37 degrees south of the equator. Calcidiol [25(OH)D] is the more stable metabolite of vitamin D in serum and the best indicator of the vitamin D status. Optimal values range are >30 ng/mL. Calcitriol [1,25(OH)2D] is the active hormone form of vitamin D. The 1,25(OH)2D binds to its nuclear receptor (vitamin D receptor), expressed in many tissues, regulating the expression of genes involved in calcium metabolism, cell differentiation, apoptosis, and immunity. About immunity, calcitriol stimulates innate immune responses by enhancing the chemotactic and phagocytotic responses of macrophages as well as the production of antimicrobial peptides. 1,25(OH)2D strongly enhances production of interleukine-10 by stimulating T regulatory cells and inhibiting Th1 and Th17 cell differentiation. Furthermore, several studies suggest that lower 25(OH)D serum levels are associated with an increased risk of respiratory infection at all ages in a dose-response manner.
Collapse
|
15
|
Saggese G, Vierucci F, Prodam F, Cardinale F, Cetin I, Chiappini E, de’ Angelis GL, Massari M, Miraglia Del Giudice E, Miraglia Del Giudice M, Peroni D, Terracciano L, Agostiniani R, Careddu D, Ghiglioni DG, Bona G, Di Mauro G, Corsello G. Vitamin D in pediatric age: consensus of the Italian Pediatric Society and the Italian Society of Preventive and Social Pediatrics, jointly with the Italian Federation of Pediatricians. Ital J Pediatr 2018; 44:51. [PMID: 29739471 PMCID: PMC5941617 DOI: 10.1186/s13052-018-0488-7] [Citation(s) in RCA: 121] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Accepted: 04/16/2018] [Indexed: 02/07/2023] Open
Abstract
Vitamin D plays a pivotal role in the regulation of calcium-phosphorus metabolism, particularly during pediatric age when nutritional rickets and impaired bone mass acquisition may occur.Besides its historical skeletal functions, in the last years it has been demonstrated that vitamin D directly or indirectly regulates up to 1250 genes, playing so-called extraskeletal actions. Indeed, recent data suggest a possible role of vitamin D in the pathogenesis of several pathological conditions, including infectious, allergic and autoimmune diseases. Thus, vitamin D deficiency may affect not only musculoskeletal health but also a potentially wide range of acute and chronic conditions. At present, the prevalence of vitamin D deficiency is high in Italian children and adolescents, and national recommendations on vitamin D supplementation during pediatric age are lacking. An expert panel of the Italian Society of Preventive and Social Pediatrics reviewed available literature focusing on randomized controlled trials of vitamin D supplementation to provide a practical approach to vitamin D supplementation for infants, children and adolescents.
Collapse
Affiliation(s)
- Giuseppe Saggese
- Department of Clinical and Experimental Medicine, Section of Paediatrics, University of Pisa, Pisa, Italy
| | | | - Flavia Prodam
- Division of Pediatrics, Department of Health Sciences, Interdisciplinary Research Center of Autoimmune Diseases (IRCAD), University of Piemonte Orientale, Novara, Italy
| | - Fabio Cardinale
- Pediatric Unit, Division of Pulmonology, Allergy, and Immunology, AOU Policlinico-Giovanni XXIII, Bari, Italy
| | - Irene Cetin
- Department of Mother and Child, Hospital Luigi Sacco, University of Milano, Milan, Italy
| | - Elena Chiappini
- Pediatric Infectious Disease Unit, Department of Health Sciences, University of Florence, Anna Meyer Children’s University Hospital, Florence, Italy
| | - Gian Luigi de’ Angelis
- Gastroenterology and Digestive Endoscopy Unit and Clinical Paediatrics Unit, Department of Paediatrics and Maternal Medicine, University of Parma Hospital Trust, Parma, Italy
| | - Maddalena Massari
- Department of Mother and Child, Hospital Luigi Sacco, University of Milano, Milan, Italy
| | - Emanuele Miraglia Del Giudice
- Department of Woman, Child and General and Specialist Surgery, University of Campania “Luigi Vanvitelli”, Naples, Italy
| | - Michele Miraglia Del Giudice
- Department of Woman, Child and General and Specialist Surgery, University of Campania “Luigi Vanvitelli”, Naples, Italy
| | - Diego Peroni
- Department of Clinical and Experimental Medicine, Section of Paediatrics, University of Pisa, Pisa, Italy
| | - Luigi Terracciano
- Pediatric Primary Care, National Pediatric Health Care System, Milan, Italy
| | | | - Domenico Careddu
- Pediatric Primary Care, National Pediatric Health Care System, Novara, Italy
| | - Daniele Giovanni Ghiglioni
- Pediatric Highly Intensive Care Unit, Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Gianni Bona
- Division of Pediatrics, University of Piemonte Orientale, Novara, Italy
| | - Giuseppe Di Mauro
- Pediatric Primary Care, National Pediatric Health Care System, Caserta, Italy
| | - Giovanni Corsello
- Department of Sciences for Health Promotion and Mother and Child Care, Neonatal Intensive Care Unit, AOUP, University of Palermo, Palermo, Italy
| |
Collapse
|
16
|
Budesonide and Calcitriol Synergistically Inhibit Airway Remodeling in Asthmatic Mice. Can Respir J 2018; 2018:5259240. [PMID: 29854030 PMCID: PMC5954913 DOI: 10.1155/2018/5259240] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Revised: 03/25/2018] [Accepted: 04/04/2018] [Indexed: 12/24/2022] Open
Abstract
Background and Objective While calcitriol can inhibit airway remodeling in asthmatic mice, the mechanism remains unclear. The purpose of this study was to explore the mechanism of action of calcitriol on airway remodeling in asthma and its interaction with budesonide. Methods A mouse model of asthma was established by allergic sensitization and challenge with ovalbumin. The mice were treated with budesonide, calcitriol, or budesonide plus calcitriol. The expression of airway remodeling-related proteins, transforming growth factor β (TGFβ) signaling pathway-related proteins, the glucocorticoid receptor, and vitamin D receptor (VDR) was determined by immunohistochemical staining and Western blot analysis. Quantitative real-time PCR was used to determine the expression of microRNA-21 (miR-21) in the lung tissue of mice. Results Monotherapy with budesonide or calcitriol inhibited the high expression of collagen type I protein and upregulated the low expression of Smad7 in asthmatic mice. There was a synergistic interaction between budesonide and calcitriol in combined treatment. The expression of miR-21 in the combined treatment group was significantly lower than that in the calcitriol treatment group. VDR expression in the combined treatment group was significantly higher than that of the calcitriol treatment group. Conclusion Budesonide and calcitriol have a synergistic effect on airway remodeling in asthmatic mice.
Collapse
|
17
|
Hufnagl K, Jensen-Jarolim E. Vitamin A and D in allergy: from experimental animal models and cellular studies to human disease. ALLERGO JOURNAL 2018. [DOI: 10.1007/s15007-018-1579-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
18
|
Esmaili Gourvarchin Galeh H, Meysam Abtahi Froushani S, Afzale Ahangaran N, Hadai SN. Effects of Educated Monocytes with Xenogeneic Mesenchymal Stem Cell-Derived Conditioned Medium in a Mouse Model of Chronic Asthma. Immunol Invest 2018; 47:504-520. [PMID: 29671652 DOI: 10.1080/08820139.2018.1458108] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
BACKGROUND This study was conducted to determine the potential of the monocytes educated with rat bone marrow mesenchymal stem cell-derived conditioned medium (MCM) in ameliorating animal model of asthma. METHODS Chronic asthma was induced in the BALB/c mice using ovalbumin (OVA) sensitization. The monocytes were isolated from blood of mice and supplemented with 50% MCM or negative control media. After 24 h, the cells were designated as "non-educated or educated". Fourteen weeks after the onset of the study, animals were treated with educated or non-educated monocytes twice with a 1-week interval. RESULTS The educated monocytes showed a reduction in the potential production of the respiratory burst and nitric oxide and the secretion of IL-12 and IL-4 compared to non-educated monocytes. Conversely, these monocytes exhibited a significant increase in the production of IL-10 and TGF-?. Also, the levels of CD68+/CD206+ cells significantly increased in the population of educated monocytes. More importantly, the severity of histopathological lesions, NF-?B p65 mRNA level in lung tissues, total serum IgE and the total cell count, as well as the eosinophil count in the bronchoalveolar lavage fluid, were significantly decreased in OVA-inhaled mice treated with educated monocytes compared to OVA-sensitized group receiving non-educated monocytes. With no advantage in up-regulation of Foxp3 Treg cells, the treatment with educated monocytes reduced the secretion of IL-5 and IL-13 by splenocytes of asthma mice more than splenocytes of the asthma mice treated with non-educated monocytes. CONCLUSION The educated monocytes with MCM may be as a promising strategy for cell-based therapies of asthma.
Collapse
Affiliation(s)
| | | | | | - Siamak Naji Hadai
- b Department of Pathology, Faculty of Medicine , Urmia University of Medical Science , Urmia , Iran
| |
Collapse
|
19
|
Vitamin A and D in allergy: from experimental animal models and cellular studies to human disease. ACTA ACUST UNITED AC 2018; 27:72-78. [PMID: 29707474 PMCID: PMC5910477 DOI: 10.1007/s40629-018-0054-2] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Accepted: 01/22/2018] [Indexed: 12/28/2022]
Abstract
Introduction Vitamins A and D are able to modulate innate and adaptive immune responses and may therefore influence the development and the course of allergic diseases. Materials and methods This article reviews the current evidence for the experimental effects of vitamins A and D in vivo in animal models and on immune cells in vitro, and discusses their translational implication. A systematic literature search over the last 10 years was performed using MEDLINE and PubMed databases. Results Deficiencies of vitamin A or vitamin D in mouse models of allergic asthma seem to exacerbate allergic symptoms along with enhanced lung inflammation and Th2 cytokine production. In contrast, supplementation regimes especially with vitamin D were able to attenuate symptoms in therapeutic mouse models. The active metabolites retinoic acid (RA) and 1,25-dihydroxyvitamin D3 (VD3) induced tolerogenic dendritic cells (DCs) and up-regulated T‑regulatory cells in the allergic sensitization phase, which likely contributes to tolerance induction. Additionally, RA and VD3 maintained the stability of eosinophils and mast cells in the effector phase, thereby reducing allergic mediator release. Thus, both active vitamin metabolites RA and VD3 are able to influence allergic immune responses at several immunological sites. Conclusion Animal studies predict that vitamin A and D may also be attractive players in the control of allergy in humans. Whether these experimental observations can be translated to the human situation remains open, as results from clinical trials are controversial.
Collapse
|
20
|
Saadoon A, Ambalavanan N, Zinn K, Ashraf AP, MacEwen M, Nicola T, Fanucchi MV, Harris WT. Effect of Prenatal versus Postnatal Vitamin D Deficiency on Pulmonary Structure and Function in Mice. Am J Respir Cell Mol Biol 2017; 56:383-392. [PMID: 27870560 DOI: 10.1165/rcmb.2014-0482oc] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Epidemiologic studies have linked gestational vitamin D deficiency to respiratory diseases, although mechanisms have not been defined. We hypothesized that antenatal vitamin D deficiency would impair airway development and alveolarization in a mouse model. We studied the effect of antenatal vitamin D deficiency by inducing it in pregnant mice and then compared lung development and function in their offspring to littermate controls. Postnatal vitamin D deficiency and sufficiency models from each group were also studied. We developed a novel tracheal ultrasound imaging technique to measure tracheal diameter in vivo. Histological analysis estimated tracheal cartilage total area and thickness. We found that vitamin D-deficient pups had reduced tracheal diameter with decreased tracheal cartilage minimal width. Vitamin D deficiency increased airway resistance and reduced lung compliance, and led to alveolar simplification. Postnatal vitamin D supplementation improved lung function and radial alveolar count, a parameter of alveolar development, but did not correct tracheal narrowing. We conclude that antenatal vitamin D deficiency impairs airway and alveolar development and limits lung function. Reduced tracheal diameter, cartilage irregularity, and alveolar simplification in vitamin D-deficient mice may contribute to increased airways resistance and diminished lung compliance. Vitamin D supplementation after birth improved lung function and, potentially, alveolar simplification, but did not improve defective tracheal structure. This mouse model offers insight into the mechanisms of vitamin D deficiency-associated lung disease and provides an in vivo model for investigating preclinical preventive and therapeutic strategies.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Michelle V Fanucchi
- 3 Environmental Health Sciences, University of Alabama at Birmingham School of Medicine, Birmingham, Alabama
| | | |
Collapse
|
21
|
Vitamin D and Bronchial Asthma: An Overview of Data From the Past 5 Years. Clin Ther 2017; 39:917-929. [PMID: 28449868 DOI: 10.1016/j.clinthera.2017.04.002] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Revised: 04/03/2017] [Accepted: 04/04/2017] [Indexed: 11/23/2022]
Abstract
PURPOSE Vitamin D is a potent immunomodulator capable of dampening inflammatory signals in several cell types involved in the asthmatic response. Its deficiency has been associated with increased inflammation, exacerbations, and overall poor outcomes in patients with asthma. Given the increase in the prevalence of asthma over the past few decades, there has been enormous interest in the use of vitamin D supplementation as a potential therapeutic option. Here, we critically reviewed the most recent findings from in vitro studies, animal models, and clinical trials regarding the role of vitamin D in treating bronchial asthma. METHODS Using the key terms [Vitamin D, asthma, clinical trials, in vivo and in vitro studies], the [PubMed, Google Scholar] databases were searched for [clinical trials, original research articles, meta-analyses, and reviews], English-language articles published from [2012] to the present. Articles that were [Articles that did not meet these criteria were excluded] excluded from the analysis. FINDINGS Several studies have found that low serum levels of vitamin D (< 20 ng/mL) are associated with increased exacerbations, increased airway inflammation, decreased lung function, and poor prognosis in asthmatic patients. Results from in vitro and in vivo studies in animals and humans have suggested that supplementation with vitamin D may ameliorate several hallmark features of asthma. However, the findings obtained from clinical trials are controversial and do not unequivocally support a beneficial role of vitamin D in asthma. Largely, interventional studies in children, pregnant women, and adults have primarily found little to no effect of vitamin D supplementation on improved asthma symptoms, onset, or progression of the disease. This could be related to the severity of the disease process and other confounding factors. IMPLICATIONS Despite the conflicting data obtained from clinical trials, vitamin D deficiency may influence the inflammatory response in the airways. Further studies are needed to determine the exact mechanisms by which vitamin D supplementation may induce antiinflammatory effects.
Collapse
|
22
|
Wang Z, Zhang H, Sun X, Ren L. The protective role of vitamin D3 in a murine model of asthma via the suppression of TGF-β/Smad signaling and activation of the Nrf2/HO-1 pathway. Mol Med Rep 2016; 14:2389-96. [PMID: 27484042 PMCID: PMC4991747 DOI: 10.3892/mmr.2016.5563] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Accepted: 05/13/2016] [Indexed: 12/13/2022] Open
Abstract
Asthma is a common worldwide health burden, the prevalence of which is increasing. Recently, the biologically active form of vitamin D3, 1,25-dihydroxyvitamin D3, has been reported to have a protective role in murine asthma; however, the molecular mechanisms by which vitamin D3 attenuates asthma-associated airway injury remain elusive. In the present study, BALB/c mice were sensitized to ovalbumin (OVA) and were administered 100 ng 1,25-dihydroxyvitamin D3 (intraperitoneal injection) 30 min prior to each airway challenge. The inflammatory responses were measured by ELISA, airway damage was analyzed by hematoxylin and eosin staining, airway remodeling was analyzed by Masson staining and periodic acid-Schiff staining, markers of oxidative stress were measured by commercial kits, and the expression levels of α-smooth muscle actin (α-SMA) and the activity of the NF-E2-related factor 2 (Nrf2)/heme oxygenase-1 (HO-1) and the transforming growth factor-β (TGF-β)/Smad signaling pathways were measured by immunohistochemistry and western blotting. The results demonstrated that OVA-induced airway inflammation and immunoglobulin E overexpression were significantly reduced by vitamin D3 treatment. In addition, treatment with vitamin D3 decreased α-SMA expression, collagen deposition and goblet cell hyperplasia, and inhibited TGF-β/Smad signaling in the asthmatic airway. The upregulated levels of malondialdehyde, and the reduced activities of superoxide dismutase and glutathione in OVA-challenged mice were also markedly restored following vitamin D3 treatment. Furthermore, treatment with vitamin D3 enhanced activation of the Nrf2/HO-1 pathway in the airways of asthmatic mice. In conclusion, these findings suggest that vitamin D3 may protect airways from asthmatic damage via the suppression of TGF-β/Smad signaling and activation of the Nrf2/HO-1 pathway; however, these protective effects were shown to be accompanied by hypercalcemia.
Collapse
Affiliation(s)
- Zhihui Wang
- Department of Pediatric Internal Medicine, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Haitao Zhang
- Department of Pediatric Internal Medicine, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Xiaohan Sun
- Department of Pediatric Internal Medicine, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| | - Lihong Ren
- Department of Pediatric Internal Medicine, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150001, P.R. China
| |
Collapse
|
23
|
Li Z, Zheng J, Zhang N, Li C. Berberine improves airway inflammation and inhibits NF-κB signaling pathway in an ovalbumin-induced rat model of asthma. J Asthma 2016; 53:999-1005. [PMID: 27175622 DOI: 10.1080/02770903.2016.1180530] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
OBJECTIVES Berberine has been reported for its various activities including anti-inflammatory effects and has been used in treating many diseases. However, its effects on airway inflammation in asthma have not been investigated. This study mainly aimed to detect its effects on the airway inflammation and the nuclear factor-κB (NF-κB) signaling pathway activity in a rat model of asthma. METHODS Asthma was induced by ovalbumin (OVA) sensitization and challenge. The asthmatic rats were respectively treated with vehicle PBS or berberine (100 mg/kg or 200 mg/kg) for 28 days. The control rats were treated with PBS. Inflammatory cells in bronchoalveolar lavage fluid (BALF) were counted and the lung inflammation was scored. Levels of NF-κB p65 (mRNA and protein), phosphorylated NF-κB p65 (p-NF-κB p65), inhibitory κB alpha (IκBα) (mRNA and protein) and phosphorylated IκBα (p-IκBα), as well as NF-κB p65 DNA-binding activity, were measured to assess the activity of NF-κB signaling pathway. Levels of the downstream inflammatory mediators of NF-κB signaling, IL-1β, IL-4, IL-5, IL-6, IL-13 and IL-17 in BALF, were measured. Besides, the serum levels of OVA-specific immunoglobulin (Ig)E were measured. RESULTS Results showed that OVA increased the number of inflammatory cells in BALF, elevated lung inflammation scores, enhanced the NF-κB signaling activity and promoted the production of IgE in rats. Berberine dose-dependently reversed the alterations induced by OVA in the asthmatic rats. CONCLUSIONS The findings suggested a therapeutic potential of berberine on OVA- induced airway inflammation. The ameliorative effects on the OVA-induced airway inflammation might be associated with the inhibition of the NF-κB signaling pathway.
Collapse
Affiliation(s)
- Zhenghao Li
- a Department of Neonatology , Yidu Central Hospital , Qingzhou, Shandong , China
| | - Jie Zheng
- a Department of Neonatology , Yidu Central Hospital , Qingzhou, Shandong , China
| | - Ning Zhang
- a Department of Neonatology , Yidu Central Hospital , Qingzhou, Shandong , China
| | - Chengde Li
- b Department of Pharmacology, Key Laboratory of Applied Pharmacology of Shandong Province , Weifang Medical University , Weifang, Shandong , China
| |
Collapse
|
24
|
Brumpton BM, Langhammer A, Henriksen AH, Camargo CA, Chen Y, Romundstad PR, Mai XM. Vitamin D and Lung Function Decline in Adults With Asthma: The HUNT Study. Am J Epidemiol 2016; 183:739-46. [PMID: 26994061 DOI: 10.1093/aje/kwv243] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2015] [Accepted: 09/04/2015] [Indexed: 12/17/2022] Open
Abstract
We investigated whether low 25-hydroxyvitamin D (25(OH)D) levels were associated with more lung function decline in adults with asthma and whether this association was modified by smoking status or inhaled corticosteroid (ICS) use. We analyzed data on 395 adults with asthma from the Nord-Trøndelag Health Study (1995-2008), Norway. Plasma 25(OH)D and lung function were measured at baseline, and lung function measurements were repeated at follow-up, approximately 11 years later. Linear regression was used to estimate lung function decline. Participants with low 25(OH)D (<50 nmol/L) had more decline in lung function measurements for forced expiratory volume in 1 second (FEV1) (388 mL), forced vital capacity (298 mL), and the FEV1/forced vital capacity ratio (3.7%) over the follow-up, compared with those with high 25(OH)D (≥50 nmol/L) who declined 314 mL, 246 mL, and 3.0%, respectively (P = 0.08, 0.30, and 0.23, respectively). The associations were stronger in never smokers and non-ICS users. In never smokers, low 25(OH)D levels were associated with more decline in FEV1 (445 vs. 222 mL) (P = 0.01). In non-ICS users, low 25(OH)D levels were associated with more decline in FEV1 (467 vs. 320 mL) (P = 0.02). Low serum 25(OH)D levels were weakly associated with more lung function decline in adults with asthma, and stronger associations were observed in never smokers and non-ICS users.
Collapse
|
25
|
Abstract
PURPOSE OF REVIEW To review the current evidence on the relationship between vitamin D and asthma. RECENT FINDINGS The rising morbidity and tremendous socioeconomic burden of asthma have prompted efforts to seek modifiable environmental and nutritional factors that contribute to the asthma epidemic. The association between low levels of vitamin D and asthma has been supported by many, but not all observational and epidemiologic studies. Recently, several controlled clinical trials have been undertaken to explore the effect of vitamin D supplementation on asthma control and respiratory tract infections. While some trials support the beneficial role of vitamin D supplementation in reducing asthma severity in children, several trials have found no beneficial role in adults. SUMMARY Given the high prevalence of vitamin D insufficiency in children and adults worldwide and recent randomized controlled trials of vitamin D in asthma, supplementation with vitamin D cannot be recommended as adjunctive therapy for asthma.
Collapse
|
26
|
Vitamin D influences asthmatic pathology through its action on diverse immunological pathways. Ann Am Thorac Soc 2015; 11 Suppl 5:S314-21. [PMID: 25525739 DOI: 10.1513/annalsats.201405-204aw] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The prevalence of vitamin D insufficiency and deficiency has increased markedly in recent decades to current epidemic levels (Hyppönen E, et al. Am J Clin Nutr 2007;85:860-868). In parallel, there has been an increase in the incidence of a range of immune-mediated conditions ranging from cancer to autoimmune and respiratory diseases, including chronic obstructive pulmonary disease and asthma (Holick MF. N Engl J Med 2007;357:266-281; Finklea et al. Adv Nutr 2011;2:244-253). There is also an association with increased respiratory infections, which are the most common cause of asthma exacerbations (Finklea et al. Adv Nutr 2011;2:244-253). Together, this has resulted in considerable interest in the therapeutic potential of vitamin D to prevent and improve treatment of asthma and other respiratory diseases. To this end, data from clinical trials involving supplementation with active vitamin D, or more commonly a precursor, are starting to emerge. This review considers mechanisms by which vitamin D may act on the immune system to dampen inappropriate inflammatory responses in the airway while also promoting tolerance and antimicrobial defense mechanisms that collectively maintain respiratory health.
Collapse
|
27
|
Yawn J, Lawrence LA, Carroll WW, Mulligan JK. Vitamin D for the treatment of respiratory diseases: is it the end or just the beginning? J Steroid Biochem Mol Biol 2015; 148:326-37. [PMID: 25625665 DOI: 10.1016/j.jsbmb.2015.01.017] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2014] [Revised: 12/16/2014] [Accepted: 01/22/2015] [Indexed: 12/22/2022]
Abstract
A large number of human, animal and in vitro studies have suggested that vitamin D3 (VD3) plays a critical role in inflammatory airway diseases such as asthma, chronic rhinosinusitis, and allergic rhinitis. VD3 acts upon a broad range of immune cells involved in the pathogenesis of these diseases including T-cells, dendritic cells (DCs), macrophages, and B-cells. In addition, VD3 can also regulate the functions of a number of non-immune cells including epithelial cells, fibroblasts, and smooth muscle cells. Given that VD3 has known effects on the immune system, it seems logical that supplementation with VD3 would prove efficacious in the treatment of these three diseases. While many studies, most of which are observational, have suggested that VD3 deficiency is associated with more severe disease, VD3 supplementation trials in humans have resulted in varied outcomes in terms of efficacy. In this review article we will discuss the role of VD3 in these three commonly associated respiratory diseases. We will explore the literature describing associations of VD3 deficiency with patient outcomes, cells in the respiratory microenvironment susceptible to VD3 regulation, conflicting results of VD3 supplementation trials, and potential gaps in our knowledge that may be limiting the widespread use of VD3 for the treatment of respiratory diseases such asthma, chronic rhinosinusitis and allergic rhinitis. This article is part of a Special Issue entitled '17th Vitamin D Workshop'.
Collapse
Affiliation(s)
- James Yawn
- Department of Otolaryngology-Head & Neck Surgery, Medical University of South Carolina, Charleston, SC, United States
| | - Lauren A Lawrence
- Department of Otolaryngology-Head & Neck Surgery, Medical University of South Carolina, Charleston, SC, United States
| | - William W Carroll
- Department of Otolaryngology-Head & Neck Surgery, Medical University of South Carolina, Charleston, SC, United States
| | - Jennifer K Mulligan
- Department of Otolaryngology-Head & Neck Surgery, Medical University of South Carolina, Charleston, SC, United States; Department of Pediatrics, Medical University of South Carolina, Charleston, SC, United States; Ralph H. Johnson VA Medical Center, Charleston, SC, United States.
| |
Collapse
|
28
|
Vasiliou JE, Lui S, Walker SA, Chohan V, Xystrakis E, Bush A, Hawrylowicz CM, Saglani S, Lloyd CM. Vitamin D deficiency induces Th2 skewing and eosinophilia in neonatal allergic airways disease. Allergy 2014; 69:1380-9. [PMID: 24943330 PMCID: PMC4329404 DOI: 10.1111/all.12465] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/14/2014] [Indexed: 12/29/2022]
Abstract
BACKGROUND Associations between vitamin D status and childhood asthma are increasingly reported, but direct causation and mechanisms underlying an effect remain unknown. We investigated the effect of early-life vitamin D deficiency on the development of murine neonatal allergic airways disease (AAD). METHODS In utero and early-life vitamin D deficiency was achieved using a vitamin D-deficient diet for female mice during the third trimester of pregnancy and lactation. Offspring were weaned onto a vitamin D-deficient or vitamin D-replete diet, and exposure to intranasal house dust mite (HDM) or saline was commenced from day 3 of life for up to 6 weeks, when airway hyper-responsiveness (AHR), airway inflammation and remodelling were assessed. RESULTS Neonatal mice that had in utero and early-life vitamin D deficiency had significantly increased pulmonary CD3(+) CD4(+) T1ST2(+) cells and reduced CD4(+) IL-10(+) cells. This effect was enhanced following HDM exposure. AHR in HDM-exposed mice was unaffected by vitamin D status. Introduction of vitamin D into the diet at weaning resulted in a significant reduction in serum IgE levels, reduced pulmonary eosinophilia and peri-bronchiolar collagen deposition. CONCLUSION Peri-natal vitamin D deficiency alone has immunomodulatory effects including Th2 skewing and reduced IL-10-secreting T regulatory cells, exaggerated with additional allergen exposure. Vitamin D deficiency in early life does not affect AHR, but contributes to disease severity with worse eosinophilic inflammation and airway remodelling. Importantly, supplementation with vitamin D improves both of these pathological abnormalities.
Collapse
Affiliation(s)
- J E Vasiliou
- Leukocyte Biology Section, National Heart and Lung Institute, Imperial College LondonLondon, UK
| | - S Lui
- Leukocyte Biology Section, National Heart and Lung Institute, Imperial College LondonLondon, UK
| | - S A Walker
- Leukocyte Biology Section, National Heart and Lung Institute, Imperial College LondonLondon, UK
| | - V Chohan
- Leukocyte Biology Section, National Heart and Lung Institute, Imperial College LondonLondon, UK
| | - E Xystrakis
- MRC & Asthma UK Centre for Allergic Mechanisms of Asthma, King's College London, Guy's HospitalLondon, UK
| | - A Bush
- Respiratory Paediatrics, Royal Brompton Hospital, and National Heart & Lung Institute, Imperial College LondonLondon, UK
| | - C M Hawrylowicz
- MRC & Asthma UK Centre for Allergic Mechanisms of Asthma, King's College London, Guy's HospitalLondon, UK
| | - S Saglani
- Leukocyte Biology Section, National Heart and Lung Institute, Imperial College LondonLondon, UK
- Respiratory Paediatrics, Royal Brompton Hospital, and National Heart & Lung Institute, Imperial College LondonLondon, UK
| | - C M Lloyd
- Leukocyte Biology Section, National Heart and Lung Institute, Imperial College LondonLondon, UK
| |
Collapse
|
29
|
Mann EH, Chambers ES, Pfeffer PE, Hawrylowicz CM. Immunoregulatory mechanisms of vitamin D relevant to respiratory health and asthma. Ann N Y Acad Sci 2014; 1317:57-69. [PMID: 24738964 DOI: 10.1111/nyas.12410] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Vitamin D deficiency is prevalent among people with various immune-mediated conditions, including autoimmune diseases and asthma. Serum 25(OH)D levels inversely correlate with asthma severity, glucocorticoid responsiveness/dosage, and markers of pathogenesis, such as airway remodeling, IgE, and eosinophilia. Trials involving supplementation with active vitamin D or a precursor are beginning to emerge with variable results that, in part, reflect differences in study design. This review looks at the mechanisms by which vitamin D may protect against asthma, including increasing glucocorticoid responsiveness, skewing immune cells towards a regulatory phenotype, reducing the incidence of infections, airway remodeling, eosinophilia, and lowering the levels of IgE. Also discussed is the therapeutic potential for vitamin D, which is likely to be applicable to immune-mediated conditions beyond simply asthma.
Collapse
Affiliation(s)
- Elizabeth H Mann
- Medical Research Council (MRC) and Asthma U.K. Center for Allergic Mechanisms of Asthma, King's College London, London, United Kingdom
| | | | | | | |
Collapse
|
30
|
Abstract
In the last decade, many epidemiologic studies have investigated the link between vitamin D deficiency and asthma. Most studies have shown that vitamin D deficiency increases the risk of asthma and allergies. Low levels of vitamin D have been associated with asthma severity and loss of control, together with recurrent exacerbations. Remodeling is an early event in asthma described as a consequence of production of mediators and growth factors by inflammatory and resident bronchial cells. Consequently, lung function is altered, with a decrease in forced expiratory volume in one second and exacerbated airway hyperresponsiveness. Subepithelial fibrosis and airway smooth muscle cell hypertrophy are typical features of structural changes in the airways. In animal models, vitamin D deficiency enhances inflammation and bronchial anomalies. In severe asthma of childhood, major remodeling is observed in patients with low vitamin D levels. Conversely, the antifibrotic and antiproliferative effects of vitamin D in smooth muscle cells have been described in several experiments. In this review, we briefly summarize the current knowledge regarding the relationship between vitamin D and asthma, and focus on its effect on airway remodeling and its potential therapeutic impact for asthma.
Collapse
Affiliation(s)
- Anissa Berraies
- Pediatric Respiratory Diseases Department, Abderrahmen Mami Hospital, Ariana, and Research Unit 12SP15 Tunis El Manar University, Tunis, Tunisia
| | - Kamel Hamzaoui
- Pediatric Respiratory Diseases Department, Abderrahmen Mami Hospital, Ariana, and Research Unit 12SP15 Tunis El Manar University, Tunis, Tunisia
| | - Agnes Hamzaoui
- Pediatric Respiratory Diseases Department, Abderrahmen Mami Hospital, Ariana, and Research Unit 12SP15 Tunis El Manar University, Tunis, Tunisia
| |
Collapse
|