1
|
Zhong Y, Liu Z, Ma J, Zhang L, Xue L. Tumour-associated antigens in systemic lupus erythematosus: association with clinical manifestations and serological indicators. Rheumatology (Oxford) 2024; 63:235-241. [PMID: 37184876 DOI: 10.1093/rheumatology/kead224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 04/09/2023] [Accepted: 05/03/2023] [Indexed: 05/16/2023] Open
Abstract
OBJECTIVES To explore the relationship of tumour-associated antigens (TAAs) with the clinical manifestations and serological markers of SLE. METHODS This was a retrospective study. Clinical data of SLE patients were extracted from the electronic medical records, including serum levels of TAAs such as alpha-fetoprotein (AFP), carcinoembryonic antigen (CEA), cancer antigen (CA) 19-9, CA125, CA15-3 and cytokeratin 19-fragments (CYFRA21-1). TAA positivity was defined as serum level exceeding the upper limit of the corresponding reference range. RESULTS A total of 149 SLE patients (SLE group) and 149 age- and sex-matched healthy subjects (control group) were enrolled. Compared with healthy controls, the SLE group had higher positivity rates for CA19-9 and CYFRA21-1, and elevated serum levels of CA125, CA15-3 and CYFRA21-1. SLE patients with TAA positivity were older, had a higher prevalence of serous effusion, pericardial effusion, albuminuria and thrombocytopenia, and lower positivity rate for anti-dsDNA than patients without TAA positivity. The levels of serum creatinine (SCR), blood urea nitrogen, glutamic oxalate transaminase and 24-h urinary protein were also higher in SLE patients with TAA positivity, but platelet count and serum albumin levels were lower. On logistic regression, thrombocytopenia and SCR levels were identified as independent risk factors for TAA positivity. CA125 positivity rate and serum levels of CA125 were associated with SLE disease activity. CONCLUSION The positivity rates and serum levels of some TAAs were elevated in SLE, and thrombocytopenia and SCR levels were independent risk factors for TAA positivity.
Collapse
Affiliation(s)
- Ying Zhong
- Department of Rheumatology and Immunology, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Zhichun Liu
- Department of Rheumatology and Immunology, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Jinlu Ma
- Department of Rheumatology and Immunology, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Lin Zhang
- Department of Rheumatology and Immunology, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Leixi Xue
- Department of Rheumatology and Immunology, The Second Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
2
|
SARSIK KUMBARACI B, KANAT E, AYKUTLU U, KIZILAY F, ŞEN S. Prostatın benign, prekürsör ve malign epitelyal proliferasyonlarında ERG ile PTEN ekspresyonlarının araştırılması ve bulguların klinikopatolojik korelasyonu. EGE TIP DERGISI 2022. [DOI: 10.19161/etd.1209075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Amaç: Prostat kanseri farklı klinik gidişata ve geniş bir tedavi yelpazesine sahip, klinik ve moleküler olarak oldukça heterojen bir kanser türüdür. Özellikle “prostatik intraepitelyal neoplazi” (PİN), “atipik intraduktal proliferasyon” (AİP) ve “intraduktal karsinom” (İDK) benzer morfolojik özelliklere sahip olması açısından ayırıcı tanı zorluğu yaratan tanılar olup, hasta tedavi ve takibi de farklı olan antitelerdir. Çalışmamızda bu lezyonlarda ERG ve PTEN ekspresyon düzeylerini belirlemeyi ve bu biyobelirteçlerin prognostik ve diagnostik değerini araştırmayı amaçladık. Gereç ve Yöntem: EÜTF Tıbbi Patoloji Anabilim Dalında 2011-2012 yılında radikal prostatektomi veya iğne biyopsi materyallerinde “Adenokarsinom” tanısı almış 87 olgu çalışmaya alındı. Histopatolojik olarak AİP, İDK ve PİN içeren alanlar belirlendi. immunohistokimyasal olarak bu alanlarda ERG ve PTEN ekspresyonları değerlendirildi.Bulgular: Olguların 6’sında İDK, 29’unda AİP ve 52’sinde PİN belirlendi. İDK AİP, DG 3 ve üstünde olan tümörlerde daha fazla görüldü. İDK ve AİP in eşlik ettiği prostat karsinomlarının sağ kalım süresi daha kısaydı (p=0.043). İDK ve AİP içeren tümörlerde ERG ve PTEN durumu invaziv komponentle uyum içindeydi. Ayrıca tüm İDK alanlarında ERG pozitifti. PTEN ile heterojen boyanma görülmüş olup, PTEN’in invaziv karsinom ve İDK alanlarında negatifliği daha fazlaydı (p=0,63). ERG pozitifliği ve PTEN negatifliği istatistiksel olarak anlamlı olmamakla birlikte AİP tanısını desteklediği dikkati çekti.Sonuç: Özellikle ayırıcı tanı sorunu yaratan intraduktal lezyonlarda ERG pozitifliği ve PTEN negatifliği klinik öneme sahip prostat karsinomuna eşlik edebileceği için özellikle biyopsilerde gözardı edilmemeli ve hasta tedavi ile takibi buna göre yapılmalıdır.
Collapse
Affiliation(s)
- Banu SARSIK KUMBARACI
- EGE ÜNİVERSİTESİ, TIP FAKÜLTESİ, CERRAHİ TIP BİLİMLERİ BÖLÜMÜ, TIBBİ PATOLOJİ ANABİLİM DALI
| | - Emre KANAT
- UŞAK ÜNİVERSİTESİ, TIP FAKÜLTESİ, DAHİLİ TIP BİLİMLERİ BÖLÜMÜ, ACİL TIP ANABİLİM DALI
| | - Umut AYKUTLU
- Acıbadem Sağlık Grubu, Altunizade Hastanesi, Patoloji Laboratuvarı
| | - Fuat KIZILAY
- EGE ÜNİVERSİTESİ, TIP FAKÜLTESİ, CERRAHİ TIP BİLİMLERİ BÖLÜMÜ, ÜROLOJİ ANABİLİM DALI
| | - Sait ŞEN
- EGE ÜNİVERSİTESİ, TIP FAKÜLTESİ, CERRAHİ TIP BİLİMLERİ BÖLÜMÜ, TIBBİ PATOLOJİ ANABİLİM DALI
| |
Collapse
|
3
|
Chang KF, Huang XF, Chang JT, Huang YC, Weng JC, Tsai NM. Cedrol suppresses glioblastoma progression by triggering DNA damage and blocking nuclear translocation of the androgen receptor. Cancer Lett 2020; 495:180-190. [DOI: 10.1016/j.canlet.2020.09.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 08/19/2020] [Accepted: 09/06/2020] [Indexed: 12/20/2022]
|
4
|
Franko A, Berti L, Guirguis A, Hennenlotter J, Wagner R, Scharpf MO, de Angelis MH, Wißmiller K, Lickert H, Stenzl A, Birkenfeld AL, Peter A, Häring HU, Lutz SZ, Heni M. Characterization of Hormone-Dependent Pathways in Six Human Prostate-Cancer Cell Lines: A Gene-Expression Study. Genes (Basel) 2020; 11:E1174. [PMID: 33036464 PMCID: PMC7599530 DOI: 10.3390/genes11101174] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 09/26/2020] [Accepted: 09/30/2020] [Indexed: 12/13/2022] Open
Abstract
Prostate cancer (PCa), the most incident cancer in men, is tightly regulated by endocrine signals. A number of different PCa cell lines are commonly used for in vitro experiments, but these are of diverse origin, and have very different cell-proliferation rates and hormone-response capacities. By analyzing the gene-expression pattern of main hormone pathways, we systematically compared six PCa cell lines and parental primary cells. We compared these cell lines (i) with each other and (ii) with PCa tissue samples from 11 patients. We found major differences in the gene-expression levels of androgen, insulin, estrogen, and oxysterol signaling between PCa tissue and cell lines, and between different cell lines. Our systematic characterization gives researchers a solid basis to choose the appropriate PCa cell model for the hormone pathway of interest.
Collapse
Affiliation(s)
- Andras Franko
- Department of Internal Medicine IV, Division of Diabetology, Endocrinology, and Nephrology, University Hospital Tübingen, 72076 Tübingen, Germany; (A.F.); (R.W.); (A.L.B.); (H.-U.H.); (S.Z.L.); (M.H.)
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Centre Munich at the University of Tübingen, 72076 Tübingen, Germany;
- German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany; (M.H.d.A.); (H.L.)
| | - Lucia Berti
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Centre Munich at the University of Tübingen, 72076 Tübingen, Germany;
- German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany; (M.H.d.A.); (H.L.)
| | - Alke Guirguis
- Department for Diagnostic Laboratory Medicine, Institute for Clinical Chemistry and Pathobiochemistry, University Hospital Tübingen, 72076 Tübingen, Germany;
| | - Jörg Hennenlotter
- Department of Urology, University Hospital Tübingen, 72076 Tübingen, Germany; (J.H.); (A.S.)
| | - Robert Wagner
- Department of Internal Medicine IV, Division of Diabetology, Endocrinology, and Nephrology, University Hospital Tübingen, 72076 Tübingen, Germany; (A.F.); (R.W.); (A.L.B.); (H.-U.H.); (S.Z.L.); (M.H.)
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Centre Munich at the University of Tübingen, 72076 Tübingen, Germany;
- German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany; (M.H.d.A.); (H.L.)
| | - Marcus O. Scharpf
- Institute of Pathology, University Hospital Tübingen, 72076 Tübingen, Germany;
| | - Martin Hrabĕ de Angelis
- German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany; (M.H.d.A.); (H.L.)
- Institute of Experimental Genetics, Helmholtz Zentrum München, 85764 Neuherberg, Germany
| | - Katharina Wißmiller
- Institute of Diabetes and Regeneration Research, Helmholtz Zentrum München, 85764 Neuherberg, Germany;
- Institute of Stem Cell Research, Helmholtz Zentrum München, 85764 Neuherberg, Germany
- Department of Medicine, Technical University of Munich, 81675 München, Germany
| | - Heiko Lickert
- German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany; (M.H.d.A.); (H.L.)
- Institute of Diabetes and Regeneration Research, Helmholtz Zentrum München, 85764 Neuherberg, Germany;
- Institute of Stem Cell Research, Helmholtz Zentrum München, 85764 Neuherberg, Germany
- Department of Medicine, Technical University of Munich, 81675 München, Germany
| | - Arnulf Stenzl
- Department of Urology, University Hospital Tübingen, 72076 Tübingen, Germany; (J.H.); (A.S.)
| | - Andreas L. Birkenfeld
- Department of Internal Medicine IV, Division of Diabetology, Endocrinology, and Nephrology, University Hospital Tübingen, 72076 Tübingen, Germany; (A.F.); (R.W.); (A.L.B.); (H.-U.H.); (S.Z.L.); (M.H.)
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Centre Munich at the University of Tübingen, 72076 Tübingen, Germany;
- German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany; (M.H.d.A.); (H.L.)
| | - Andreas Peter
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Centre Munich at the University of Tübingen, 72076 Tübingen, Germany;
- German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany; (M.H.d.A.); (H.L.)
- Department for Diagnostic Laboratory Medicine, Institute for Clinical Chemistry and Pathobiochemistry, University Hospital Tübingen, 72076 Tübingen, Germany;
| | - Hans-Ulrich Häring
- Department of Internal Medicine IV, Division of Diabetology, Endocrinology, and Nephrology, University Hospital Tübingen, 72076 Tübingen, Germany; (A.F.); (R.W.); (A.L.B.); (H.-U.H.); (S.Z.L.); (M.H.)
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Centre Munich at the University of Tübingen, 72076 Tübingen, Germany;
- German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany; (M.H.d.A.); (H.L.)
| | - Stefan Z. Lutz
- Department of Internal Medicine IV, Division of Diabetology, Endocrinology, and Nephrology, University Hospital Tübingen, 72076 Tübingen, Germany; (A.F.); (R.W.); (A.L.B.); (H.-U.H.); (S.Z.L.); (M.H.)
- Clinic for Geriatric and Orthopedic Rehabilitation Bad Sebastiansweiler, 72116 Mössingen, Germany
| | - Martin Heni
- Department of Internal Medicine IV, Division of Diabetology, Endocrinology, and Nephrology, University Hospital Tübingen, 72076 Tübingen, Germany; (A.F.); (R.W.); (A.L.B.); (H.-U.H.); (S.Z.L.); (M.H.)
- Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Centre Munich at the University of Tübingen, 72076 Tübingen, Germany;
- German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany; (M.H.d.A.); (H.L.)
- Department for Diagnostic Laboratory Medicine, Institute for Clinical Chemistry and Pathobiochemistry, University Hospital Tübingen, 72076 Tübingen, Germany;
| |
Collapse
|
5
|
An Update on the Prognostic and Predictive Serum Biomarkers in Metastatic Prostate Cancer. Diagnostics (Basel) 2020; 10:diagnostics10080549. [PMID: 32752137 PMCID: PMC7459446 DOI: 10.3390/diagnostics10080549] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 07/21/2020] [Accepted: 07/31/2020] [Indexed: 12/18/2022] Open
Abstract
Serum biomarkers are molecules produced by normal and abnormal cells. Prostate specific antigen (PSA) is an example of a serum biomarker used widely in the diagnosis and prognostication of prostate cancer. PSA has its limitations as it is organ- but not cancer-specific. The aim of this review is to summarize the current published data on the potential prognostic and predictive biomarkers in metastatic prostate cancer (mPC) that can be used in conjunction with PSA. These biomarkers include microRNAs, androgen receptor variants, bone metabolism, neuroendocrine and metabolite biomarkers, and could guide treatment selection and sequence in an era where we strive to personalized therapy.
Collapse
|
6
|
Feng X, Zhang M, Zhang L, Hu H, Zhang L, Zhang X, Fan S, Liang C. The clinical value of the prostatic exosomal protein expression in the diagnosis of chronic prostatitis: a single-center study. Int Urol Nephrol 2019; 52:225-232. [PMID: 31720952 DOI: 10.1007/s11255-019-02313-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 10/03/2019] [Indexed: 12/16/2022]
Abstract
OBJECTIVE Levels of urinary prostatic exosomal protein (PSEP) were detected to evaluate the clinical potential of PSEP as a diagnostic marker of chronic prostatitis (CP). MATERIALS AND METHODS The level of urinary PSEP was measured in 412 cases by an enzyme-linked immunosorbent assay kit, including 202 controls and 210 CP cases. Of the CP patients, 116 cases met the definition of the USA National Institutes of Health category III (NIH-III), with 60 cases of NIH-IIIA and 56 cases of NIH-IIIB. The ages, body mass indexes (BMI), white blood cell (WBC) levels in expressed prostatic secretions (EPS), lecithin body counts in EPS, urine PSEP levels both before and after prostate massage obtained from the CP patients and NIH-CPSI scores were analyzed. RESULTS In the diagnosis of CP, the PSEP contents in the urine samples before and after prostate massage manifested a sensitivity of 86.93% vs. 61.06%, and a total coincidence rate of 85.24% vs. 61.06%, respectively. The area under the ROC curve was 0.926 vs. 0.709 for the before and after massage PSEP contents, respectively. Besides, during the follow-up of patients with CP, the improvement in symptoms was not correlated with the level changes of PSEP. CONCLUSION Measurement of PSEP levels for the clinical diagnosis of CP is objective and painless. It could be a novel, simple, and noninvasive method for the diagnosis of CP. However, differences in fluid intake may result in a concentration or dilution of urine, which would ultimately affect the judgment of PSEP results.
Collapse
Affiliation(s)
- Xingliang Feng
- Department of Urology, The First Affiliated Hospital of Anhui Medical University and Institute of Urology and Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Jixi Road, Shushan District, Hefei, Anhui, 230022, People's Republic of China
| | - Meng Zhang
- Department of Urology, The First Affiliated Hospital of Anhui Medical University and Institute of Urology and Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Jixi Road, Shushan District, Hefei, Anhui, 230022, People's Republic of China.,Urology Institute of Shenzhen University, The Third Affiliated Hospital of Shenzhen University, Shenzhen University, Shenzhen, 518000, People's Republic of China
| | - Ligang Zhang
- Department of Urology, The First Affiliated Hospital of Anhui Medical University and Institute of Urology and Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Jixi Road, Shushan District, Hefei, Anhui, 230022, People's Republic of China
| | - Huaqing Hu
- Department of Health Examination Center, The First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei, 230022, PR China
| | - Li Zhang
- Department of Urology, The First Affiliated Hospital of Anhui Medical University and Institute of Urology and Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Jixi Road, Shushan District, Hefei, Anhui, 230022, People's Republic of China
| | - Xiansheng Zhang
- Department of Urology, The First Affiliated Hospital of Anhui Medical University and Institute of Urology and Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Jixi Road, Shushan District, Hefei, Anhui, 230022, People's Republic of China
| | - Song Fan
- Department of Urology, The First Affiliated Hospital of Anhui Medical University and Institute of Urology and Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Jixi Road, Shushan District, Hefei, Anhui, 230022, People's Republic of China.
| | - Chaozhao Liang
- Department of Urology, The First Affiliated Hospital of Anhui Medical University and Institute of Urology and Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Jixi Road, Shushan District, Hefei, Anhui, 230022, People's Republic of China.
| |
Collapse
|
7
|
Vermassen T, De Bruyne S, Himpe J, Lumen N, Callewaert N, Rottey S, Delanghe J. N-Linked Glycosylation and Near-Infrared Spectroscopy in the Diagnosis of Prostate Cancer. Int J Mol Sci 2019; 20:ijms20071592. [PMID: 30934974 PMCID: PMC6479798 DOI: 10.3390/ijms20071592] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 03/21/2019] [Accepted: 03/23/2019] [Indexed: 01/07/2023] Open
Abstract
Background: Performing a prostate biopsy is the most robust and reliable way to diagnose prostate cancer (PCa), and to determine the disease grading. As little to no biochemical markers for prostate tissue exist, we explored the possibilities of tissue N-glycosylation and near-infrared spectroscopy (NIR) in PCa diagnosis. Methods: Tissue specimens from 100 patients (benign prostate hyperplasia (BPH), n = 50; and PCa, n = 50) were obtained. The fresh-frozen tissue was dispersed and a tissue N-glycosylation profile was determined. Consequently, the formalin-fixed paraffin-embedded slides were analyzed using NIR spectroscopy. A comparison was made between the benign and malignant tissue, and between the various Gleason scores. Results: A difference was observed for the tissue of N-glycosylation between the benign and malignant tissue. These differences were located in the fycosylation ratios and the total amount of bi- and tetra-antennary structures (all p < 0.0001). These differences were also present between various Gleason scores. In addition, the NIR spectra revealed changes between the benign and malignant tissue in several regions. Moreover, spectral ranges of 1055–1065 nm and 1450–1460 nm were significantly different between the Gleason scores (p = 0.0042 and p = 0.0195). Conclusions: We have demonstrated biochemical changes in the N-glycan profile of prostate tissue, which allows for the distinction between malignant and benign tissue, as well as between various Gleason scores. These changes can be correlated to the changes observed in the NIR spectra. This could possibly further improve the histological assessment of PCa diagnosis, although further method validation is needed.
Collapse
Affiliation(s)
- Tijl Vermassen
- Department of Medical Oncology, Ghent University Hospital, 9000 Ghent, Belgium.
| | - Sander De Bruyne
- Department of Clinical Chemistry, Microbiology and Immunology, Ghent University, 9000 Ghent, Belgium.
| | - Jonas Himpe
- Department of Clinical Chemistry, Microbiology and Immunology, Ghent University, 9000 Ghent, Belgium.
| | - Nicolaas Lumen
- Department of Urology, Ghent University Hospital, 9000 Ghent, Belgium.
| | - Nico Callewaert
- Unit for Medical Biotechnology, Inflammation Research Center, VIB⁻Ghent University, 9052 Zwijnaarde, Belgium.
| | - Sylvie Rottey
- Department of Medical Oncology, Ghent University Hospital, 9000 Ghent, Belgium.
| | - Joris Delanghe
- Department of Clinical Chemistry, Microbiology and Immunology, Ghent University, 9000 Ghent, Belgium.
- Department of Clinical Chemistry, Ghent University Hospital, 9000 Ghent, Belgium.
| |
Collapse
|
8
|
DeLuna F, Cadena M, Wang B, Sun LZ, Ye JY. Cellular Refractive Index Comparison of Various Prostate Cancer and Noncancerous Cell Lines via Photonic-Crystal Biosensor. PROCEEDINGS OF SPIE--THE INTERNATIONAL SOCIETY FOR OPTICAL ENGINEERING 2019; 10881:108810K. [PMID: 32313355 PMCID: PMC7168772 DOI: 10.1117/12.2507505] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The current clinical standard for mass screening of prostate cancer are prostate-specific antigen (PSA) biomarker assays. Unfortunately, the low specificity of PSA's bioassays to prostate cancer leads to high false-positive rates, as such there is an urgent need for the development of a more specific detection system independent of PSA levels. In our previous research, we have successfully demonstrated, with the use of our Photonic-Crystal based biosensor in a Total-Internal-Reflection (PC-TIR) configuration, detection of prostate cancer (PC-3) cells against benign prostate hyperplasia (BPH-1) cells. The PC-TIR biosensor achieved detection of individual prostate cancer cells utilizing cellular refractive index (RI) as the only contrast parameter. To further study this methodology in vitro, we report a comprehensive study of the cellular RI's of various prostate cancer and noncancerous cell lines (i.e. RWPE-1, BPH-1, PC-3, DU-145, and LNCaP) via reflectance spectroscopy and single-cell RI imaging utilizing the PC-TIR biosensor. Our study shows promising clinical potential in utilizing the PC-TIR biosensor system for the detection of prostate cancer against noncancerous prostate epithelial cells.
Collapse
Affiliation(s)
- Frank DeLuna
- Department of Biomedical Engineering, The University of Texas at San Antonio, 1 UTSA Circle, San Antonio, TX, 78249, USA
| | - Melissa Cadena
- Department of Biomedical Engineering, The University of Texas at San Antonio, 1 UTSA Circle, San Antonio, TX, 78249, USA
| | - Bingzhi Wang
- Department of Cell Systems & Anatomy, The University of Texas Health at San Antonio, 7703 Floyd Curl Dr, San Antonio, TX 78229, USA
| | - Lu-Zhe Sun
- Department of Cell Systems & Anatomy, The University of Texas Health at San Antonio, 7703 Floyd Curl Dr, San Antonio, TX 78229, USA
| | - Jing Yong Ye
- Department of Biomedical Engineering, The University of Texas at San Antonio, 1 UTSA Circle, San Antonio, TX, 78249, USA
| |
Collapse
|
9
|
Magani F, Bray ER, Martinez MJ, Zhao N, Copello VA, Heidman L, Peacock SO, Wiley DJ, D'Urso G, Burnstein KL. Identification of an oncogenic network with prognostic and therapeutic value in prostate cancer. Mol Syst Biol 2018; 14:e8202. [PMID: 30108134 PMCID: PMC6684952 DOI: 10.15252/msb.20188202] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Revised: 07/11/2018] [Accepted: 07/17/2018] [Indexed: 12/15/2022] Open
Abstract
Identifying critical pathways governing disease progression is essential for accurate prognosis and effective therapy. We developed a broadly applicable and novel systems-level gene discovery strategy. This approach focused on constitutively active androgen receptor (AR) splice variant-driven pathways as representative of an intractable mechanism of prostate cancer (PC) therapeutic resistance. We performed a meta-analysis of human prostate samples using weighted gene co-expression network analysis combined with experimental AR variant transcriptome analyses. An AR variant-driven gene module that is upregulated during human PC progression was identified. We filtered this module by identifying genes that functionally interacted with AR variants using a high-throughput synthetic genetic array screen in Schizosaccharomyces pombe This strategy identified seven AR variant-regulated genes that also enhance AR activity and drive cancer progression. Expression of the seven genes predicted poor disease-free survival in large independent PC patient cohorts. Pharmacologic inhibition of interacting members of the gene set potently and synergistically decreased PC cell proliferation. This unbiased and novel gene discovery strategy identified a clinically relevant, oncogenic, interacting gene hub with strong prognostic and therapeutic potential in PC.
Collapse
Affiliation(s)
- Fiorella Magani
- Sheila and David Fuente Graduate Program in Cancer Biology, University of Miami Miller School of Medicine, Miami, FL, USA
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Eric R Bray
- Department of Neurological Surgery, Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Maria J Martinez
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Ning Zhao
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Valeria A Copello
- Sheila and David Fuente Graduate Program in Cancer Biology, University of Miami Miller School of Medicine, Miami, FL, USA
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Laine Heidman
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Stephanie O Peacock
- Sheila and David Fuente Graduate Program in Cancer Biology, University of Miami Miller School of Medicine, Miami, FL, USA
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - David J Wiley
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Gennaro D'Urso
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, FL, USA
| | - Kerry L Burnstein
- Department of Molecular and Cellular Pharmacology, University of Miami Miller School of Medicine, Miami, FL, USA
- Sylvester Comprehensive Cancer Center (SCCC), Miami, FL, USA
| |
Collapse
|
10
|
Potential Epigenetic Biomarkers for Prostate Cancer Screening. Int Neurourol J 2018; 22:142-144. [PMID: 29991236 PMCID: PMC6059910 DOI: 10.5213/inj.1836096.048] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Accepted: 05/24/2018] [Indexed: 11/08/2022] Open
|
11
|
Emerging proteomics biomarkers and prostate cancer burden in Africa. Oncotarget 2018; 8:37991-38007. [PMID: 28388542 PMCID: PMC5514967 DOI: 10.18632/oncotarget.16568] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Accepted: 02/27/2017] [Indexed: 12/25/2022] Open
Abstract
Various biomarkers have emerged via high throughput omics-based approaches for use in diagnosis, treatment, and monitoring of prostate cancer. Many of these have yet to be demonstrated as having value in routine clinical practice. Moreover, there is a dearth of information on validation of these emerging prostate biomarkers within African cohorts, despite the huge burden and aggressiveness of prostate cancer in men of African descent. This review focusses of the global landmark achievements in prostate cancer proteomics biomarker discovery and the potential for clinical implementation of these biomarkers in Africa. Biomarker validation processes at the preclinical, translational and clinical research level are discussed here, as are the challenges and prospects for the evaluation and use of novel proteomic prostate cancer biomarkers.
Collapse
|
12
|
MED15 overexpression in prostate cancer arises during androgen deprivation therapy via PI3K/mTOR signaling. Oncotarget 2018; 8:7964-7976. [PMID: 27974704 PMCID: PMC5352374 DOI: 10.18632/oncotarget.13860] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Accepted: 11/21/2016] [Indexed: 12/31/2022] Open
Abstract
Androgen deprivation therapy (ADT) is the main therapeutic option for advanced prostate cancer (PCa). After initial regression, most tumors develop into castration-resistant PCa (CRPC). Previously, we found the Mediator complex subunit MED15 to be overexpressed in CRPC and to correlate with clinical outcome. Therefore, we investigated whether MED15 is implicated in the signaling changes taking place during progression to CRPC. Immunohistochemistry (IHC) for MED15 on matched samples from the same patients before and after ADT reveals significantly increased MED15 expression after ADT in 72%. A validation cohort comprising samples before and after therapy confirmed our observations. Protein analysis for pAKT and pSMAD3 shows that MED15 correlates with PI3K and TGFß activities, respectively, and that hyper-activation of both pathways simultaneously correlates with highest levels of MED15. We further show that MED15 protein expression increases in LNCaP cells under androgen deprivation, and via EGF mediated PI3K activation. PI3K/mTOR and TGFß-receptor inhibition results in decreased MED15 expression. MED15 knockdown reduces LNCaP cell viability and induces apoptosis during androgen deprivation, while cell cycle is not affected. Collectively, MED15 overexpression arises during ADT via hyper-activation of PI3K/mTOR signaling, thus MED15 may serve as a predictive marker for response to PI3K/mTOR inhibitors. Furthermore, MED15 is potentially a therapeutic target for the treatment of CRPC.
Collapse
|
13
|
DeLuna F, Ding X, Sagredo I, Bustamante G, Sun LZ, Ye JY. Label-free in vitro prostate cancer cell detection via photonic-crystal biosensor. PROCEEDINGS OF SPIE--THE INTERNATIONAL SOCIETY FOR OPTICAL ENGINEERING 2018; 10504:105040D. [PMID: 32528210 PMCID: PMC7288397 DOI: 10.1117/12.2288019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Prostate-specific antigen (PSA) biomarker assays are the current clinical method for mass screening of prostate cancer. However, high false-positive rates are often reported due to PSA's low specificity, leading to an urgent need for the development of a more specific detection system independent of PSA levels. In our previous research, we demonstrated the feasibility of using cellular refractive indices (RI) as a unique contrast parameter to accomplish label-free detection of prostate cancer cells via variance testing, but were unable to determine if a specific cell was cancerous or noncancerous. In this paper, we report the use of our Photonic-Crystal biosensor in a Total-Internal-Reflection (PC-TIR) configuration to construct a label-free imaging system, which allows for the detection of individual prostate cancer cells utilizing cellular RI as the only contrast parameter. Noncancerous prostate (BPH-1) cells and prostate cancer (PC-3) cells were mixed at varied ratios and measured concurrently. Additionally, we isolated and induced PC-3 cells to undergo epithelial-mesenchymal transition (EMT) by exposing these cells to soluble factors such as TGF-01. The biophysical characteristics of the cellular RI were quantified extensively in comparison to non-induced PC-3 cells as well as BPH-1 cells. EMT is a crucial mechanism for the invasion and metastasis of epithelial tumors characterized by the loss of cell-cell adhesion and increased cell mobility. Our study shows promising clinical potential in utilizing the PC-TIR biosensor imaging system to not only detect prostate cancer cells, but also evaluate prostate cancer progression.
Collapse
Affiliation(s)
- Frank DeLuna
- Department of Biomedical Engineering, The University of Texas at San Antonio, 1 UTSA Circle, San Antonio, TX, 78249, USA
| | - XiaoFei Ding
- Department of Cell Systems & Anatomy, The University of Texas Health at San Antonio, 7703 Floyd Curl Dr, San Antonio, TX 78229, USA
| | - Ismael Sagredo
- Department of Biomedical Engineering, The University of Texas at San Antonio, 1 UTSA Circle, San Antonio, TX, 78249, USA
| | - Gilbert Bustamante
- Department of Biomedical Engineering, The University of Texas at San Antonio, 1 UTSA Circle, San Antonio, TX, 78249, USA
| | - Lu-Zhe Sun
- Department of Cell Systems & Anatomy, The University of Texas Health at San Antonio, 7703 Floyd Curl Dr, San Antonio, TX 78229, USA
| | - Jing Yong Ye
- Department of Biomedical Engineering, The University of Texas at San Antonio, 1 UTSA Circle, San Antonio, TX, 78249, USA
| |
Collapse
|
14
|
Kristensen G, Berg KD, Lippert S, Christensen IJ, Brasso K, Høyer-Hansen G, Røder MA. Plasma levels of intact and cleaved urokinase plasminogen activator receptor (uPAR) in men with clinically localised prostate cancer. J Clin Pathol 2017; 70:1063-1068. [PMID: 28607123 DOI: 10.1136/jclinpath-2017-204475] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Revised: 04/25/2017] [Accepted: 04/25/2017] [Indexed: 01/07/2023]
Abstract
AIMS Lymph node metastasis (N1) is an adverse prognostic factor for men with clinically localised prostate cancer (PCa), but the prediction of N1 disease remains difficult. Urokinase plasminogen activator receptor (uPAR) plays an important role in angiogenesis and tumorigenesis. We analysed whether plasma levels of the soluble uPAR forms uPAR(I-III), uPAR(II-III) and uPAR(I) were associated with the risk of N1 disease in men with clinically localised PCa. METHODS The present study includes all men (n=518) who underwent radical prostatectomy (RP) for clinically localised PCa, 29 of whom had N1 disease. Soluble uPAR forms were measured using three time-resolved fluorescence immunoassays. The prognostic value of the different uPAR forms together with clinicopathological parameters for N1 disease were analysed using logistic regression, receiver operating characteristic (ROC) regression analysis and quantified using the areas under the ROC curve (AUC). RESULTS All soluble uPAR levels were significantly (p=0.03) higher in patients with N1 disease compared with patients with N0/x disease. ROC curves including clinical tumour stage, biopsy Gleason score, prostate-specific antigen and percent positive biopsies had an AUC of 87.7% for prediction of N1 disease. With the addition of uPAR(I) to the model, the AUC increased to 88.4%. CONCLUSIONS Addition of uPAR(I) level to known diagnostic parameters did not increase the prediction of N1 disease following RP in men with clinically localised PCa. Our results indicate that the plasma levels at diagnosis of the different uPAR forms do not hold important predictive or prognostic information in men with clinically localised PCa.
Collapse
Affiliation(s)
- Gitte Kristensen
- Department of Urology, Rigshospitalet, Copenhagen Prostate Cancer Center, University of Copenhagen, Copenhagen, Denmark
| | - Kasper Drimer Berg
- Department of Urology, Rigshospitalet, Copenhagen Prostate Cancer Center, University of Copenhagen, Copenhagen, Denmark
| | - Solvej Lippert
- Department of Urology, Rigshospitalet, Copenhagen Prostate Cancer Center, University of Copenhagen, Copenhagen, Denmark
| | - Ib Jarle Christensen
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Copenhagen, Denmark.,Department of Gastroenterology, Hvidovre Hospital, Hvidovre, Denmark
| | - Klaus Brasso
- Department of Urology, Rigshospitalet, Copenhagen Prostate Cancer Center, University of Copenhagen, Copenhagen, Denmark
| | - Gunilla Høyer-Hansen
- Biotech Research and Innovation Centre (BRIC), University of Copenhagen, Copenhagen, Denmark.,The Finsen Laboratory, Rigshospitalet, Copenhagen, Denmark
| | - Martin Andreas Røder
- Department of Urology, Rigshospitalet, Copenhagen Prostate Cancer Center, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
15
|
Exosomal microRNAs in liquid biopsies: future biomarkers for prostate cancer. Clin Transl Oncol 2017; 19:651-657. [PMID: 28054319 DOI: 10.1007/s12094-016-1599-5] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Accepted: 12/12/2016] [Indexed: 12/19/2022]
Abstract
Prostate cancer is the second most diagnosed cancer in males in the world. Plasma quantification of prostate-specific antigen substantially improved the early detection of prostate cancer, but still lacks the required specificity. Clinical management of prostate cancer needs advances in the development of new non-invasive biomarkers, ameliorating current diagnosis and prognosis and guiding therapeutic decisions. microRNAs (miRNAs) are a class of small non-coding RNAs that regulate gene expression at the post-transcriptional level. These miRNAs are expressed in the cells and are also present in cell-derived extracellular vesicles such as exosomes. Exosomes have been shown to act as mediators for cell to cell communication because of the regulatory functions of their content. High levels of exosomes are found in several body fluids from cancer patients and could be a potential source of non-invasive biomarkers. In this review, we summarize the diagnostic and prognostic utility of exosomal miRNAs in prostate cancer.
Collapse
|
16
|
Hillig T, Nielsen TK, Hansen SI, Nygaard AB, Sölétormos G. Elevated prostate specific antigen and reduced 10-year survival among a cohort of Danish men consecutively referred from primary care to an urological department during 2005-2006. Scandinavian Journal of Clinical and Laboratory Investigation 2016; 77:27-35. [PMID: 27762145 DOI: 10.1080/00365513.2016.1242153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
It remains unclear whether total prostate specific antigen (tPSA) or complex PSA (cPSA) has the best diagnostic performance. Additionally, the utility of percentage free PSA (%fPSA) is still debated. Our objectives were to compare the diagnostic performances of tPSA, cPSA, and %fPSA among patients referred from GP to an Urological Specialist and to investigate prognostic factors and survival in the cohort. A total of 1261 consecutive male patients without previously known prostate cancer (PCa) were referred to the same Department of Urology during June 2005 to August 2006. Some 299 patients were diagnosed with PCa and 962 patients were found without PCa. Among the PCa patients, the median age, tPSA, cPSA, and %fPSA levels were 70.8 years, 13.4 μg/L, 10.8 μg/L, and 12.6%. For patients without PCa the results were 67.5 years, 2.5 μg/L, 1.9 μg/L, and 24.9%. The sensitivity, specificity, PVpos, PVneg, and efficiency of tPSA and cPSA were overlapping (p > .05). In the tPSA interval >4 μg/L - ≤20 μg/L, %fPSA excluded PCa with a PVneg of 72.4%; 38.5% of PCa patients had a tPSA concentration >20 μg/L at the time of referral and these patients had a reduced 10-year survival as compared to patients with tPSA concentrations ≤20 μg/L. In conclusion, tPSA and cPSA showed similar diagnostic performances. %fPSA provided additional diagnostic information at tPSA concentrations >4 μg - ≤20 μg/L. The high percentage of patients with tPSA concentrations >20 μg/L indicate delayed use of tPSA resulting in advanced disease at presentation and reduced patient survival.
Collapse
Affiliation(s)
- Thore Hillig
- a Department of Clinical Biochemistry , Nordsjaellands Hospital, University of Copenhagen , Denmark
| | | | - Steen Ingemann Hansen
- a Department of Clinical Biochemistry , Nordsjaellands Hospital, University of Copenhagen , Denmark
| | - Ann-Britt Nygaard
- a Department of Clinical Biochemistry , Nordsjaellands Hospital, University of Copenhagen , Denmark
| | - György Sölétormos
- c Department of Research , , Nordsjaellands Hospital, University of Copenhagen , Denmark
| |
Collapse
|
17
|
Krzyzanowska A, Lippolis G, Helczynski L, Anand A, Peltola M, Pettersson K, Lilja H, Bjartell A. Quantitative Time-Resolved Fluorescence Imaging of Androgen Receptor and Prostate-Specific Antigen in Prostate Tissue Sections. J Histochem Cytochem 2016; 64:311-22. [PMID: 27026295 DOI: 10.1369/0022155416640466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Accepted: 02/29/2016] [Indexed: 11/22/2022] Open
Abstract
Androgen receptor (AR) and prostate-specific antigen (PSA) are expressed in the prostate and are involved in prostate cancer (PCa). The aim of this study was to develop reliable protocols for reproducible quantification of AR and PSA in benign and malignant prostate tissue using time-resolved fluorescence (TRF) imaging techniques. AR and PSA were detected with TRF in tissue microarrays from 91 PCa patients. p63/ alpha-methylacyl-CoA racemase (AMACR) staining on consecutive sections was used to categorize tissue areas as benign or cancerous. Automated image analysis was used to quantify staining intensity. AR intensity was significantly higher in AMACR+ and lower in AMACR- cancer areas as compared with benign epithelium. The PSA intensity was significantly lower in cancer areas, particularly in AMACR- glands. The AR/PSA ratio varied significantly in the AMACR+ tumor cells as compared with benign glands. There was a trend of more rapid disease progression in patients with higher AR/PSA ratios in the AMACR- areas. This study demonstrates the feasibility of developing reproducible protocols for TRF imaging and automated image analysis to study the expression of AR and PSA in benign and malignant prostate. It also highlighted the differences in AR and PSA protein expression within AMACR- and AMACR+ cancer regions.
Collapse
Affiliation(s)
- Agnieszka Krzyzanowska
- Department of Translational Medicine, Division of Urological Cancers, Lund University, Malmö. Sweden (AK, GL, AA, AB)
| | - Giuseppe Lippolis
- Department of Translational Medicine, Division of Urological Cancers, Lund University, Malmö. Sweden (AK, GL, AA, AB)
| | - Leszek Helczynski
- University and Regional Laboratories Region Skåne, Clinical Pathology, Malmö, Sweden (LH)
| | - Aseem Anand
- Department of Translational Medicine, Division of Urological Cancers, Lund University, Malmö. Sweden (AK, GL, AA, AB)
| | - Mari Peltola
- Division of Biotechnology, University of Turku, Turku, Finland (MP, KP)
| | - Kim Pettersson
- Division of Biotechnology, University of Turku, Turku, Finland (MP, KP)
| | - Hans Lilja
- Department of Translational Medicine, Division of Clinical Chemistry, Malmö, Lund University, Sweden (HL),Departments of Laboratory Medicine, Surgery (Urology), and Medicine (Genitourinary Oncology), Memorial Sloan Kettering Cancer Center, New York, New York (HL),Nuffield Department of Surgical Sciences, University of Oxford, Oxford, UK (HL)
| | - Anders Bjartell
- Department of Translational Medicine, Division of Urological Cancers, Lund University, Malmö. Sweden (AK, GL, AA, AB),Department of Urology, Skåne University Hospital, Skåne University Hospital, Lund University, Malmö, Sweden (AB)
| |
Collapse
|
18
|
Loss of heterozygosity for chromosomal regions 15q14-21.1, 17q21.31, and 13q12.3-13.1 and its relevance for prostate cancer. Med Oncol 2015; 32:246. [PMID: 26433958 PMCID: PMC4592700 DOI: 10.1007/s12032-015-0691-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Accepted: 09/24/2015] [Indexed: 01/07/2023]
Abstract
Although prostate cancer is one of the most common cancers in men, the genetic defects underlying its pathogenesis remain poorly understood. DNA damage repair mechanisms have been implicated in human cancer. Accumulating evidence indicates that the fidelity of the response to DNA double-strand breaks is critical for maintaining genome integrity. RAD51 is a central player in double-strand break repair via homologous recombination, and its alterations may confer and increase the risk of cancer. RAD51 functioning depends on the indirect or direct interactions with BRCA1 and BRCA2. To evaluate the contribution of RAD51 to sporadic prostate cancer, loss of heterozygosity (LOH) for chromosomal region 15q14-21.1 (RAD51locus) was determined and compared to LOH in 17q21.31 (BRCA1 locus) and 13q12.3-13.1 (BRCA2 region). DNA was isolated from prostate biopsies and matched peripheral blood of 50 patients. The regions 15q14-21.1, 17q21.31, and 13q12.3-13.1 were examined using microsatellite markers on chromosome 15 (D15S118, D15S214, D15S1006), chromosome 17 (D17S855, D17S1323), and chromosome 13 (D13S260, D13S290), respectively. The LOH in tumors was analyzed by PCR with fluorescently labeled primers and an ABI PRISM 377 DNA Sequencer. Allele sizing was determined by GeneScan version 3.1.2 and Genotyper version 2.5 software (Applied Biosystems, USA). LOH was identified in 57.5, 23, and 40 % for chromosomal regions 15q14-21.1, 17q21.31, and 13q12.3-13.1, respectively. Twenty-six percent of studied cases manifested LOH for at least one marker in 15q14-21.1 exclusively. A significant correlation was found between LOH for studied region and PSAD (prostate-specific antigen density). The findings suggest that RAD51 may be considered as a prostate cancer susceptibility gene.
Collapse
|
19
|
Challapalli A, Trousil S, Hazell S, Kozlowski K, Gudi M, Aboagye EO, Mangar S. Exploiting altered patterns of choline kinase-alpha expression on human prostate tissue to prognosticate prostate cancer. J Clin Pathol 2015; 68:703-9. [PMID: 26041862 DOI: 10.1136/jclinpath-2015-202859] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2015] [Accepted: 05/13/2015] [Indexed: 11/04/2022]
Abstract
AIMS Malignant transformation results in overexpression of choline-kinase (CHK) and altered choline metabolism, which is potentially detectable by immunohistochemistry (IHC). We investigated the utility of CHK-alpha (CHKA) IHC as a complement to current diagnostic investigation of prostate cancer by analysing expression patterns in normal (no evidence of malignancy) and malignant human prostate tissue samples. METHODS As an initial validation, paraffin-embedded prostatectomy specimen blocks with both normal and malignant prostate tissue were analysed for CHKA protein and mRNA expression by western blot and quantitative reverse transcriptase PCR (qRT-PCR), respectively. Subsequently, 100 paraffin-embedded malignant prostate tumour and 25 normal prostate cores were stained for both Ki67 (labelling-index: LI) and CHKA expression. RESULTS The validity of CHKA-antibody was verified using CHKA-transfected cells and siRNA knockdown. Immunoblotting of tissues showed good resolution of CHKA protein in malignant prostate, verifying use of the antibody for IHC. There was minimal qRT-PCR detectable CHKA mRNA in normal tissue, and conversely high expression in malignant prostate tissues. IHC of normal prostate cores showed mild (intensity) CHKA expression in only 28% (7/25) of samples with no Ki67 expression. In contrast, CHKA was expressed in all malignant prostate cores along with characteristically low proliferation (median 2% Ki67-LI; range 1-17%). Stratification of survival according to CHK intensity showed a trend towards lower progression-free survival with CHK score of 3. CONCLUSIONS Increased expression of CHKA, detectable by IHC, is seen in malignant lesions. This relatively simple cost-effective technique (IHC) could complement current diagnostic procedures for prostate cancer and, therefore, warrants further investigation.
Collapse
Affiliation(s)
| | - Sebastian Trousil
- Department of Surgery and Cancer, Imperial College London, London, UK
| | - Steve Hazell
- Department of Pathology, Imperial College London/ Imperial College Healthcare NHS Trust, London, UK
| | - Kasia Kozlowski
- Department of Surgery and Cancer, Imperial College London, London, UK
| | - Mihir Gudi
- Department of Pathology, Imperial College London/ Imperial College Healthcare NHS Trust, London, UK
| | - Eric O Aboagye
- Department of Surgery and Cancer, Imperial College London, London, UK
| | - Stephen Mangar
- Department of Surgery and Cancer, Imperial College London, London, UK
| |
Collapse
|
20
|
Prognostic histopathological and molecular markers on prostate cancer needle-biopsies: a review. BIOMED RESEARCH INTERNATIONAL 2014; 2014:341324. [PMID: 25243131 PMCID: PMC4163394 DOI: 10.1155/2014/341324] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/05/2014] [Accepted: 08/04/2014] [Indexed: 12/16/2022]
Abstract
Prostate cancer is diverse in clinical presentation, histopathological tumor growth patterns, and survival. Therefore, individual assessment of a tumor's aggressive potential is crucial for clinical decision-making in men with prostate cancer. To date a large number of prognostic markers for prostate cancer have been described, most of them based on radical prostatectomy specimens. However, in order to affect clinical decision-making, validation of respective markers in pretreatment diagnostic needle-biopsies is essential. Here, we discuss established and promising histopathological and molecular parameters in diagnostic needle-biopsies.
Collapse
|
21
|
MAGADOUX L, ISAMBERT N, PLENCHETTE S, JEANNIN J, LAURENS V. Emerging targets to monitor and overcome docetaxel resistance in castration resistant prostate cancer (Review). Int J Oncol 2014; 45:919-28. [DOI: 10.3892/ijo.2014.2517] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2014] [Accepted: 03/18/2014] [Indexed: 11/06/2022] Open
|
22
|
Zhao L, Yu N, Guo T, Hou Y, Zeng Z, Yang X, Hu P, Tang X, Wang J, Liu M. Tissue Biomarkers for Prognosis of Prostate Cancer: A Systematic Review and Meta-analysis. Cancer Epidemiol Biomarkers Prev 2014; 23:1047-54. [DOI: 10.1158/1055-9965.epi-13-0696] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
23
|
Wang J, Yang J, Zou Y, Huang GL, He ZW. Orphan nuclear receptor nurr1 as a potential novel marker for progression in human prostate cancer. Asian Pac J Cancer Prev 2014; 14:2023-8. [PMID: 23679312 DOI: 10.7314/apjcp.2013.14.3.2023] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
A number of studies have indicated that Nurr1, which belongs to a novel class of orphan nuclear receptors (the NR4A family), is important for carcinogenesis. Here we investigated expression of Nurr1 protein in benign and malignant human prostate tissues and association with clinicopathologic features using immunohistochemical techniques. Moreover, we also investigated the ability of Nurr1 to influence proliferation, migration, invasion and apoptosis of human prostate cancer cells using small interfering RNA silencing. Immunohistochemical analysis revealed that the expression of Nurr1 protein was higher in prostate cancer tissues than in benign prostate tissue (P < 0.001), levels being positively correlated with tumor T classification (P = 0.003), N classification (P = 0.017), M classification (P = 0.011) and the Gleason score (P = 0.020) of prostate cancer patients. In vitro, silencing of endogenous Nurr1 attenuated cell proliferation, migration and invasion, and induced apoptosis of prostate cancer cells. These results suggest that Nurr1 may be used as an indicator for prostate cancer progression and be useful for novel potential therapeutic strategies.
Collapse
Affiliation(s)
- Jian Wang
- Sino-American Cancer Research Institute, Key Laboratory for Medical Molecular Diagnostics of Guangdong Province, Guangdong Medical College, Dongguan, China
| | | | | | | | | |
Collapse
|
24
|
Molecular markers for prostate cancer in formalin-fixed paraffin-embedded tissues. BIOMED RESEARCH INTERNATIONAL 2013; 2013:283635. [PMID: 24371818 PMCID: PMC3859157 DOI: 10.1155/2013/283635] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 08/29/2013] [Accepted: 10/10/2013] [Indexed: 12/14/2022]
Abstract
Prostate cancer (PCa) is the most frequently diagnosed type of cancer in developed countries. The decisive method of diagnosis is based on the results of biopsies, morphologically evaluated to determine the presence or absence of cancer. Although this approach leads to a confident diagnosis in most cases, it can be improved by using the molecular markers present in the tissue. Both miRNAs and proteins are considered excellent candidates for biomarkers in formalin-fixed paraffin-embedded (FFPE) tissues, due to their stability over long periods of time. In the last few years, a concerted effort has been made to develop the necessary tools for their reliable measurement in these types of samples. Furthermore, the use of these kinds of markers may also help in establishing tumor grade and aggressiveness, as well as predicting the possible outcomes in each particular case for the different treatments available. This would aid clinicians in the decision-making process. In this review, we attempt to summarize and discuss the potential use of microRNA and protein profiles in FFPE tissue samples as markers to better predict PCa diagnosis, progression, and response to therapy.
Collapse
|
25
|
Tefekli A, Tunc M. Future prospects in the diagnosis and management of localized prostate cancer. ScientificWorldJournal 2013; 2013:347263. [PMID: 24163619 PMCID: PMC3791692 DOI: 10.1155/2013/347263] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2013] [Accepted: 08/13/2013] [Indexed: 12/14/2022] Open
Abstract
Prostate cancer (PCa) is the commonest visceral cancer in men worldwide. Introduction of serum PSA as a highly specific biomarker for prostatic diseases has led to a dramatic increase in the diagnosis of early stage PCa in last decades. Guidelines underline that benefits as well as risks and squeals of early diagnosis and treatment should be discussed with patients. There are several new biomarkers (Pro-PSA, PCA-3 test, and TMPRSS2-ERG) available on the market but new ones are awaited in order to improve specificity and sensitivity. Investigators have also focused on identifying and isolating the gene, or genes, responsible for PCa. Current definitive treatment options for clinically localized PCa with functional and oncological success rates up to 95% include surgery (radical prostatectomy), external-beam radiation therapy, and interstitial radiation therapy (brachytherapy). Potential complications of overdiagnosis and overtreatment have resulted in arguments about screening and introduced a new management approach called "active surveillance." Improvements in diagnostic techniques, especially multiparametric magnetic resonance imaging, significantly ameliorated the accuracy of tumor localization and local staging. These advances will further support focal therapies as emerging treatment alternatives for localized PCa. As a conclusion, revolutionary changes in the diagnosis and management of PCa are awaited in the near future.
Collapse
Affiliation(s)
- Ahmet Tefekli
- Department of Urology, Bahcesehir University School of Medicine, 34353 Istanbul, Turkey
| | - Murat Tunc
- Department of Urology, Istanbul Faculty of Medicine, Istanbul University, 34390 Istanbul, Turkey
| |
Collapse
|
26
|
Lippolis G, Edsjö A, Helczynski L, Bjartell A, Overgaard NC. Automatic registration of multi-modal microscopy images for integrative analysis of prostate tissue sections. BMC Cancer 2013; 13:408. [PMID: 24010502 PMCID: PMC3847133 DOI: 10.1186/1471-2407-13-408] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2012] [Accepted: 08/29/2013] [Indexed: 11/12/2022] Open
Abstract
Background Prostate cancer is one of the leading causes of cancer related deaths. For diagnosis, predicting the outcome of the disease, and for assessing potential new biomarkers, pathologists and researchers routinely analyze histological samples. Morphological and molecular information may be integrated by aligning microscopic histological images in a multiplex fashion. This process is usually time-consuming and results in intra- and inter-user variability. The aim of this study is to investigate the feasibility of using modern image analysis methods for automated alignment of microscopic images from differently stained adjacent paraffin sections from prostatic tissue specimens. Methods Tissue samples, obtained from biopsy or radical prostatectomy, were sectioned and stained with either hematoxylin & eosin (H&E), immunohistochemistry for p63 and AMACR or Time Resolved Fluorescence (TRF) for androgen receptor (AR). Image pairs were aligned allowing for translation, rotation and scaling. The registration was performed automatically by first detecting landmarks in both images, using the scale invariant image transform (SIFT), followed by the well-known RANSAC protocol for finding point correspondences and finally aligned by Procrustes fit. The Registration results were evaluated using both visual and quantitative criteria as defined in the text. Results Three experiments were carried out. First, images of consecutive tissue sections stained with H&E and p63/AMACR were successfully aligned in 85 of 88 cases (96.6%). The failures occurred in 3 out of 13 cores with highly aggressive cancer (Gleason score ≥ 8). Second, TRF and H&E image pairs were aligned correctly in 103 out of 106 cases (97%). The third experiment considered the alignment of image pairs with the same staining (H&E) coming from a stack of 4 sections. The success rate for alignment dropped from 93.8% in adjacent sections to 22% for sections furthest away. Conclusions The proposed method is both reliable and fast and therefore well suited for automatic segmentation and analysis of specific areas of interest, combining morphological information with protein expression data from three consecutive tissue sections. Finally, the performance of the algorithm seems to be largely unaffected by the Gleason grade of the prostate tissue samples examined, at least up to Gleason score 7.
Collapse
|
27
|
Garzotto M, Hung AY. Advances in the Multimodality Management of High-risk Prostate Cancer. Surg Oncol Clin N Am 2013; 22:375-94. [DOI: 10.1016/j.soc.2012.12.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
28
|
Lippolis G, Edsjö A, Stenman UH, Bjartell A. A high-density tissue microarray from patients with clinically localized prostate cancer reveals ERG and TATI exclusivity in tumor cells. Prostate Cancer Prostatic Dis 2013; 16:145-50. [PMID: 23459095 PMCID: PMC3655381 DOI: 10.1038/pcan.2013.7] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
BACKGROUND Prostate cancer (PCa) is characterized by high tumor heterogeneity. In 2005, the fusion between the androgen-regulated gene TMPRSS2 and members of the ETS family was discovered in prostate cancer. In particular, fusion of TMPRSS2 with ERG was found in approximately 50% of prostate cancers and considered as an early event in the onset of the disease. The prognostic value of this fusion is still contradictory. Bioinformatics showed that overexpression of SPINK1 gene in a subset of fusion-gene-negative prostate cancers was associated with a poor prognosis. In theory, overexpression of the tumor-associated trypsin inhibitor (TATI) protein encoded by SPINK1 in fusion-gene-negative tumor cells opens the way to selected treatments for genotypically different cases. However, their expression has never been assessed at the cellular level in the same tissue samples. METHODS As ERG expression has been shown to be a surrogate of fusion gene occurrence in prostate cancer, we have used double immunohistochemical staining to assess expression of ERG and TATI on a large tissue microarray comprising 4177 cases of localized prostate cancer. RESULTS We did not detect any co-expression of ERG and TATI in the same cancer cells, which confirms previous suggestions from in silico studies. ERG was associated with Gleason score (GS), surgical margins and pathological stage, but had no prognostic value in this cohort. TATI was weakly associated with pathological stage but had no significant association with outcome. CONCLUSIONS We here provide a morphological basis for ERG and TATI exclusivity in prostate cancer cells. Future therapies should be based on a combination of different targets in order to eradicate tumor cells with gene fusions and cells expressing other tumor-associated antigens. Further studies are needed to understand why ERG and TATI are not co-expressed in the same prostatic tumor cells.
Collapse
Affiliation(s)
- G Lippolis
- Division of Urological Cancers, Department of Clinical Sciences, Skåne University Hospital, Malmö, Lund University, Malmö, Sweden
| | | | | | | |
Collapse
|
29
|
Cooperberg MR, Simko JP, Cowan JE, Reid JE, Djalilvand A, Bhatnagar S, Gutin A, Lanchbury JS, Swanson GP, Stone S, Carroll PR. Validation of a cell-cycle progression gene panel to improve risk stratification in a contemporary prostatectomy cohort. J Clin Oncol 2013; 31:1428-34. [PMID: 23460710 DOI: 10.1200/jco.2012.46.4396] [Citation(s) in RCA: 262] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
PURPOSE We aimed to validate a previously described genetic risk score, denoted the cell-cycle progression (CCP) score, in predicting contemporary radical prostatectomy (RP) outcomes. METHODS RNA was quantified from paraffin-embedded RP specimens. The CCP score was calculated as average expression of 31 CCP genes, normalized to 15 housekeeper genes. Recurrence was defined as two prostate-specific antigen levels ≥ 0.2 ng/mL or any salvage treatment. Associations between CCP score and recurrence were examined, with adjustment for clinical and pathologic variables using Cox proportional hazards regression and partial likelihood ratio tests. The CCP score was assessed for independent prognostic utility beyond a standard postoperative risk assessment (Cancer of the Prostate Risk Assessment post-Surgical [CAPRA-S] score), and a score combining CAPRA-S and CCP was validated. RESULTS Eighty-two (19.9%) of 413 men experienced recurrence. The hazard ratio (HR) for each unit increase in CCP score (range, -1.62 to 2.16) was 2.1 (95% CI, 1.6 to 2.9); with adjustment for CAPRA-S, the HR was 1.7 (95% CI, 1.3 to 2.4). The score was able to substratify patients with low clinical risk as defined by CAPRA-S ≤ 2 (HR, 2.3; 95% CI, 1.4 to 3.7). Combining the CCP and CAPRA-S improved the concordance index for both the overall cohort and low-risk subset; the combined CAPRA-S + CCP score consistently predicted outcomes across the range of clinical risk. This combined score outperformed both individual scores on decision curve analysis. CONCLUSION The CCP score was validated to have significant prognostic accuracy after controlling for all available clinical and pathologic data. The score may improve accuracy of risk stratification for men with clinically localized prostate cancer, including those with low-risk disease.
Collapse
Affiliation(s)
- Matthew R Cooperberg
- University of California, San Francisco, Box 1695, 1600 Divisadero St, A-624, San Francisco, CA 94143-1695, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Khan S, Jutzy JMS, Valenzuela MMA, Turay D, Aspe JR, Ashok A, Mirshahidi S, Mercola D, Lilly MB, Wall NR. Plasma-derived exosomal survivin, a plausible biomarker for early detection of prostate cancer. PLoS One 2012; 7:e46737. [PMID: 23091600 PMCID: PMC3473028 DOI: 10.1371/journal.pone.0046737] [Citation(s) in RCA: 243] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2012] [Accepted: 09/04/2012] [Indexed: 01/12/2023] Open
Abstract
Background Survivin is expressed in prostate cancer (PCa), and its downregulation sensitizes PCa cells to chemotherapeutic agents in vitro and in vivo. Small membrane-bound vesicles called exosomes, secreted from the endosomal membrane compartment, contain RNA and protein that they readily transport via exosome internalization into recipient cells. Recent progress has shown that tumor-derived exosomes play multiple roles in tumor growth and metastasis and may produce these functions via immune escape, tumor invasion and angiogenesis. Furthermore, exosome analysis may provide novel biomarkers to diagnose or monitor PCa treatment. Methods Exosomes were purified from the plasma and serum from 39 PCa patients, 20 BPH patients, 8 prostate cancer recurrent and 16 healthy controls using ultracentrifugation and their quantities and qualities were quantified and visualized from both the plasma and the purified exosomes using ELISA and Western blotting, respectively. Results Survivin was significantly increased in the tumor-derived samples, compared to those from BPH and controls with virtually no difference in the quantity of Survivin detected in exosomes collected from newly diagnosed patients exhibiting low (six) or high (nine) Gleason scores. Exosome Survivin levels were also higher in patients that had relapsed on chemotherapy compared to controls. Conclusions These studies demonstrate that Survivin exists in plasma exosomes from both normal, BPH and PCa subjects. The relative amounts of exosomal Survivin in PCa plasma was significantly higher than in those with pre-inflammatory BPH and control plasma. This differential expression of exosomal Survivin was seen with both newly diagnosed and advanced PCa subjects with high or low-grade cancers. Analysis of plasma exosomal Survivin levels may offer a convenient tool for diagnosing or monitoring PCa and may, as it is elevated in low as well as high Gleason scored samples, be used for early detection.
Collapse
Affiliation(s)
- Salma Khan
- Center for Health Disparities and Molecular Medicine, Department of Biochemistry and Microbiology, Loma Linda University, Loma Linda, California, United States of America
| | - Jessica M. S. Jutzy
- Center for Health Disparities and Molecular Medicine, Department of Biochemistry and Microbiology, Loma Linda University, Loma Linda, California, United States of America
| | - Malyn May A. Valenzuela
- Center for Health Disparities and Molecular Medicine, Department of Biochemistry and Microbiology, Loma Linda University, Loma Linda, California, United States of America
| | - David Turay
- Center for Health Disparities and Molecular Medicine, Department of Biochemistry and Microbiology, Loma Linda University, Loma Linda, California, United States of America
| | - Jonathan R. Aspe
- Center for Health Disparities and Molecular Medicine, Department of Biochemistry and Microbiology, Loma Linda University, Loma Linda, California, United States of America
| | - Arjun Ashok
- Center for Health Disparities and Molecular Medicine, Department of Biochemistry and Microbiology, Loma Linda University, Loma Linda, California, United States of America
| | - Saied Mirshahidi
- Cancer Center and Department of Microbiology and Biospecimen Laboratory, Loma Linda University, Loma Linda, California, United States of America
| | - Dan Mercola
- Department of Pathology and Chao Family Comprehensive Cancer Center, University of California Irvine, Irvine, California, United States of America
| | - Michael B. Lilly
- Division of Hematology/Oncology, Department of Medicine and Chao Family Comprehensive Cancer Center, University of California Irvine, Irvine, California, United States of America
| | - Nathan R. Wall
- Center for Health Disparities and Molecular Medicine, Department of Biochemistry and Microbiology, Loma Linda University, Loma Linda, California, United States of America
- * E-mail:
| |
Collapse
|
31
|
Aalberts M, Sostaric E, Wubbolts R, Wauben MWM, Nolte-'t Hoen ENM, Gadella BM, Stout TAE, Stoorvogel W. Spermatozoa recruit prostasomes in response to capacitation induction. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2012; 1834:2326-35. [PMID: 22940639 DOI: 10.1016/j.bbapap.2012.08.008] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 06/12/2012] [Revised: 08/02/2012] [Accepted: 08/06/2012] [Indexed: 10/28/2022]
Abstract
Seminal plasma contains various types of extracellular vesicles, including 'prostasomes'. Prostasomes are small vesicles secreted by prostatic epithelial cells that can be recruited by and fuse with sperm cells in response of progesterone that is released by oocyte surrounding cumulus cells. This delivers Ca(2+) signaling tools that allow the sperm cell to gain hypermotility and undergo the acrosome reaction. Conditions for binding of prostasomes to sperm cells are however unclear. We found that classically used prostasome markers are in fact heterogeneously expressed on distinct populations of small and large vesicles in seminal plasma. To study interactions between prostasomes and spermatozoa we used the stallion as a model organism. A homogeneous population of ~60nm prostasomes was first separated from larger vesicles and labeled with biotin. Binding of biotinylated prostasomes to individual live spermatozoa was then monitored by flow cytometry. Contrary to assumptions in the literature, we found that such highly purified prostasomes bound to live sperm only after capacitation had been initiated, and specifically at pH ≥7.5. Using fluorescence microscopy, we observed that prostasomes bound primarily to the head of live sperm. We propose that in vivo, prostasomes may bind to sperm cells in the uterus, to be carried in association with sperm cells into oviduct and to fuse with the sperm cell only during the final approach of the oocyte. This article is part of a Special Issue entitled: An Updated Secretome.
Collapse
Affiliation(s)
- Marian Aalberts
- Department of Biochemistry and Cell Biology, Faculty of Veterinary Medicine, Utrecht University, P.O. Box 80.176, NL-3508 TD Utrecht, The Netherlands; Department of Equine Sciences, Faculty of Veterinary Medicine, Utrecht University, P.O. Box 80.176, NL-3508 TD Utrecht, The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
32
|
March-Villalba JA, Martínez-Jabaloyas JM, Herrero MJ, Santamaria J, Aliño SF, Dasí F. Cell-free circulating plasma hTERT mRNA is a useful marker for prostate cancer diagnosis and is associated with poor prognosis tumor characteristics. PLoS One 2012; 7:e43470. [PMID: 22916267 PMCID: PMC3423343 DOI: 10.1371/journal.pone.0043470] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2012] [Accepted: 07/20/2012] [Indexed: 12/12/2022] Open
Abstract
Background Serum prostate-specific antigen (PSA) is the most widely used marker for diagnosing prostate cancer (PCa). It lacks specificity and predictive value, resulting in inaccurate diagnoses and overtreatment of the disease. The aim of this study was to assess the usefulness of plasma telomerase reverse transcriptase (hTERT) mRNA as a diagnostic and prognostic tool for PCa and its association with clinicopathological parameters of tumors. Principal Findings Plasma hTERT mRNA levels were determined by qRT-PCR in 105 consecutive patients with elevated PSA levels and in 68 healthy volunteers. The diagnostic accuracy, the efficacy as a prognostic factor of biochemical recurrence and the association with tumor clinicopathological parameters of plasma hTERT mRNA and serum PSA tests were determined using univariate and multivariate analyses. The results show that plasma hTERT mRNA is a non-invasive biomarker for PCa diagnosis that shows higher sensitivity (85% vs. 83%), specificity (90% vs. 47%), positive predictive value (83% vs. 56%), and negative predictive value (92% vs. 77%) than serum PSA. Plasma hTERT mRNA is significantly associated with poor prognosis tumor clinicopathological parameters and is a significant independent predictor of PCa (p<0.0001). Univariate analysis identified plasma hTERT mRNA (but not serum PSA) as a significant prognostic factor of biochemical recurrence. Plasma hTERT mRNA Kaplan-Meier curves confirmed the significant differences between groups and patients with higher levels than the cut-off value showed diminished recurrence-free survival (p = 0.004), whereas no differences were observed with serum PSA (p = 0.38). Multivariate analysis indicated that plasma hTERT mRNA (but not serum PSA) and stage were significantly associated with biochemical recurrence. Conclusions Overall, these findings indicate that hTERT mRNA is a useful non-invasive tumor marker for the molecular diagnosis of PCa, affording a greater diagnostic and prognostic accuracy than the PSA assay and may be of relevance in the follow-up of the disease.
Collapse
Affiliation(s)
- José A. March-Villalba
- Fundación Investigación Hospital Clínico Universitario de Valencia, Instituto de Investigación INCLIVA, Valencia, Spain
- Urology Unite, Hospital Clínico Universitario de Valencia, Valencia, Spain
| | - José M. Martínez-Jabaloyas
- Fundación Investigación Hospital Clínico Universitario de Valencia, Instituto de Investigación INCLIVA, Valencia, Spain
- Urology Unite, Hospital Clínico Universitario de Valencia, Valencia, Spain
| | - María J. Herrero
- Department of Pharmacology, School of Medicine, University of Valencia, Valencia, Spain
| | - Jose Santamaria
- Fundación Investigación Hospital Clínico Universitario de Valencia, Instituto de Investigación INCLIVA, Valencia, Spain
- Urology Unite, Hospital Clínico Universitario de Valencia, Valencia, Spain
| | - Salvador F. Aliño
- Department of Pharmacology, School of Medicine, University of Valencia, Valencia, Spain
| | - Francisco Dasí
- Fundación Investigación Hospital Clínico Universitario de Valencia, Instituto de Investigación INCLIVA, Valencia, Spain
- Department of Physiology, School of Medicine, University of Valencia, Valencia, Spain
- * E-mail:
| |
Collapse
|
33
|
Khaja ASS, Egevad L, Helczynski L, Wiklund P, Andersson T, Bjartell A. Emphasizing the role of Wnt5a protein expression to predict favorable outcome after radical prostatectomy in patients with low-grade prostate cancer. Cancer Med 2012; 1:96-104. [PMID: 23342259 PMCID: PMC3544436 DOI: 10.1002/cam4.5] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2012] [Revised: 04/26/2012] [Accepted: 04/27/2012] [Indexed: 01/08/2023] Open
Abstract
Wnt5a, a member of non-canonical wingless-related MMTV integration site family is a secreted glycoprotein that plays important roles in development and disease. Recent studies have shown that Wnt5a protein levels are up-regulated in prostate cancer, but contrasting reports exist on the role of Wnt5a to predict outcome after radical prostatectomy in patients with localized prostate cancer. Our group has recently shown that preserved high protein expression of Wnt5a in prostate cancer is associated with longer relapse-free time after radical prostatectomy. The present tissue microarray study emphasizes the role of Wnt5a protein expression in a different, well-defined, and independent cohort consisting of 312 prostate cancer patients. Kaplan–Meier curves plotted between Wnt5a expression and time to biochemical recurrence revealed that in low-grade prostate cancer, patients with preserved high-Wnt5a protein levels in their tumor cells have a lower risk of recurrence after radical prostatectomy compared to patients with low-Wnt5a protein expression. When Wnt5a protein expression was added to a Cox regression multivariate analysis, both Wnt5a protein expression and surgical margin status independently predict biochemical free survival. Herein we confirm Wnt5a positivity as a prognostic factor and show that preserved overexpression of Wnt5a protein is associated with increased time to biochemical recurrence in localized low-grade prostate cancer patients after radical prostatectomy. Our results emphasize that Wnt5a can be used as a predictive biomarker, and favoring the view of Wnt5a as a future therapeutic target in prostate cancer patients with tumor cells displaying low expression of Wnt5a.
Collapse
Affiliation(s)
- Azharuddin Sajid Syed Khaja
- Division of Urological Cancers, Department of Clinical Sciences, Skåne University Hospital, Lund University Malmö, Sweden; Center for Molecular Pathology, Skåne University Hospital, Lund University Malmö, Sweden
| | | | | | | | | | | |
Collapse
|
34
|
Takayama KI, Horie-Inoue K, Suzuki T, Urano T, Ikeda K, Fujimura T, Takahashi S, Homma Y, Ouchi Y, Inoue S. TACC2 is an androgen-responsive cell cycle regulator promoting androgen-mediated and castration-resistant growth of prostate cancer. Mol Endocrinol 2012; 26:748-61. [PMID: 22456197 DOI: 10.1210/me.2011-1242] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Despite the existence of effective antiandrogen therapy for prostate cancer, the disease often progresses to castration-resistant states. Elucidation of the molecular mechanisms underlying the resistance for androgen deprivation in terms of the androgen receptor (AR)-regulated pathways is a requisite to manage castration-resistant prostate cancer (CRPC). Using a ChIP-cloning strategy, we identified functional AR binding sites (ARBS) in the genome of prostate cancer cells. We discovered that a centrosome- and microtubule-interacting gene, transforming acidic coiled-coil protein 2 (TACC2), is a novel androgen-regulated gene. We identified a functional AR-binding site (ARBS) including two canonical androgen response elements in the vicinity of TACC2 gene, in which activated hallmarks of histone modification were observed. Androgen-dependent TACC2 induction is regulated by AR, as confirmed by AR knockdown or its pharmacological inhibitor bicalutamide. Using long-term androgen-deprived cells as cellular models of CRPC, we demonstrated that TACC2 is highly expressed and contributes to hormone-refractory proliferation, as small interfering RNA-mediated knockdown of TACC2 reduced cell growth and cell cycle progression. By contrast, in TACC2-overexpressing cells, an acceleration of the cell cycle was observed. In vivo tumor formation study of prostate cancer in castrated immunocompromised mice revealed that TACC2 is a tumor-promoting factor. Notably, the clinical significance of TACC2 was demonstrated by a correlation between high TACC2 expression and poor survival rates. Taken together with the critical roles of TACC2 in the cell cycle and the biology of prostate cancer, we infer that the molecule is a potential therapeutic target in CRPC as well as hormone-sensitive prostate cancer.
Collapse
Affiliation(s)
- Ken-ichi Takayama
- Department of Anti-Aging Medicine, Graduate School of Medicine, University of Tokyo, Bunkyo-ku, Tokyo 113-8655, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Epigenetic biomarkers in prostate cancer: Current and future uses. Cancer Lett 2012; 342:248-56. [PMID: 22391123 DOI: 10.1016/j.canlet.2012.02.011] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2011] [Revised: 02/10/2012] [Accepted: 02/11/2012] [Indexed: 12/18/2022]
Abstract
Epigenome alterations are characteristic of nearly all human malignancies and include changes in DNA methylation, histone modifications and microRNAs (miRNAs). However, what induces these epigenetic alterations in cancer is largely unknown and their mechanistic role in prostate tumorigenesis is just beginning to be evaluated. Identification of the epigenetic modifications involved in the development and progression of prostate cancer will not only identify novel therapeutic targets but also prognostic and diagnostic markers. This review will focus on the use of epigenetic modifications as biomarkers for prostate cancer.
Collapse
|
36
|
|
37
|
Nowsheen S, Aziz K, Panayiotidis MI, Georgakilas AG. Molecular markers for cancer prognosis and treatment: have we struck gold? Cancer Lett 2011; 327:142-52. [PMID: 22120674 DOI: 10.1016/j.canlet.2011.11.022] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2011] [Revised: 11/16/2011] [Accepted: 11/17/2011] [Indexed: 12/22/2022]
Abstract
The last decade has witnessed an emerging role for molecular or biochemical markers indicating a specific cellular mechanism or tissue function, often called 'biomarkers'. Biomarkers such as altered DNA, proteins and inflammatory cytokines are critical in cancer research and strategizing treatment in the clinic. In this review we look at the application of biological indicators to cancer research and highlight their roles in cancer detection and treatment. With technological advances in gene expression, genomic and proteomic analysis, biomarker discovery is expanding fast. We focus on some of the predominantly used markers in different types of malignancies, their advantages, and their limitations. Finally we conclude by looking at the future of biomarkers, their utility in the tumorigenic studies, and the progress towards personalized treatment strategies.
Collapse
Affiliation(s)
- Somaira Nowsheen
- Department of Radiation Oncology, University of Alabama at Birmingham Comprehensive Cancer Center, 35294, USA
| | | | | | | |
Collapse
|
38
|
Jonsson L, Gaber A, Ulmert D, Uhlén M, Bjartell A, Jirström K. High RBM3 expression in prostate cancer independently predicts a reduced risk of biochemical recurrence and disease progression. Diagn Pathol 2011; 6:91. [PMID: 21955582 PMCID: PMC3195697 DOI: 10.1186/1746-1596-6-91] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2011] [Accepted: 09/28/2011] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND High expression of the RNA-binding protein RBM3 has previously been found to be associated with good prognosis in breast cancer, ovarian cancer, malignant melanoma and colorectal cancer. The aim of this study was to examine the prognostic impact of immunohistochemical RBM3 expression in prostate cancer. FINDINGS Immunohistochemical RBM3 expression was examined in a tissue microarray with malignant and benign prostatic specimens from 88 patients treated with radical prostatectomy for localized disease. While rarely expressed in benign prostate gland epithelium, RBM3 was found to be up-regulated in prostate intraepithelial neoplasia and present in various fractions and intensities in invasive prostate cancer. High nuclear RBM3 expression was significantly associated with a prolonged time to biochemical recurrence (BCR) (HR 0.56, 95% CI: 0.34-0.93, p = 0.024) and clinical progression (HR 0.09, 95% CI: 0.01-0.71, p = 0.021). These associations remained significant in multivariate analysis, adjusted for preoperative PSA level in blood, pathological Gleason score and presence or absence of extracapsular extension, seminal vesicle invasion and positive surgical margin (HR 0.41, 95% CI: 0.19-0.89, p = 0.024 for BCR and HR 0.06, 95% CI: 0.01-0.50, p = 0.009 for clinical progression). CONCLUSION Our results demonstrate that high nuclear expression of RBM3 in prostate cancer is associated with a prolonged time to disease progression and, thus, a potential biomarker of favourable prognosis. The value of RBM3 for prognostication, treatment stratification and follow-up of prostate cancer patients should be further validated in larger studies.
Collapse
Affiliation(s)
- Liv Jonsson
- Department of Clinical Sciences, Pathology, Lund University, Skåne University Hospital, 221 85 Lund, Sweden.
| | | | | | | | | | | |
Collapse
|