1
|
Hansen AT, Poulsen PR, Høyer M, Worm ES. Isotoxic dose prescription level strategies for stereotactic liver radiotherapy: the price of dose uniformity. Acta Oncol 2020; 59:558-564. [PMID: 31833432 DOI: 10.1080/0284186x.2019.1701200] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Introduction: To find the optimal dose prescription strategy for liver SBRT, this study investigated the tradeoffs between achievable target dose and healthy liver dose for a range of isotoxic uniform and non-uniform prescription level strategies.Material and methods: Nine patients received ten liver SBRT courses with intrafraction motion monitoring during treatment. After treatment, five VMAT treatment plans were made for each treatment course. The PTV margin was 5 mm (left-right, anterior-posterior) and 10 mm (cranio-caudal). All plans had a mean CTV dose of 56.25 Gy in three fractions, while the PTV was covered by 50%, 67%, 67 s% (steep dose gradient outside CTV), 80%, and 95% of this dose, respectively. The 50%, 67 s%, 80%, and 95% plans were then renormalized to be isotoxic with the standard 67% plan according to a Lyman-Kutcher-Burman normal tissue complication probability model for radiation induced liver disease. The CTV D98 and mean dose of the iso-toxic plans were calculated both without and with the observed intrafraction motion, using a validated method for motion-including dose reconstruction.Results: Under isotoxic conditions, the average [range] mean CTV dose per fraction decreased gradually from 21.2 [20.5-22.7] Gy to 15.5 [15.0-16.6] Gy and the D98 dose per fraction decreased from 20.4 [19.7-21.7] Gy to 15.0 [14.5-15.5] Gy, as the prescription level to the PTV rim was increased from 50% to 95%. With inclusion of target motion the mean CTV dose was 20.5 [16.5-22.5] Gy (50% PTV rim dose) and 15.4 [13.9-16.7] Gy (95% rim dose) while D98 was 17.8 [7.4-20.6] Gy (50% rim dose) and 14.6 [8.8-15.7] Gy (95% rim dose).Conclusion: Requirements of a uniform PTV dose come at the price of excess normal tissue dose. A non-uniform PTV dose allows increased CTV mean dose at the cost of robustness toward intrafraction motion. The increase in planned CTV dose by non-uniform prescription outbalanced the dose deterioration caused by motion.
Collapse
Affiliation(s)
- Anders T. Hansen
- Department of Medical Physics, Aarhus University Hospital, Aarhus, Denmark
| | - Per R. Poulsen
- Department of Oncology, Aarhus University Hospital, Aarhus, Denmark
- The Danish Centre for Particle Therapy, Aarhus University Hospital, Aarhus, Denmark
| | - Morten Høyer
- The Danish Centre for Particle Therapy, Aarhus University Hospital, Aarhus, Denmark
| | - Esben S. Worm
- Department of Medical Physics, Aarhus University Hospital, Aarhus, Denmark
| |
Collapse
|
2
|
Deodato F, Macchia G, Cilla S, Ianiro A, Sallustio G, Cammelli S, Buwenge M, Mattiucci GC, Valentini V, Morganti AG. Dose escalation in extracranial stereotactic ablative radiotherapy (DESTROY-1): A multiarm Phase I trial. Br J Radiol 2018; 92:20180422. [PMID: 30325662 DOI: 10.1259/bjr.20180422] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
OBJECTIVE: A multiarm Phase I clinical trial was performed to define the maximum tolerated dose (MTD) of stereotactic body radiotherapy (SBRT) delivered by non-coplanar conformal beams or volumetric modulated arc therapy technique in seven predefined clinical settings. METHODS: The (a) and (b) arms investigated primary and metastatic lung cancer differentiated by site of onset, arm (c) included primary or metastatic lesions outside the thorax, the (d) and (e) arms were for in-field reirradiation of recurrence, and finally, the (f) and (g) arms were for boost irradiation to the lesions after an adjuvant RT prescribed dose. A 4 months cut-off after previous irradiation course was fixed to distinguish the boost from the retreatment (<4 vs >4 months, respectively). Patients were prospectively enrolled in study arms according to tumor site, clinical stage and previous treatment. The total dose prescribed to the isocenter, ranged from 20 to 50 Gy according to the protocol design and the doses per fraction ranged from 4 to 10 Gy in 5 days. RESULTS: A total of 281 patients (M/F: 167/114; median age: 69 years) with 376 lesions underwent SBRT. No acute toxicity was reported in 175 patients (62.3%) while 106 (37.7%) experienced only low-grade (G < 2) acute toxicity. Four patients (all previously irradiated in the same site) showed >Grade 2 toxicity within 6 months from SBRT. With a median follow-up of 19 months, 204 patients (72.6%) did not experience late toxicity, and 77 (27.4%) experienced low grade late toxicity. On per-lesion basis, the 12-and 24 months actuarial local control inside the SBRT field were 84.3 and 73.7 %, respectively. CONCLUSIONS: SBRT delivered in five consecutive fractions up to the doses evaluated is well tolerated. The MTD was reached in four (a, b, c and f) of the seven study arms. Recruitment for (d), (e) and (g) arms is still ongoing. ADVANCES IN KNOWLEDGE: In a prospective dose-escalation trial, the MTD of 50 Gy/10 Gy fraction and 35 Gy/7 Gy fraction were defined for primary and metastatic lesions and as boost after prior RT dose ≤50 Gy, respectively.
Collapse
Affiliation(s)
- Francesco Deodato
- 1 Radiotherapy Unit, "Giovanni Paolo II" Foundation, Catholic University of Sacred Heart , Campobasso , Italy
| | - Gabriella Macchia
- 1 Radiotherapy Unit, "Giovanni Paolo II" Foundation, Catholic University of Sacred Heart , Campobasso , Italy
| | - Savino Cilla
- 2 Medical Physics Unit, "Giovanni Paolo II" Foundation, Catholic University of Sacred Heart , Campobasso , Italy
| | - Anna Ianiro
- 2 Medical Physics Unit, "Giovanni Paolo II" Foundation, Catholic University of Sacred Heart , Campobasso , Italy
| | - Giuseppina Sallustio
- 3 Radiology Unit, "Giovanni Paolo II" Foundation, Catholic University of Sacred Heart , Campobasso , Italy
| | - Silvia Cammelli
- 4 Department of Experimental, Diagnostic and Specialty Medicine -DIMES, Radiation Oncology Unit, University of Bologna, S. Orsola-Malpighi Hospital , Bologna , Italy
| | - Milly Buwenge
- 4 Department of Experimental, Diagnostic and Specialty Medicine -DIMES, Radiation Oncology Unit, University of Bologna, S. Orsola-Malpighi Hospital , Bologna , Italy
| | - Gian Carlo Mattiucci
- 5 Dipartimento di Diagnostica per immagini, Radioterapia Oncologica ed Ematologia, Gemelli ART (Advanced Radiation Therapy) - Interventional Oncology Center, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Università Cattolica del Sacro Cuore , Rome , Italy
| | - Vincenzo Valentini
- 5 Dipartimento di Diagnostica per immagini, Radioterapia Oncologica ed Ematologia, Gemelli ART (Advanced Radiation Therapy) - Interventional Oncology Center, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Università Cattolica del Sacro Cuore , Rome , Italy
| | - Alessio G Morganti
- 4 Department of Experimental, Diagnostic and Specialty Medicine -DIMES, Radiation Oncology Unit, University of Bologna, S. Orsola-Malpighi Hospital , Bologna , Italy
| |
Collapse
|
3
|
Bertholet J, Worm E, Høyer M, Poulsen P. Cone beam CT-based set-up strategies with and without rotational correction for stereotactic body radiation therapy in the liver. Acta Oncol 2017; 56:860-866. [PMID: 28464747 DOI: 10.1080/0284186x.2017.1288925] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
BACKGROUND Accurate patient positioning is crucial in stereotactic body radiation therapy (SBRT) due to a high dose regimen. Cone-beam computed tomography (CBCT) is often used for patient positioning based on radio-opaque markers. We compared six CBCT-based set-up strategies with or without rotational correction. MATERIAL AND METHODS Twenty-nine patients with three implanted markers received 3-6 fraction liver SBRT. The markers were delineated on the mid-ventilation phase of a 4D-planning-CT. One pretreatment CBCT was acquired per fraction. Set-up strategy 1 used only translational correction based on manual marker match between the CBCT and planning CT. Set-up strategy 2 used automatic 6 degrees-of-freedom registration of the vertebrae closest to the target. The 3D marker trajectories were also extracted from the projections and the mean position of each marker was calculated and used for set-up strategies 3-6. Translational correction only was used for strategy 3. Translational and rotational corrections were used for strategies 4-6 with the rotation being either vertebrae based (strategy 4), or marker based and constrained to ±3° (strategy 5) or unconstrained (strategy 6). The resulting set-up error was calculated as the 3D root-mean-square set-up error of the three markers. The set-up error of the spinal cord was calculated for all strategies. RESULTS The bony anatomy set-up (2) had the largest set-up error (5.8 mm). The marker-based set-up with unconstrained rotations (6) had the smallest set-up error (0.8 mm) but the largest spinal cord set-up error (12.1 mm). The marker-based set-up with translational correction only (3) or with bony anatomy rotational correction (4) had equivalent set-up error (1.3 mm) but rotational correction reduced the spinal cord set-up error from 4.1 mm to 3.5 mm. CONCLUSIONS Marker-based set-up was substantially better than bony-anatomy set-up. Rotational correction may improve the set-up, but further investigations are required to determine the optimal correction strategy.
Collapse
Affiliation(s)
- Jenny Bertholet
- Department of Oncology, Aarhus University Hospital, Aarhus, Denmark
| | - Esben Worm
- Department of Medical Physics, Aarhus University Hospital, Aarhus, Denmark
| | - Morten Høyer
- Department of Oncology, Aarhus University Hospital, Aarhus, Denmark
- Danish Center for Particle Therapy, Aarhus, Denmark
| | - Per Poulsen
- Department of Oncology, Aarhus University Hospital, Aarhus, Denmark
| |
Collapse
|
4
|
Fiducial marker guided stereotactic liver radiotherapy: Is a time delay between marker implantation and planning CT needed? Radiother Oncol 2016; 121:75-78. [DOI: 10.1016/j.radonc.2016.07.023] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Revised: 04/04/2016] [Accepted: 07/04/2016] [Indexed: 11/15/2022]
|
5
|
Bertholet J, Worm ES, Fledelius W, Høyer M, Poulsen PR. Time-Resolved Intrafraction Target Translations and Rotations During Stereotactic Liver Radiation Therapy: Implications for Marker-based Localization Accuracy. Int J Radiat Oncol Biol Phys 2016; 95:802-9. [DOI: 10.1016/j.ijrobp.2016.01.033] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Revised: 12/21/2015] [Accepted: 01/18/2016] [Indexed: 12/25/2022]
|
6
|
Dagan R, Lo SS, Redmond KJ, Poon I, Foote MC, Lohr F, Ricardi U, Sahgal A. A multi-national report on stereotactic body radiotherapy for oligometastases: Patient selection and follow-up. Acta Oncol 2016; 55:633-7. [PMID: 27046290 DOI: 10.3109/0284186x.2015.1118659] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Aims Stereotactic body radiotherapy (SBRT) for oligometastases is increasingly used with few evidenced-based guidelines. We conducted a survey to determine patient selection and follow-up practice patterns. Materials and methods Seven institutions from US, Canada, Europe, and Australia that recommend SBRT for oligometastases participated in a 72-item survey. Levels of agreement were categorized as strong (6-7 common responses), moderate (4-5), low (2-3), or no agreement. Results There was strong agreement for recommending SBRT for eradication of all detectable oligometastases with most members limiting the number of metastases to five (range 2-5) and three within a single organ (range 2-5). There was moderate agreement for recommending SBRT as consolidative therapy after systemic therapy. There was strong agreement for requiring adequate performance status and no concurrent chemotherapy. Additional areas of strong agreement included staging evaluations, primary diagnosis, target sites, and follow-up recommendations. Several differences emerged, including the use of SBRT for sarcoma oligometastases, treatment response evaluation, and which imaging should be performed during follow-up. Conclusion Significant commonalities and variations exist for patient selection and follow-up recommendations for SBRT for oligometastases. Information from this survey may serve to help clarify the current landscape.
Collapse
Affiliation(s)
- Roi Dagan
- University of Florida, Jacksonville, Florida, USA
| | - Simon s. Lo
- University Hospitals Seidman Cancer Center, Cleveland, Ohio, USA
| | | | - Ian Poon
- Odette Cancer Centre-Sunnybrook Health Sciences, Toronto, Ontario, Canada
| | - Matthew C. Foote
- University of Queensland, Princess Alexandra Hospital, Woolloongabba, Queensland, Australia
| | - Frank Lohr
- University Medical Center Mannheim, University of Heidelberg, Mannheim, Germany
| | | | - Arjun Sahgal
- Sunnybrook Health Sciences Center, Toronto, Ontario, Canada
| |
Collapse
|
7
|
Poulsen PR, Worm ES, Hansen R, Larsen LP, Grau C, Høyer M. Respiratory gating based on internal electromagnetic motion monitoring during stereotactic liver radiation therapy: First results. Acta Oncol 2015. [PMID: 26198651 DOI: 10.3109/0284186x.2015.1062134] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
BACKGROUND Intrafraction motion may compromise the target dose in stereotactic body radiation therapy (SBRT) of tumors in the liver. Respiratory gating can improve the treatment delivery, but gating based on an external surrogate signal may be inaccurate. This is the first paper reporting on respiratory gating based on internal electromagnetic monitoring during liver SBRT. MATERIAL AND METHODS Two patients with solitary liver metastases were treated with respiratory-gated SBRT guided by three implanted electromagnetic transponders. The treatment was delivered in end-exhale with beam-on when the centroid of the three transponders deviated less than 3 mm [left-right (LR) and anterior-posterior (AP) directions] and 4mm [cranio-caudal (CC)] from the planned position. For each treatment fraction, log files were used to determine the transponder motion during beam-on in the actual gated treatments and in simulated treatments without gating. The motion was used to reconstruct the dose to the clinical target volume (CTV) with and without gating. The reduction in D95 (minimum dose to 95% of the CTV) relative to the plan was calculated for both treatment courses. RESULTS With gating the maximum course mean (standard deviation) geometrical error in any direction was 1.2 mm (1.8 mm). Without gating the course mean error would mainly increase for Patient 1 [to -2.8 mm (1.6 mm) (LR), 7.1 mm (5.8 mm) (CC), -2.6 mm (2.8mm) (AP)] due to a large systematic cranial baseline drift at each fraction. The errors without gating increased only slightly for Patient 2. The reduction in CTV D95 was 0.5% (gating) and 12.1% (non-gating) for Patient 1 and 0.3% (gating) and 1.7% (non-gating) for Patient 2. The mean duty cycle was 55%. CONCLUSION Respiratory gating based on internal electromagnetic motion monitoring was performed for two liver SBRT patients. The gating added robustness to the dose delivery and ensured a high CTV dose even in the presence of large intrafraction motion.
Collapse
Affiliation(s)
- Per Rugaard Poulsen
- a Department of Oncology , Aarhus University Hospital , Denmark
- b Institute of Clinical Medicine, Aarhus University , Denmark
| | | | - Rune Hansen
- c Department of Medical Physics , Aarhus University Hospital , Denmark
| | | | - Cai Grau
- a Department of Oncology , Aarhus University Hospital , Denmark
- b Institute of Clinical Medicine, Aarhus University , Denmark
| | - Morten Høyer
- a Department of Oncology , Aarhus University Hospital , Denmark
- b Institute of Clinical Medicine, Aarhus University , Denmark
| |
Collapse
|
8
|
Schmidt ML, Poulsen PR, Toftegaard J, Hoffmann L, Hansen D, Sørensen TS. Clinical use of iterative 4D-cone beam computed tomography reconstructions to investigate respiratory tumor motion in lung cancer patients. Acta Oncol 2014; 53:1107-13. [PMID: 24957556 DOI: 10.3109/0284186x.2014.927585] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
BACKGROUND Cone beam computed tomography (CBCT) provides means for respiratory resolved volumetric imaging of the thorax. However, merely sorting the acquired projections into respiratory phases and performing a series of conventional three-dimensional (3D) reconstructions lead to clinically prohibitive reconstruction artifacts. This problem can be mitigated by iterative 4D reconstruction. We present a clinical evaluation of two iterative 4D-CBCT reconstruction algorithms during stereotactic body radiation therapy. MATERIAL AND METHODS Two types of iterative 4D-CBCT reconstructions were performed utilizing: 1) total variation (TV) minimization; and 2) optical flow (OF) based deformable registration between phases. The reconstructions were initially evaluated on a lung phantom with a moveable target insert. Subsequently, 4D-CBCT reconstructions were performed for 19 patients on 2-3 CBCT projection datasets previously acquired for conventional 3D-CBCT reconstruction (∼650 half-fan projections per scan in a full one-minute gantry rotation). The 4D reconstructions were imported into a treatment planning system, where the gross tumor volume (GTV) was delineated and used to extract the tumor motion amplitude. RESULTS For both phantom and patient scans, the iterative 4D-CBCT reconstructions had sufficient quality for GTV delineation when the breathing period was faster than 3.5 seconds (15 of 19 patients), but not for slower breathing periods (4 patients). The 3D tumor motion amplitude for the patients was significantly lower (p = 10(-6), Wilcoxon signed rank test) in the OF reconstructions (mean 4.0 mm) than in the TV reconstructions (mean 5.3 mm). CONCLUSION TV and OF iterative 4D-CBCT reconstruction of the thorax in a lung phantom and for 19 patients was demonstrated from standard CBCT scans and used to estimate the daily lung tumor motion.
Collapse
Affiliation(s)
- Mai L Schmidt
- Department of Oncology, Aarhus University Hospital , Denmark
| | | | | | | | | | | |
Collapse
|
9
|
Lindblom E, Dasu A, Lax I, Toma-Dasu I. Survival and tumour control probability in tumours with heterogeneous oxygenation: a comparison between the linear-quadratic and the universal survival curve models for high doses. Acta Oncol 2014; 53:1035-40. [PMID: 24957551 DOI: 10.3109/0284186x.2014.925582] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
BACKGROUND The validity of the linear-quadratic (LQ) model at high doses has been questioned due to a decreasing agreement between predicted survival and experimental cell survival data. A frequently proposed alternative is the universal survival curve (USC) model, thought to provide a better fit in the high-dose region. The comparison between the predictions of the models has mostly been performed for uniform populations of cells with respect to sensitivity to radiation. This study aimed to compare the two models in terms of cell survival and tumour control probability (TCP) for cell populations with mixed sensitivities related to their oxygenation. METHODS The study was performed in two parts. For the first part, cell survival curves were calculated with both models assuming various homogeneous populations of cells irradiated with uniform doses. For the second part, a realistic three-dimensional (3D) model of complex tumour oxygenation was used to study the impact of the differences in cell survival on the modelled TCP. Cellular response was assessed with the LQ and USC models at voxel level and a Poisson TCP model at tumour level. RESULTS For hypoxic tumours, the disputed continuous bend of the LQ survival curve was counteracted by the increased radioresistance of the hypoxic cells and the survival curves started to diverge only at much higher doses than for oxic tumours. This was also reflected by the TCP curves for hypoxic tumours for which the difference in D50 values for the LQ and USC models was reduced from 5.4 to 0.2 Gy for 1 and 3 fractions, respectively, in a tumour with only 1.1% hypoxia and from 9.5 to 0.4 Gy in a tumour with 11.1% hypoxia. CONCLUSIONS For a large range of fractional doses including hypofractionated schemes, the difference in predicted survival and TCP between the LQ and USC models for tumours with heterogeneous oxygenation was found to be negligible.
Collapse
Affiliation(s)
- Emely Lindblom
- Medical Radiation Physics, Department of Physics, Stockholm University , Stockholm , Sweden
| | | | | | | |
Collapse
|
10
|
Worm ES, Høyer M, Fledelius W, Hansen AT, Poulsen PR. Variations in magnitude and directionality of respiratory target motion throughout full treatment courses of stereotactic body radiotherapy for tumors in the liver. Acta Oncol 2013; 52:1437-44. [PMID: 23879645 DOI: 10.3109/0284186x.2013.813638] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
PURPOSE To investigate the stability of target motion amplitude and motion directionality throughout full stereotactic body radiotherapy (SBRT) treatments of tumors in the liver. MATERIAL AND METHODS Ten patients with gold markers implanted in the liver received 11 courses of 3-fraction SBRT on a conventional linear accelerator. A four-dimensional computed tomography (4DCT) scan was obtained for treatment planning. The time-resolved marker motion was determined throughout full treatment field delivery using the kV and MV imagers of the accelerator. The motion amplitude and motion directionality of all individual respiratory cycles were determined using principal component analysis (PCA). The variations in motion amplitude and directionality within the treatment courses and the difference from the motion in the 4DCT scan were determined. RESULTS The patient mean (± 1 standard deviation) peak-to-peak 3D motion amplitude of individual respiratory cycles during a treatment course was 7.9 ± 4.1 mm and its difference from the 4DCT scan was -0.8 ± 2.5 mm (max, 6.6 mm). The mean standard deviation of 3D respiratory cycle amplitude within a treatment course was 2.0 ± 1.6 mm. The motion directionality of individual respiratory cycles on average deviated 4.6 ± 1.6° from the treatment course mean directionality. The treatment course mean motion directionality on average deviated 7.6 ± 6.5° from the directionality in the 4DCT scan. A single patient-specific oblique direction in space explained 97.7 ± 1.7% and 88.3 ± 10.1% of all positional variance (motion) throughout the treatment courses, excluding and including baseline shifts between treatment fields, respectively. CONCLUSION Due to variable breathing amplitudes a single 4DCT scan was not always representative of the mean motion amplitude during treatment. However, the motion was highly directional with a fairly stable direction throughout treatment, indicating a potential for more optimal individualized motion margins aligned to the preferred direction of motion.
Collapse
Affiliation(s)
- Esben S Worm
- Department of Oncology, Aarhus University Hospital , Aarhus , Denmark
| | | | | | | | | |
Collapse
|
11
|
Three-dimensional, Time-Resolved, Intrafraction Motion Monitoring Throughout Stereotactic Liver Radiation Therapy on a Conventional Linear Accelerator. Int J Radiat Oncol Biol Phys 2013; 86:190-7. [DOI: 10.1016/j.ijrobp.2012.12.017] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2012] [Revised: 11/30/2012] [Accepted: 12/18/2012] [Indexed: 12/25/2022]
|
12
|
|