1
|
Shaopeng Z, Yang Z, Yuan F, Chen H, Zhengjun Q. Regulation of regulatory T cells and tumor-associated macrophages in gastric cancer tumor microenvironment. Cancer Med 2024; 13:e6959. [PMID: 38349050 PMCID: PMC10839124 DOI: 10.1002/cam4.6959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 01/10/2024] [Accepted: 01/14/2024] [Indexed: 02/15/2024] Open
Abstract
INTRODUCTION Despite advancements in the methods for prevention and early diagnosis of gastric cancer (GC), GC continues to be the fifth in incidence among major cancers and the third most common cause of cancer-related death. The therapeutic effects of surgery and drug treatment are still unsatisfied and show notable differences according to the tumor microenvironment (TME) of GC. METHODS Through screening Pubmed, Embase, and Web of Science, we identified and summarized the content of recent studies that focus on the investigation of Helicobacter pylori (Hp) infection, regulatory T cells (Tregs), and tumor-associated macrophages (TAMs) in the TME of GC. Furthermore, we searched and outlined the clinical research progress of various targeted drugs in GC treatment including CTLA-4, PD-1\PD-L1, and VEGF/VEGFR. RESULTS In this review, the findings indicate that Hp infection causes local inflammation and leads to immunosuppressive environment. High Tregs infiltration in the TME of GC is associated with increased induction and recruitment; the exact function of infiltrated Tregs in GC was also affected by phenotypes and immunosuppressive molecules. TAMs promote the development and metastasis of tumors, the induction, recruitment, and function of TAMs in the TME of gastric cancer are also regulated by various factors. CONCLUSION Discussing the distinct tumor immune microenvironment (TIME) of GC can deepen our understanding on the mechanism of cancer immune evasion, invasion, and metastasis, help us to reduce the incidence of GC, and guide the innovation of new therapeutic targets for GC eventually.
Collapse
Affiliation(s)
- Zhang Shaopeng
- Department of Gastrointestinal Surgery, Shanghai General HospitalShanghai Jiaotong University School of MedicineShanghaiChina
| | - Zheng Yang
- Department of Gastrointestinal Surgery, Shanghai General HospitalShanghai Jiaotong University School of MedicineShanghaiChina
| | - Fang Yuan
- Department of Gastrointestinal Surgery, Shanghai General HospitalShanghai Jiaotong University School of MedicineShanghaiChina
| | - Huang Chen
- Department of Gastrointestinal Surgery, Shanghai General HospitalShanghai Jiaotong University School of MedicineShanghaiChina
| | - Qiu Zhengjun
- Department of Gastrointestinal Surgery, Shanghai General HospitalShanghai Jiaotong University School of MedicineShanghaiChina
| |
Collapse
|
2
|
Shen Y, Chen JX, Li M, Xiang Z, Wu J, Wang YJ. Role of tumor-associated macrophages in common digestive system malignant tumors. World J Gastrointest Oncol 2023; 15:596-616. [PMID: 37123058 PMCID: PMC10134211 DOI: 10.4251/wjgo.v15.i4.596] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 02/12/2023] [Accepted: 03/30/2023] [Indexed: 04/12/2023] Open
Abstract
Many digestive system malignant tumors are characterized by high incidence and mortality rate. Increasing evidence has revealed that the tumor microenvironment (TME) is involved in cancer initiation and tumor progression. Tumor-associated macrophages (TAMs) are a predominant constituent of the TME, and participate in the regulation of various biological behaviors and influence the prognosis of digestive system cancer. TAMs can be mainly classified into the antitumor M1 phenotype and protumor M2 phenotype. The latter especially are crucial drivers of tumor invasion, growth, angiogenesis, metastasis, immunosuppression, and resistance to therapy. TAMs are of importance in the occurrence, development, diagnosis, prognosis, and treatment of common digestive system malignant tumors. In this review, we summarize the role of TAMs in common digestive system malignant tumors, including esophageal, gastric, colorectal, pancreatic and liver cancers. How TAMs promote the development of tumors, and how they act as potential therapeutic targets and their clinical applications are also described.
Collapse
Affiliation(s)
- Yue Shen
- Department of Dermatology, Suzhou Municipal Hospital, Suzhou 215008, Jiangsu Province, China
| | - Jia-Xi Chen
- School of Medicine, Zhejiang University, Hangzhou 310009, Zhejiang Province, China
| | - Ming Li
- Department of Pathology, Suzhou Municipal Hospital, Suzhou 215008, Jiangsu Province, China
| | - Ze Xiang
- School of Medicine, Zhejiang University, Hangzhou 310009, Zhejiang Province, China
| | - Jian Wu
- Department of Clinical Laboratory, Suzhou Municipal Hospital, Suzhou 215008, Jiangsu Province, China
| | - Yi-Jin Wang
- School of Medicine, Southern University of Science and Technology, Shenzhen 518055, Guangdong Province, China
| |
Collapse
|
3
|
Atri-Schuller A, Abushukair H, Cavalcante L, Hentzen S, Saeed A, Saeed A. Tumor Molecular and Microenvironment Characteristics in EBV-Associated Malignancies as Potential Therapeutic Targets: Focus on Gastric Cancer. Curr Issues Mol Biol 2022; 44:5756-5767. [PMID: 36421674 PMCID: PMC9689242 DOI: 10.3390/cimb44110390] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 11/07/2022] [Accepted: 11/07/2022] [Indexed: 09/30/2023] Open
Abstract
Although most people are infected with Epstein-Barr Virus (EBV) during their lifetime, only a minority of them develop an EBV-associated malignancy. EBV acts in both direct and indirect ways to transform infected cells into tumor cells. There are multiple ways in which the EBV, host, and tumor environment interact to promote malignant transformation. This paper focuses on some of the mechanisms that EBV uses to transform the tumor microenvironment (TME) of EBV-associated gastric cancer (EBVaGC) for its benefit, including overexpression of Indoleamine 2,3-Dioxygenase 1 (IDO1), synergism between H. pylori and EBV co-infection, and M1 to M2 switch. In this review, we expand on different modalities and combinatorial approaches to therapeutically target this mechanism.
Collapse
Affiliation(s)
- Aviva Atri-Schuller
- Department of Internal Medicine, University of Cincinnati, Cincinnati, OH 45219, USA
| | - Hassan Abushukair
- Faculty of Medicine, Jordan University of Science and Technology, Irbid 22110, Jordan
| | - Ludimila Cavalcante
- Department of Hematology and Medical Oncology, Winship Cancer Institute of Emory University, Atlanta, GA 30322, USA
| | - Stijn Hentzen
- Department of Internal Medicine, Kansas University Medical Center, Kansas City, KS 66160, USA
| | - Azhar Saeed
- Department of Pathology, Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112, USA
| | - Anwaar Saeed
- Department of Medicine, Division of Medical Oncology, University of Kansas Cancer Center, 2330 Shawnee Mission Pkwy, Kansas City, KS 66205, USA
| |
Collapse
|
4
|
Agnarelli A, Vella V, Samuels M, Papanastasopoulos P, Giamas G. Incorporating Immunotherapy in the Management of Gastric Cancer: Molecular and Clinical Implications. Cancers (Basel) 2022; 14:cancers14184378. [PMID: 36139540 PMCID: PMC9496849 DOI: 10.3390/cancers14184378] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 08/30/2022] [Accepted: 09/05/2022] [Indexed: 01/30/2023] Open
Abstract
Simple Summary Gastric cancer is one of the most common malignant tumours worldwide, with the fifth and third highest morbidity and mortality, respectively, of all cancers. Survival is limited, as most of the patients are diagnosed at an advanced stage, and are not suitable for surgery with a curative intent. Chemotherapy has only modestly improved patients’ outcomes and is mainly given with a palliative intent. Immunotherapy has improved overall survival of patients with gastric cancer, and has thus become a new standard of care in clinic. In this review we discuss the strong molecular rationale for the administration of immunotherapy in this disease and analyse the clinical data supporting its use. Abstract Gastric cancer has a median survival of 11 months, and this poor prognosis has not improved over the last 30 years. Recent pre-clinical data suggest that there is high tumour-related neoantigen expression in gastric cancer cells, suggesting that a clinical strategy that enhances the host’s immune system against cancer cells may be a successful approach to improve clinical outcomes. Additionally, there has been an increasing amount of translational evidence highlighting the relevance of PD-L1 expression in gastric cancer cells, indicating that PD-1/PD-L1 inhibitors may be useful. Several molecular subgroups of gastric cancer have been identified to respond with excellent outcomes to immunotherapy, including microsatellite instable tumours, tumours bearing a high tumour mutational burden, and tumours related to a chronic EBV infection. In gastric cancer, immunotherapy has produced durable responses in chemo-refractory patients; however, most recently there has been a lot of enthusiasm as several large-scale clinical trials highlight the improved survival noted from the incorporation of immunotherapy in the first line setting for advanced gastric cancer. Our review aims to discuss current pre-clinical and clinical data supporting the innovative role of immunotherapy in gastric cancer.
Collapse
|
5
|
Ucaryilmaz Metin C, Ozcan G. The HIF-1α as a Potent Inducer of the Hallmarks in Gastric Cancer. Cancers (Basel) 2022; 14:2711. [PMID: 35681691 PMCID: PMC9179860 DOI: 10.3390/cancers14112711] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 05/26/2022] [Accepted: 05/27/2022] [Indexed: 02/01/2023] Open
Abstract
Hypoxia is the principal architect of the topographic heterogeneity in tumors. Hypoxia-inducible factor-1α (HIF-1α) reinforces all hallmarks of cancer and donates cancer cells with more aggressive characteristics at hypoxic niches. HIF-1α potently induces sustained growth factor signaling, angiogenesis, epithelial-mesenchymal transition, and replicative immortality. Hypoxia leads to the selection of cancer cells that evade growth suppressors or apoptotic triggers and deregulates cellular energetics. HIF-1α is also associated with genetic instability, tumor-promoting inflammation, and escape from immunity. Therefore, HIF-1α may be an important therapeutic target in cancer. Despite that, the drug market lacks safe and efficacious anti-HIF-1α molecules, raising the quest for fully unveiling the complex interactome of HIF-1α in cancer to discover more effective strategies. The knowledge gap is even wider in gastric cancer, where the number of studies on hypoxia is relatively low compared to other well-dissected cancers. A comprehensive review of the molecular mechanisms by which HIF-1α induces gastric cancer hallmarks could provide a broad perspective to the investigators and reveal missing links to explore in future studies. Thus, here we review the impact of HIF-1α on the cancer hallmarks with a specific focus on gastric cancer.
Collapse
Affiliation(s)
| | - Gulnihal Ozcan
- Department of Medical Pharmacology, School of Medicine, Koç University, 34450 Istanbul, Turkey
| |
Collapse
|
6
|
Basile D, Simionato F, Calvetti L, Cappetta A, Pesavento A, Mongillo M, Roviello G, Rosati G, Rossi G, Aprile G. Comparing immunotherapies to other frequently used treatments of gastric cancer. Expert Rev Clin Pharmacol 2021; 14:1221-1232. [PMID: 34114518 DOI: 10.1080/17512433.2021.1938546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
Abstract
Introduction: Although standard doublet chemotherapy represents the upfront gold standard to increase survival and improve quality of life of gastric cancer patients, overall improvements in long-term outcomes are modest and novel treatments are urgently needed. Among these, immunotherapy is an increasingly attractive option.Areas covered: A number of clinical trials have shown that checkpoint inhibitors may be of value, but many unclear issues remain controversial and should be promptly untangled. In our short review, we offer the current available data regarding immunotherapies in gastric cancers, discuss potential limits of the reported trials, compare outcomes of checkpoints inhibitor to those of standard chemotherapy or other novel treatments, and present basic principles of immune surveillance and immune escape that may be embraced in the near future with novel drug combinations.Expert opinion: Gastric cancer patients may benefit from immunotherapy, both given alone in advanced lines and upfront in combination with chemotherapy. We believe that appropriate patients' and tumor's selection are crucial issues to maximize its potential efficacy. In addition, we think that assay standardization, biomarker agreement, and translational studies will improve the benefit-to-risk ratio of these agents in the clinical practice.
Collapse
Affiliation(s)
- Debora Basile
- Department of Oncology, San Bortolo General Hospital, Vicenza, Italy
| | | | - Lorenzo Calvetti
- Department of Oncology, San Bortolo General Hospital, Vicenza, Italy
| | | | - Annalisa Pesavento
- Department of Oncology, San Bortolo General Hospital, Vicenza, Italy.,Oncology Unit, Department of Medicine, University of Verona School of Medicine and Verona University Hospital Trust, Verona, Italy
| | - Marta Mongillo
- Department of Oncology, San Bortolo General Hospital, Vicenza, Italy.,Oncology Unit, Department of Medicine, University of Verona School of Medicine and Verona University Hospital Trust, Verona, Italy
| | | | - Gerardo Rosati
- Medical Oncology, San Carlo General Hospital, Potenza, Italy
| | - Gemma Rossi
- Medical Oncology, San Carlo General Hospital, Potenza, Italy
| | - Giuseppe Aprile
- Department of Oncology, San Bortolo General Hospital, Vicenza, Italy
| |
Collapse
|
7
|
Juusola M, Kuuliala K, Kuuliala A, Mustonen H, Vähä-Koskela M, Puolakkainen P, Seppänen H. Pancreatic cancer is associated with aberrant monocyte function and successive differentiation into macrophages with inferior anti-tumour characteristics. Pancreatology 2021; 21:397-405. [PMID: 33461933 DOI: 10.1016/j.pan.2020.12.025] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 12/16/2020] [Accepted: 12/31/2020] [Indexed: 12/11/2022]
Abstract
BACKGROUND/OBJECTIVES Inflammation is related to the development and progression of pancreatic cancer (PC). Locally, anti-inflammatory macrophages (M2), and systemically, high levels of certain inflammation-modulating cytokines associate with poor prognosis in PC. The detailed effects of systemic inflammation on circulating monocytes and macrophage polarisation remain unknown. We aimed to find out how intracellular signalling of peripheral blood monocytes is affected by the systemic inflammatory state in PC patients and how it affects their differentiation into macrophages. METHODS Monocytes were isolated from 50 consenting PC patients and 20 healthy controls (HC). The phosphorylation status of the signalling molecules was assessed by flow cytometry both from unstimulated and appropriately stimulated monocytes. Monocytes derived from HC and PC patients were co-cultured with cancer cells (MIA PaCa-2 and HPAF-II) in media supplemented with autologous serum, and the CD marker expression of the obtained macrophages was assessed by flow cytometry. RESULTS Phosphorylation levels of unstimulated STAT2, STAT3 and STAT6 were higher (p < 0.05) and those of stimulated NF-kB (p = 0.004) and STAT5 (p = 0.006) were lower in patients than in controls. The expression of CD86, a proinflammatory (M1) marker, was higher in control- than patient-derived co-cultured macrophages (p = 0.029). CONCLUSIONS Circulating monocytes from PC patients showed constitutive phosphorylation and weaker response to stimuli, indicating aberrant activation and immune suppression. When co-culturing the patient-derived monocytes with cancer cells, they differentiated into macrophages with reduced levels of M1 macrophage marker CD86, suggesting compromised anti-tumour features. The results highlight the need for global management of tumour-associated immune aberrations in PC treatment.
Collapse
Affiliation(s)
- Matilda Juusola
- Department of Surgery, Helsinki University Hospital and University of Helsinki, Helsinki, Finland; Translational Cancer Medicine Research Program, University of Helsinki, Helsinki, Finland.
| | - Krista Kuuliala
- Department of Bacteriology and Immunology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Antti Kuuliala
- Department of Bacteriology and Immunology, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Harri Mustonen
- Department of Surgery, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | | | - Pauli Puolakkainen
- Department of Surgery, Helsinki University Hospital and University of Helsinki, Helsinki, Finland; Translational Cancer Medicine Research Program, University of Helsinki, Helsinki, Finland
| | - Hanna Seppänen
- Department of Surgery, Helsinki University Hospital and University of Helsinki, Helsinki, Finland; Translational Cancer Medicine Research Program, University of Helsinki, Helsinki, Finland
| |
Collapse
|
8
|
Wu C, Zeng MH, Liao G, Qian K, Li H. Neuropilin-1 Interacts with Fibronectin-1 to Promote Epithelial-Mesenchymal Transition Progress in Gastric Cancer. Onco Targets Ther 2020; 13:10677-10687. [PMID: 33116644 PMCID: PMC7585825 DOI: 10.2147/ott.s275327] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 09/28/2020] [Indexed: 12/15/2022] Open
Abstract
Introduction Neuropilin-1 (NRP1) binds to many ligands and co-receptors and affects cell survival and migration, which is essential for tumor progression. However, there are still largely unknowns about how NRP1 affects the epithelial-mesenchymal transition (EMT)-related malignant progression in gastric cancer. Methods We used TCGA to analyze the expression of NRP1 in gastric cancer and its impact on patient survival. In in vitro experiments, transwell, wound healing and colony formation assays were used to evaluate the effects of NRP1 and ginsenoside Rg3 on the invasion, migration and proliferation of gastric cancer cells. In in vivo experiments, we evaluated the overexpression and knockdown of NRP1 and the effect of ginsenoside Rg3 on tumor growth. Results We found that NRP1 is highly expressed in advanced gastric cancer and associated with poor prognosis. Knockdown of NRP1 expression can inhibit the proliferation and metastasis of gastric cancer cells. Mechanically. NRP1 interacts with fibronectin-1 (FN1) to promote the malignant progression of gastric cancer cells through ECM remodeling. In addition, we found that ginsenoside Rg3 can block the interaction of NRP1 and FN1 and inhibit the progression of gastric cancer. Conclusion Our study suggested that the interaction of NRP1 and FN1 is crucial for the malignant progression of gastric cancer. This may provide a new perspective and potential treatment methods for the treatment of gastric cancer.
Collapse
Affiliation(s)
- Chao Wu
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Chongqing Medical University, Chongqing 400016, People's Republic of China
| | - Meng-Hua Zeng
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Chongqing Medical University, Chongqing 400016, People's Republic of China
| | - Gang Liao
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Chongqing Medical University, Chongqing 400016, People's Republic of China
| | - Kun Qian
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Chongqing Medical University, Chongqing 400016, People's Republic of China
| | - Hui Li
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Chongqing Medical University, Chongqing 400016, People's Republic of China
| |
Collapse
|
9
|
Gambardella V, Castillo J, Tarazona N, Gimeno-Valiente F, Martínez-Ciarpaglini C, Cabeza-Segura M, Roselló S, Roda D, Huerta M, Cervantes A, Fleitas T. The role of tumor-associated macrophages in gastric cancer development and their potential as a therapeutic target. Cancer Treat Rev 2020; 86:102015. [PMID: 32248000 DOI: 10.1016/j.ctrv.2020.102015] [Citation(s) in RCA: 182] [Impact Index Per Article: 36.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Revised: 03/09/2020] [Accepted: 03/19/2020] [Indexed: 02/07/2023]
Abstract
Gastric cancer (GC) represents the fifth cause of cancer-related death worldwide. Molecular biology has become a central area of research in GC and there are currently at least three major classifications available to elucidate the mechanisms that drive GC oncogenesis. Further, tumor microenvironment seems to play a crucial role, and tumor-associated macrophages (TAMs) are emerging as key players in GC development. TAMs are cells derived from circulating chemokine- receptor-type 2 (CCR2) inflammatory monocytes in blood and can be divided into two main types, M1 and M2 TAMs. M2 TAMs play an important role in tumor progression, promoting a pro-angiogenic and immunosuppressive signal in the tumor. The diffuse GC subtype, in particular, seems to be strongly characterized by an immuno-suppressive and pro-angiogenic phenotype. No molecular targets in this subgroup have yet been identified. There is an urgent need to understand the molecular pathways and tumor microenvironment features in the GC molecular subtypes. The role of anti-angiogenics and checkpoint inhibitors has recently been clinically validated in GC. Both ramucirumab, a fully humanized IgG1 monoclonal anti-vascular endothelial growth factor receptor 2 (VEGFR2) antibody, and checkpoint inhibitors in Epstein Bar Virus (EBV) and Microsatellite Instable (MSI) subtypes, have proved beneficial in advanced GC. Nevertheless, there is a need to identify predictive markers of response to anti-angiogenics and immunotherapy in clinical practice for a personalized treatment approach. The importance of M2 TAMs in development of solid tumors is currently gaining increasing interest. In this literature review we analyze immune microenvironment composition and signaling related to M1 and M2 TAMs in GC as well as its potential role as a therapeutic target.
Collapse
Affiliation(s)
- V Gambardella
- Department of Medical Oncology, INCLIVA Biomedical Research Institute, University of Valencia, Valencia, Spain; Instituto de Salud Carlos III, CIBERONC, Madrid, Spain
| | - J Castillo
- Department of Biochemistry and Molecular Biology, University of Valencia, Valencia, Spain
| | - N Tarazona
- Department of Medical Oncology, INCLIVA Biomedical Research Institute, University of Valencia, Valencia, Spain; Instituto de Salud Carlos III, CIBERONC, Madrid, Spain
| | - F Gimeno-Valiente
- Department of Medical Oncology, INCLIVA Biomedical Research Institute, University of Valencia, Valencia, Spain
| | - C Martínez-Ciarpaglini
- Instituto de Salud Carlos III, CIBERONC, Madrid, Spain; Department of Pathology, INCLIVA Biomedical Research Institute, Spain
| | - M Cabeza-Segura
- Department of Medical Oncology, INCLIVA Biomedical Research Institute, University of Valencia, Valencia, Spain
| | - S Roselló
- Department of Medical Oncology, INCLIVA Biomedical Research Institute, University of Valencia, Valencia, Spain; Instituto de Salud Carlos III, CIBERONC, Madrid, Spain
| | - D Roda
- Department of Medical Oncology, INCLIVA Biomedical Research Institute, University of Valencia, Valencia, Spain; Instituto de Salud Carlos III, CIBERONC, Madrid, Spain
| | - M Huerta
- Department of Medical Oncology, INCLIVA Biomedical Research Institute, University of Valencia, Valencia, Spain
| | - A Cervantes
- Department of Medical Oncology, INCLIVA Biomedical Research Institute, University of Valencia, Valencia, Spain; Instituto de Salud Carlos III, CIBERONC, Madrid, Spain
| | - T Fleitas
- Department of Medical Oncology, INCLIVA Biomedical Research Institute, University of Valencia, Valencia, Spain; Instituto de Salud Carlos III, CIBERONC, Madrid, Spain.
| |
Collapse
|
10
|
Ma F, Zhang B, Ji S, Hu H, Kong Y, Hua Y, Luo S. Hypoxic Macrophage-Derived VEGF Promotes Proliferation and Invasion of Gastric Cancer Cells. Dig Dis Sci 2019; 64:3154-3163. [PMID: 31102128 DOI: 10.1007/s10620-019-05656-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Accepted: 05/02/2019] [Indexed: 12/28/2022]
Abstract
BACKGROUND Gastric cancer (GC) is one of the most common causes of cancer death. Hypoxia is an important property of the tumor microenvironment of GC. Increasing evidence demonstrates that tumor-associated macrophages are related to the metastasis of GC, while the precise mechanism of how hypoxic macrophages affect tumor progression is still not fully understood. AIMS To examine whether the mediators released from hypoxic macrophages contribute to the invasion and proliferation of GC cells. METHODS Cell Counting Kit-8 was utilized to determine the proliferation of SGC7901 and MKN45 cells. The invasion of SGC7901 and MKN45 cells was measured by transwell invasion assay. Expression of VEGF mRNA in THP-1-derived macrophages was determined by RT-PCR, and protein level of VEGF in the culture medium was detected by ELISA. RESULTS The proliferation and invasion of SGC7901 and MKN45 cells were dramatically increased after treatment with conditioned medium (CM) collected from THP-1-derived macrophages under hypoxia (H-CM), and the phosphorylation of Akt and p38 in SGC7901 and MKN45 cells was also up-regulated by H-CM stimulation. Notably, blockage of PI3K-Akt or p38 MAP kinase abolished the effects of H-CM on the proliferation and invasion of SGC7901 and MKN45 cells. Furthermore, VEGF was increased in macrophages after hypoxia and administration with nintedanib, an inhibitor of VEGFR, significantly decreases the phosphorylation of Akt and p38, as well as the proliferation and invasion of SGC7901 and MKN45 cells in response to H-CM. CONCLUSIONS Our findings suggest that hypoxia-injured macrophages contribute to the proliferation and invasion of GC cells through the release of mediators such as VEGF.
Collapse
Affiliation(s)
- Fei Ma
- Department of General Surgery, Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, 450008, China
| | - Bin Zhang
- Department of General Surgery, Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, 450008, China
| | - Sheqing Ji
- Department of General Surgery, Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, 450008, China
| | - Hongtao Hu
- Department of Intervention Radiology, Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, 450008, China
| | - Ye Kong
- Department of General Surgery, Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, 450008, China
| | - Yawei Hua
- Department of General Surgery, Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, 450008, China
| | - Suxia Luo
- Department of Medical Oncology, Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, 450008, China.
| |
Collapse
|
11
|
Gao Y, Yu X, Zhang F, Dai J. Propofol inhibits pancreatic cancer progress under hypoxia via ADAM8. JOURNAL OF HEPATO-BILIARY-PANCREATIC SCIENCES 2019; 26:219-226. [PMID: 30945470 DOI: 10.1002/jhbp.624] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
BACKGROUND To investigate the potential anti-tumoral properties of propofol in pancreatic cancer and elucidate the underlying mechanisms. METHODS The relative expression of ADAM metallopeptidase domain 8 (ADAM8) in response to hypoxia in Panc1 cells was analyzed by western blotting. The enzymatic activity was determined by fluorescence release from PEPDAB013 decomposition. Cell growth was measured via cell counting and cell viability was measured using CCK-8 kit. Cell migrative capacity was evaluated by transwell and adhesion assay. The relative abundance of angiogenesis-related markers including platelet-derived growth factor AA, angiogenin, endothelin-1 and vascular endothelial growth factor were determined by real-time polymerase chain reaction and western blotting. The anti-tumoral activity of propofol was investigated with Panc1-derived xenograft mice model. RESULTS ADAM8 was significantly induced by hypoxia and efficiently inhibited by co-treatment with propofol. Propofol suppressed proliferation and compromised viability of Panc1 cells. In addition, the migrative capacity was greatly inhibited by propofol dosage. Comprehensive profiling of angiogenesis-related markers demonstrated that propofol remarkably suppressed neovascularization response in Panc1 cells under hypoxia. We further uncovered that propofol administration via subcutaneous injection delayed xenograft tumor progression. CONCLUSION Propofol specifically inhibited ADAM8 expression and activation in response to hypoxia in pancreatic cancer, and held great value for therapeutic effects.
Collapse
Affiliation(s)
- Yutong Gao
- Department of Biomedicine, Guizhou University, Guiyang, Guizhou, China.,Department of Anesthesiology, Guizhou Provincial People's Hospital, Guiyang, Guizhou, China
| | - Xiangdi Yu
- Department of Anesthesiology, Guizhou Provincial People's Hospital, Guiyang, Guizhou, China
| | - Fangxiang Zhang
- Department of Anesthesiology, Guizhou Provincial People's Hospital, Guiyang, Guizhou, China
| | - Jing Dai
- Department of Gastroenterology, Guizhou Provincial People's Hospital, Guiyang, Guizhou, China
| |
Collapse
|
12
|
ADAM8 in invasive cancers: links to tumor progression, metastasis, and chemoresistance. Clin Sci (Lond) 2019; 133:83-99. [PMID: 30635388 DOI: 10.1042/cs20180906] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 11/27/2018] [Accepted: 12/05/2018] [Indexed: 12/26/2022]
Abstract
Ectodomain shedding of extracellular and membrane proteins is of fundamental importance for cell-cell communication in neoplasias. A Disintegrin And Metalloproteinase (ADAM) proteases constitute a family of multifunctional, membrane-bound proteins with traditional sheddase functions. Their protumorigenic potential has been attributed to both, essential (ADAM10 and ADAM17) and 'dispensable' ADAM proteases (ADAM8, 9, 12, 15, and 19). Of specific interest in this review is the ADAM proteinase ADAM8 that has been identified as a significant player in aggressive malignancies including breast, pancreatic, and brain cancer. High expression levels of ADAM8 are associated with invasiveness and predict a poor patient outcome, indicating a prognostic and diagnostic potential of ADAM8. Current knowledge of substrates and interaction partners gave rise to the hypothesis that ADAM8 dysregulation affects diverse processes in tumor biology, attributable to different functional cores of the multidomain enzyme. Proteolytic degradation of extracellular matrix (ECM) components, cleavage of cell surface proteins, and subsequent release of soluble ectodomains promote cancer progression via induction of angiogenesis and metastasis. Moreover, there is increasing evidence for significance of a non-proteolytic function of ADAM8. With the disintegrin (DIS) domain ADAM8 binds integrins such as β1 integrin, thereby activating integrin signaling pathways. The cytoplasmic domain is critical for that activation and involves focal adhesion kinase (FAK), extracellular regulated kinase (ERK1/2), and protein kinase B (AKT/PKB) signaling, further contributing to cancer progression and mediating chemoresistance against first-line therapies. This review highlights the remarkable effects of ADAM8 in tumor biology, concluding that pharmacological inhibition of ADAM8 represents a promising therapeutic approach not only for monotherapy, but also for combinatorial therapies.
Collapse
|
13
|
Nobre AR, Entenberg D, Wang Y, Condeelis J, Aguirre-Ghiso JA. The Different Routes to Metastasis via Hypoxia-Regulated Programs. Trends Cell Biol 2018; 28:941-956. [PMID: 30041830 PMCID: PMC6214449 DOI: 10.1016/j.tcb.2018.06.008] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Revised: 06/28/2018] [Accepted: 06/29/2018] [Indexed: 12/18/2022]
Abstract
Hypoxia is linked to metastasis; however, how it affects metastatic progression is not clear due to limited consensus in the literature. We posit that this lack of consensus is due to hypoxia being studied using different approaches, such as in vitro, primary tumor, or metastasis assays in an isolated manner. Here, we review the pros and cons of in vitro hypoxia assays, highlight in vivo studies that inform on physiological hypoxia, and review the evidence that primary tumor hypoxia might influence the fate of disseminated tumor cells (DTCs) in secondary organs. Our analysis suggests that consensus can be reached by using in vivo methods of study, which also allow better modeling of how hypoxia affects DTC fate and metastasis.
Collapse
Affiliation(s)
- Ana Rita Nobre
- Division of Hematology and Oncology, Department of Medicine, Department of Otolaryngology, Department of Oncological Sciences, Tisch Cancer Institute, Black Family Stem Cell Institute, Mount Sinai School of Medicine, New York, NY 10029, USA; Abel Salazar School of Biomedicine, Porto University, Porto, Portugal; These authors contributed equally
| | - David Entenberg
- Department of Anatomy and Structural Biology, Gruss Lipper Biophotonics Center, Integrated Imaging Program, Albert Einstein College of Medicine, 1300 Morris Park Ave, Bronx, NY 10461, USA; These authors contributed equally
| | - Yarong Wang
- Department of Anatomy and Structural Biology, Gruss Lipper Biophotonics Center, Integrated Imaging Program, Albert Einstein College of Medicine, 1300 Morris Park Ave, Bronx, NY 10461, USA
| | - John Condeelis
- Department of Anatomy and Structural Biology, Gruss Lipper Biophotonics Center, Integrated Imaging Program, Albert Einstein College of Medicine, 1300 Morris Park Ave, Bronx, NY 10461, USA.
| | - Julio A Aguirre-Ghiso
- Division of Hematology and Oncology, Department of Medicine, Department of Otolaryngology, Department of Oncological Sciences, Tisch Cancer Institute, Black Family Stem Cell Institute, Mount Sinai School of Medicine, New York, NY 10029, USA.
| |
Collapse
|
14
|
Räihä MR, Puolakkainen PA. Tumor-associated macrophages (TAMs) as biomarkers for gastric cancer: A review. Chronic Dis Transl Med 2018; 4:156-163. [PMID: 30276362 PMCID: PMC6160505 DOI: 10.1016/j.cdtm.2018.07.001] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Indexed: 02/07/2023] Open
Abstract
Gastric adenocarcinoma is one of the most common types of cancer worldwide, with an incidence of a million new cases annually. In addition to having a high mortality rate due to often delayed detection and its poor response to cancer therapy, it also spreads aggressively. Inflammation has been shown to play a role in carcinogenesis. Consequently, macrophages are important in phagocytosis, antigen presenting and producing cytokines and growth factors. As a response to microenvironmental signals, they may polarize into tumor resisting M1 or tumor promoting M2 macrophages. Recently, studies have indicated that M2-type macrophage resembling tumor-associated macrophages (TAMs) might be used as an independent prognostic factor for gastric cancer. This review will discuss the possible use of TAMs as prognostic tools for gastric cancer and whether they are suitable for use in clinical environment.
Collapse
Affiliation(s)
- Meri R Räihä
- Department of Surgery, Helsinki University Hospital and University of Helsinki, Helsinki 00014, Finland
| | - Pauli A Puolakkainen
- Department of Surgery, Helsinki University Hospital and University of Helsinki, Helsinki 00014, Finland
| |
Collapse
|
15
|
Xia P, Xu XY. Epithelial–mesenchymal transition and gastric cancer stem cell. Tumour Biol 2017; 39:1010428317698373. [DOI: 10.1177/1010428317698373] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Gastric cancer remains a big health problem in China. Gastric cancer cells contain a small subpopulation of cells that exhibit capabilities of differentiation and tumorigenicity. A putative explanation for ineffective therapy is the presence of cancer stem-like cells. Side population cells, which have cancer stem-like cells’ property, are characterized by the high efflux ability of Hoechst 33342 dye. Side population cells have been isolated from gastric cancer cell lines in previous studies. The epithelial–mesenchymal transition is very important in the invasion and metastasis of epithelial-derived cancers. More and more studies showed that gastric cancer stem-like cells possess high invasive ability and epithelial–mesenchymal transition property. A brief overview of the recent advancements in gastric cancer stem-like cells and epithelial–mesenchymal transition will be helpful for providing novel insight into gastric cancer treatment.
Collapse
Affiliation(s)
- Pu Xia
- Department of Cell Biology, College of Basic Medical Science, Liaoning Medical University, Jinzhou, P.R. China
| | - Xiao-Yan Xu
- Department of Pathophysiology, College of Basic Medical Sciences, China Medical University, Shenyang, P.R. China
| |
Collapse
|
16
|
Salmiheimo A, Mustonen H, Vainionpää S, Shen Z, Kemppainen E, Puolakkainen P, Seppänen H. Tumour-associated macrophages activate migration and STAT3 in pancreatic ductal adenocarcinoma cells in co-cultures. Pancreatology 2017; 17:635-641. [PMID: 28476581 DOI: 10.1016/j.pan.2017.04.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Revised: 03/29/2017] [Accepted: 04/24/2017] [Indexed: 12/11/2022]
Abstract
OBJECTIVES Tumour-associated macrophages participate in tumour development and progression. The aim of this study was to assess the interactions of pancreatic cancer cells and pro-inflammatory M1 and anti-inflammatory M2 macrophages, specifically their effect on pancreatic cancer cell migration and the changes in STAT-signalling. METHODS Monocytes were isolated from healthy subjects and differentiated into macrophages with M-CSF. The macrophages were polarized towards M1 by IL-12 and towards M2 by IL-10. We studied also the effect of pan-JAK/STAT-inhibitor P6. Macrophage polarization and STAT and NFkB-activation in both MiaPaCa-2 and macrophages were assessed by flow cytometry. We recorded the effect of co-culture on migration rate of pancreatic cancer cells MiaPaCa-2. RESULTS Macrophages increased the migration rate of pancreatic cancer cells. Co-culture activated STAT1, STAT3, STAT5, AKT, and NFkB in macrophages and STAT3 in MiaPaCa-2 cells. IL-12 polarized macrophages towards M1 and decreased the migration rate of pancreatic cancer cells in co-cultures as well as P6. IL-10 skewed macrophage polarization towards M2 and induced increase of pancreatic cancer cells in co-cultures. CONCLUSION Co-culture with macrophages increased pancreatic cancer cell migration and activated STAT3. It is possible to activate and deactivate migration of pancreatic cancer cells trough macrophage polarization.
Collapse
Affiliation(s)
- Aino Salmiheimo
- Department of Surgery, University of Helsinki, Helsinki University Hospital, Helsinki, Finland
| | - Harri Mustonen
- Department of Surgery, University of Helsinki, Helsinki University Hospital, Helsinki, Finland
| | - Sanna Vainionpää
- Department of Surgery, University of Helsinki, Helsinki University Hospital, Helsinki, Finland
| | - Zhanlong Shen
- Department of Gastroenterological Surgery, Peking University People's Hospital, Beijing, China
| | - Esko Kemppainen
- Department of Surgery, University of Helsinki, Helsinki University Hospital, Helsinki, Finland
| | - Pauli Puolakkainen
- Department of Surgery, University of Helsinki, Helsinki University Hospital, Helsinki, Finland.
| | - Hanna Seppänen
- Department of Surgery, University of Helsinki, Helsinki University Hospital, Helsinki, Finland
| |
Collapse
|
17
|
Shilpi A, Bi Y, Jung S, Patra SK, Davuluri RV. Identification of Genetic and Epigenetic Variants Associated with Breast Cancer Prognosis by Integrative Bioinformatics Analysis. Cancer Inform 2017; 16:1-13. [PMID: 28096648 PMCID: PMC5224237 DOI: 10.4137/cin.s39783] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Revised: 09/05/2016] [Accepted: 09/09/2016] [Indexed: 01/06/2023] Open
Abstract
INTRODUCTION Breast cancer being a multifaceted disease constitutes a wide spectrum of histological and molecular variability in tumors. However, the task for the identification of these variances is complicated by the interplay between inherited genetic and epigenetic aberrations. Therefore, this study provides an extrapolate outlook to the sinister partnership between DNA methylation and single-nucleotide polymorphisms (SNPs) in relevance to the identification of prognostic markers in breast cancer. The effect of these SNPs on methylation is defined as methylation quantitative trait loci (meQTL). MATERIALS AND METHODS We developed a novel method to identify prognostic gene signatures for breast cancer by integrating genomic and epigenomic data. This is based on the hypothesis that multiple sources of evidence pointing to the same gene or pathway are likely to lead to reduced false positives. We also apply random resampling to reduce overfitting noise by dividing samples into training and testing data sets. Specifically, the common samples between Illumina 450 DNA methylation, Affymetrix SNP array, and clinical data sets obtained from the Cancer Genome Atlas (TCGA) for breast invasive carcinoma (BRCA) were randomly divided into training and test models. An intensive statistical analysis based on log-rank test and Cox proportional hazard model has established a significant association between differential methylation and the stratification of breast cancer patients into high- and low-risk groups, respectively. RESULTS The comprehensive assessment based on the conjoint effect of CpG–SNP pair has guided in delaminating the breast cancer patients into the high- and low-risk groups. In particular, the most significant association was found with respect to cg05370838–rs2230576, cg00956490–rs940453, and cg11340537–rs2640785 CpG–SNP pairs. These CpG–SNP pairs were strongly associated with differential expression of ADAM8, CREB5, and EXPH5 genes, respectively. Besides, the exclusive effect of SNPs such as rs10101376, rs140679, and rs1538146 also hold significant prognostic determinant. CONCLUSIONS Thus, the analysis based on DNA methylation and SNPs have resulted in the identification of novel susceptible loci that hold prognostic relevance in breast cancer.
Collapse
Affiliation(s)
- Arunima Shilpi
- Epigenetics and Cancer Research Laboratory, Biochemistry and Molecular Biology Group Department of Life Science, National Institute of Technology Rourkela, Odisha, India
| | - Yingtao Bi
- Division of Health and Biomedical Informatics, Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Segun Jung
- Division of Health and Biomedical Informatics, Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Samir K Patra
- Epigenetics and Cancer Research Laboratory, Biochemistry and Molecular Biology Group Department of Life Science, National Institute of Technology Rourkela, Odisha, India
| | - Ramana V Davuluri
- Division of Health and Biomedical Informatics, Department of Preventive Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| |
Collapse
|
18
|
Wang Y, Liu T, Yang N, Xu S, Li X, Wang D. Hypoxia and macrophages promote glioblastoma invasion by the CCL4-CCR5 axis. Oncol Rep 2016; 36:3522-3528. [DOI: 10.3892/or.2016.5171] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Accepted: 08/16/2016] [Indexed: 11/06/2022] Open
|
19
|
Zhou X, Meng X, Liu Z, Chang J, Wang B, Li M, Wengel POT, Tian S, Wen C, Wang Z, Garber PA, Pan H, Ye X, Xiang Z, Bruford MW, Edwards SV, Cao Y, Yu S, Gao L, Cao Z, Liu G, Ren B, Shi F, Peterfi Z, Li D, Li B, Jiang Z, Li J, Gladyshev VN, Li R, Li M. Population Genomics Reveals Low Genetic Diversity and Adaptation to Hypoxia in Snub-Nosed Monkeys. Mol Biol Evol 2016; 33:2670-81. [PMID: 27555581 DOI: 10.1093/molbev/msw150] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Snub-nosed monkeys (genus Rhinopithecus) are a group of endangered colobines endemic to South Asia. Here, we re-sequenced the whole genomes of 38 snub-nosed monkeys representing four species within this genus. By conducting population genomic analyses, we observed a similar load of deleterious variation in snub-nosed monkeys living in both smaller and larger populations and found that genomic diversity was lower than that reported in other primates. Reconstruction of Rhinopithecus evolutionary history suggested that episodes of climatic variation over the past 2 million years, associated with glacial advances and retreats and population isolation, have shaped snub-nosed monkey demography and evolution. We further identified several hypoxia-related genes under selection in R. bieti (black snub-nosed monkey), a species that exploits habitats higher than any other nonhuman primate. These results provide the first detailed and comprehensive genomic insights into genetic diversity, demography, genetic burden, and adaptation in this radiation of endangered primates.
Collapse
Affiliation(s)
- Xuming Zhou
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School
| | - Xuehong Meng
- Novogene Bioinformatics Institute, Beijing, China
| | - Zhijin Liu
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Jiang Chang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, China
| | - Boshi Wang
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Mingzhou Li
- College of Animal Science and Technology, Sichuan Agricultural University, Ya'an, China
| | - Pablo Orozco-Ter Wengel
- Biodiversity and Sustainable Places Research Institute, Cardiff School of Biosciences, Cardiff University, Cardiff, United Kingdom
| | - Shilin Tian
- Novogene Bioinformatics Institute, Beijing, China College of Animal Science and Technology, Sichuan Agricultural University, Ya'an, China
| | - Changlong Wen
- Beijing Vegetable Research Center (BVRC), Beijing Academy of Agricultural and Forestry Sciences, Beijing, China
| | - Ziming Wang
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Paul A Garber
- Department of Anthropology, University of Illinois at Urbana-Champaign Program in Ecology and Evolutionary Biology, University of Illinois at Urbana-Champaign
| | - Huijuan Pan
- College of Nature Conservation, Beijing Forestry University, Beijing, China
| | - Xinping Ye
- School of Life Sciences, Shaanxi Normal University, XiXi'an, China
| | - Zuofu Xiang
- College of Life Science and Technology, Central South University of Forestry and Technology, Changsha, China
| | - Michael W Bruford
- Biodiversity and Sustainable Places Research Institute, Cardiff School of Biosciences, Cardiff University, Cardiff, United Kingdom
| | - Scott V Edwards
- Department of Organismic and Evolutionary Biology, Harvard University
| | - Yinchuan Cao
- Novogene Bioinformatics Institute, Beijing, China
| | - Shuancang Yu
- Beijing Vegetable Research Center (BVRC), Beijing Academy of Agricultural and Forestry Sciences, Beijing, China
| | - Lianju Gao
- Novogene Bioinformatics Institute, Beijing, China
| | - Zhisheng Cao
- Novogene Bioinformatics Institute, Beijing, China
| | - Guangjian Liu
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Baoping Ren
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Fanglei Shi
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Zalan Peterfi
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School
| | - Dayong Li
- College of Life Sciences, China West Normal University, Nanchong, Sichuan, China
| | - Baoguo Li
- College of Life Sciences, Northwest University, Xi'an, China
| | - Zhi Jiang
- Novogene Bioinformatics Institute, Beijing, China
| | - Junsheng Li
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, China
| | - Vadim N Gladyshev
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School
| | - Ruiqiang Li
- Novogene Bioinformatics Institute, Beijing, China
| | - Ming Li
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
20
|
Ma HY, Liu XZ, Liang CM. Inflammatory microenvironment contributes to epithelial-mesenchymal transition in gastric cancer. World J Gastroenterol 2016; 22:6619-6628. [PMID: 27547005 PMCID: PMC4970470 DOI: 10.3748/wjg.v22.i29.6619] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2016] [Revised: 06/12/2016] [Accepted: 07/06/2016] [Indexed: 02/07/2023] Open
Abstract
Gastric cancer (GC) is the fifth most common malignancy in the world. The major cause of GC is chronic infection with Helicobacter pylori (H. pylori). Infection with H. pylori leads to an active inflammatory microenvironment that is maintained by immune cells such as T cells, macrophages, natural killer cells, among other cells. Immune cell dysfunction allows the initiation and accumulation of mutations in GC cells, inducing aberrant proliferation and protection from apoptosis. Meanwhile, immune cells can secrete certain signals, including cytokines, and chemokines, to alter intracellular signaling pathways in GC cells. Thus, GC cells obtain the ability to metastasize to lymph nodes by undergoing the epithelial-mesenchymal transition (EMT), whereby epithelial cells lose their epithelial attributes and acquire a mesenchymal cell phenotype. Metastasis is a leading cause of death for GC patients, and the involved mechanisms are still under investigation. In this review, we summarize the current research on how the inflammatory environment affects GC initiation and metastasis via EMT.
Collapse
|
21
|
Zhang Q, Gou W, Wang X, Zhang Y, Ma J, Zhang H, Zhang Y, Zhang H. Genome Resequencing Identifies Unique Adaptations of Tibetan Chickens to Hypoxia and High-Dose Ultraviolet Radiation in High-Altitude Environments. Genome Biol Evol 2016; 8:765-76. [PMID: 26907498 PMCID: PMC4824011 DOI: 10.1093/gbe/evw032] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Tibetan chicken, unlike their lowland counterparts, exhibit specific adaptations to high-altitude conditions. The genetic mechanisms of such adaptations in highland chickens were determined by resequencing the genomes of four highland (Tibetan and Lhasa White) and four lowland (White Leghorn, Lindian, and Chahua) chicken populations. Our results showed an evident genetic admixture in Tibetan chickens, suggesting a history of introgression from lowland gene pools. Genes showing positive selection in highland populations were related to cardiovascular and respiratory system development, DNA repair, response to radiation, inflammation, and immune responses, indicating a strong adaptation to oxygen scarcity and high-intensity solar radiation. The distribution of allele frequencies of nonsynonymous single nucleotide polymorphisms between highland and lowland populations was analyzed using chi-square test, which showed that several differentially distributed genes with missense mutations were enriched in several functional categories, especially in blood vessel development and adaptations to hypoxia and intense radiation. RNA sequencing revealed that several differentially expressed genes were enriched in gene ontology terms related to blood vessel and respiratory system development. Several candidate genes involved in the development of cardiorespiratory system (FGFR1, CTGF, ADAM9, JPH2, SATB1, BMP4, LOX, LPR, ANGPTL4, and HYAL1), inflammation and immune responses (AIRE, MYO1F, ZAP70, DDX60, CCL19, CD47, JSC, and FAS), DNA repair, and responses to radiation (VCP, ASH2L, and FANCG) were identified to play key roles in the adaptation to high-altitude conditions. Our data provide new insights into the unique adaptations of highland animals to extreme environments.
Collapse
Affiliation(s)
- Qian Zhang
- National Engineering Laboratory for Animal Breeding, China Agricultural University, Beijing, People's Republic of China
| | - Wenyu Gou
- National Engineering Laboratory for Animal Breeding, China Agricultural University, Beijing, People's Republic of China
| | - Xiaotong Wang
- School of Agriculture, Ludong University, Yantai, China
| | - Yawen Zhang
- National Engineering Laboratory for Animal Breeding, China Agricultural University, Beijing, People's Republic of China
| | - Jun Ma
- National Engineering Laboratory for Animal Breeding, China Agricultural University, Beijing, People's Republic of China
| | - Hongliang Zhang
- National Engineering Laboratory for Animal Breeding, China Agricultural University, Beijing, People's Republic of China
| | - Ying Zhang
- National Engineering Laboratory for Animal Breeding, China Agricultural University, Beijing, People's Republic of China
| | - Hao Zhang
- National Engineering Laboratory for Animal Breeding, China Agricultural University, Beijing, People's Republic of China
| |
Collapse
|
22
|
Gratchev A. TGF-β signalling in tumour associated macrophages. Immunobiology 2016; 222:75-81. [PMID: 26876591 DOI: 10.1016/j.imbio.2015.11.016] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Revised: 11/23/2015] [Accepted: 11/23/2015] [Indexed: 12/14/2022]
Abstract
Tumour associated macrophages (TAM) represent an important component of tumour stroma. They develop under the influence of tumour microenvironment where transforming growth factor (TGF)β is frequently present. Activities of TAM regulated by TGFβ stimulate proliferation of tumour cells and lead to tumour immune escape. Despite high importance of TGFβ-induction of TAM activities till now our understanding of the mechanism of this induction is limited. We have previously developed a model of type 2 macrophages (M2) resembling certain properties of TAM. We established that in M2 TGFβRII is regulated on the level of subcellular sorting by glucocorticoids. Further studies revealed that in M2 with high levels of TGFβRII on the surface TGFβ activates not only its canonical Smad2/3-mediated signaling, but also Smad1/5-mediated signaling, what is rather typical for bone morphogenetic protein (BMP) stimulation. Complexity of macrophage populations, however, allows assumption that TGFβ signalling may function in different ways depending on the functional state of the cell. To understand the peculiarities of TGFβ signalling in human TAMs experimental systems using primary cells have to be developed and used together with the modern mathematical modelling approaches.
Collapse
Affiliation(s)
- Alexei Gratchev
- Blokhin Cancer Research Center, Moscow, Russia; Laboratory for translational cellular and molecular biomedicine, Tomsk State University, Tomsk, Russia.
| |
Collapse
|
23
|
Salmiheimo ANE, Mustonen HK, Vainionpää SAA, Shen Z, Kemppainen EAJ, Seppänen HE, Puolakkainen PA. Increasing the Inflammatory Competence of Macrophages with IL-6 or with Combination of IL-4 and LPS Restrains the Invasiveness of Pancreatic Cancer Cells. J Cancer 2016; 7:42-9. [PMID: 26722359 PMCID: PMC4679380 DOI: 10.7150/jca.12923] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Accepted: 09/07/2015] [Indexed: 12/14/2022] Open
Abstract
Recent studies suggest that pro-inflammatory type M1 macrophages inhibit tumor progression and that anti-inflammatory M2 macrophages enhance it. The aim of this study was to examine the interaction of type M1 and M2 macrophages with pancreatic cancer cells. We studied the migration rate of fluorescein stained pancreatic cancer cells on Matrigel cultured alone or with Granulocyte-Macrophage Colony Stimulating Factor (GM-CSF) differentiated macrophages or with Macrophage Colony Stimulating Factor (M-CSF) differentiated macrophages, skewing the phenotype towards pro- and anti-inflammatory direction, respectively. Macrophage differentiation was assessed with flow cytometry and the cytokine secretion in cell cultures with cytokine array. Both GM-CSF and M-CSF differentiated macrophages increased the migration rate of primary pancreatic adenocarcinoma cell line (MiaPaCa-2) and metastatic cell line (HPAF-II). Stimulation with IL6 or IL4+LPS reversed the macrophages' increasing effect on the migration rate of MiaPaCa-2 completely and partly of HPAF-II. Co-culture with MiaPaCa-2 reduced the inflammatory cytokine secretion of GM-CSF differentiated macrophages. Co-culture of macrophages with pancreatic cancer cells seem to change the inflammatory cytokine profile of GM-CSF differentiated macrophages and this might explain why also GM-CSF differentiated macrophages promoted the invasion. Adding IL6 or IL4+LPS to the cell culture with MiaPaCa-2 and GM-CSF or M-CSF differentiated macrophages increased the secretion of inflammatory cytokines and this could contribute to the reversion of the macrophage induced increase of cancer cell migration rate.
Collapse
Affiliation(s)
- Aino N E Salmiheimo
- 1. Department of Surgery, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - Harri K Mustonen
- 1. Department of Surgery, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - Sanna A A Vainionpää
- 1. Department of Surgery, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - Zhanlong Shen
- 2. Department of Gastroenterological Surgery, Peking University People's Hospital, Beijing, China
| | - Esko A J Kemppainen
- 1. Department of Surgery, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - Hanna E Seppänen
- 1. Department of Surgery, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| | - Pauli A Puolakkainen
- 1. Department of Surgery, Helsinki University Hospital and University of Helsinki, Helsinki, Finland
| |
Collapse
|
24
|
Cardoso AP, Pinto ML, Pinto AT, Pinto MT, Monteiro C, Oliveira MI, Santos SG, Relvas JB, Seruca R, Mantovani A, Mareel M, Barbosa MA, Oliveira MJ. Matrix metalloproteases as maestros for the dual role of LPS- and IL-10-stimulated macrophages in cancer cell behaviour. BMC Cancer 2015; 15:456. [PMID: 26043921 PMCID: PMC4456051 DOI: 10.1186/s12885-015-1466-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2014] [Accepted: 05/21/2015] [Indexed: 01/13/2023] Open
Abstract
Background The interactions established between macrophages and cancer cells are largely dependent on instructions from the tumour microenvironment. Macrophages may differentiate into populations with distinct inflammatory profiles, but knowledge on their role on cancer cell activities is still very scarce. In this work, we investigated the influence of pro-inflammatory (LPS-stimulated) and anti-inflammatory (IL-10-stimulated) macrophages on gastric and colorectal cancer cell invasion, motility/migration, angiogenesis and proteolysis, and the associated molecular mechanisms. Methods Following exposure of gastric and colon cancer cell lines to LPS- and IL-10-stimulated human macrophages, either by indirect contact or conditioned media, we analyzed the effect of the different macrophage populations on cancer cell invasion, migration, motility and phosphorylation status of EGFR and several interacting partners. Cancer-cell induced angiogenesis upon the influence of conditioned media from both macrophage populations was assessed using the chick embryo chorioallantoic membrane assay. MMP activities were evaluated by gelatin zymograhy. Results Our results show that IL-10-stimulated macrophages are more efficient in promoting in vitro cancer cell invasion and migration. In addition, soluble factors produced by these macrophages enhanced in vivo cancer cell-induced angiogenesis, as opposed to their LPS-stimulated counterparts. We further demonstrate that differences in the ability of these macrophage populations to stimulate invasion or angiogenesis cannot be explained by the EGFR-mediated signalling, since both LPS- and IL-10-stimulated macrophages similarly induce the phosphorylation of cancer cell EGFR, c-Src, Akt, ERK1/2, and p38. Interestingly, both populations exert distinct proteolytic activities, being the IL-10-stimulated macrophages the most efficient in inducing matrix metalloprotease (MMP)-2 and MMP-9 activities. Using a broad-spectrum MMP inhibitor, we demonstrated that proteolysis was essential for macrophage-mediated cancer cell invasion and angiogenesis. Conclusions We propose that IL-10- and LPS-stimulated macrophages distinctly modulate gastric and colorectal cancer cell behaviour, as result of distinct proteolytic profiles that impact cell invasion and angiogenesis.
Collapse
Affiliation(s)
- Ana P Cardoso
- i3S-Instituto de Investigação e Inovação em Saúde/INEB-Institute of Biomedical Engineering, University of Porto, Porto, Portugal. .,FEUP-Faculty of Engineering, University of Porto, Porto, Portugal.
| | - Marta L Pinto
- i3S-Instituto de Investigação e Inovação em Saúde/INEB-Institute of Biomedical Engineering, University of Porto, Porto, Portugal. .,ICBAS-Institute of Biomedical Sciences Abel Salazar, University of Porto, Porto, Portugal.
| | - Ana T Pinto
- i3S-Instituto de Investigação e Inovação em Saúde/INEB-Institute of Biomedical Engineering, University of Porto, Porto, Portugal. .,FEUP-Faculty of Engineering, University of Porto, Porto, Portugal.
| | - Marta T Pinto
- i3S-Instituto de Investigação e Inovação em Saúde/IPATIMUP-Institute of Molecular Pathology and Immunology of the University of Porto, Porto, Portugal.
| | - Cátia Monteiro
- i3S-Instituto de Investigação e Inovação em Saúde/INEB-Institute of Biomedical Engineering, University of Porto, Porto, Portugal.
| | - Marta I Oliveira
- i3S-Instituto de Investigação e Inovação em Saúde/INEB-Institute of Biomedical Engineering, University of Porto, Porto, Portugal.
| | - Susana G Santos
- i3S-Instituto de Investigação e Inovação em Saúde/INEB-Institute of Biomedical Engineering, University of Porto, Porto, Portugal. .,FEUP-Faculty of Engineering, University of Porto, Porto, Portugal.
| | - João B Relvas
- i3S-Instituto de Investigação e Inovação em Saúde/IBMC-Institute for Cell and Molecular Biology, University of Porto, Porto, Portugal.
| | - Raquel Seruca
- i3S-Instituto de Investigação e Inovação em Saúde/IPATIMUP-Institute of Molecular Pathology and Immunology of the University of Porto, Porto, Portugal. .,Department of Pathology and Oncology, Faculty of Medicine, University of Porto, Porto, Portugal.
| | - Alberto Mantovani
- Humanitas Clinical and Research Centre, Rozzano, Italy. .,BIOMETRA Department, University of Milan, Milan, Italy.
| | - Marc Mareel
- Laboratory of Experimental Cancerology, Ghent University Hospital, Ghent, Belgium.
| | - Mário A Barbosa
- i3S-Instituto de Investigação e Inovação em Saúde/INEB-Institute of Biomedical Engineering, University of Porto, Porto, Portugal. .,ICBAS-Institute of Biomedical Sciences Abel Salazar, University of Porto, Porto, Portugal.
| | - Maria J Oliveira
- i3S-Instituto de Investigação e Inovação em Saúde/INEB-Institute of Biomedical Engineering, University of Porto, Porto, Portugal. .,Department of Pathology and Oncology, Faculty of Medicine, University of Porto, Porto, Portugal.
| |
Collapse
|
25
|
Guo J, Wang B, Fu Z, Wei J, Lu W. Hypoxic Microenvironment Induces EMT and Upgrades Stem-Like Properties of Gastric Cancer Cells. Technol Cancer Res Treat 2015; 15:60-8. [PMID: 25601854 DOI: 10.1177/1533034614566413] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2014] [Accepted: 12/08/2014] [Indexed: 12/18/2022] Open
Abstract
Hypoxia microenvironment, as a major feature of solid tumors, increases tumors progression and metastasis. To research whether hypoxia influences the epithelial-mesenchymal transition (EMT) and cancer stem cells (CSCs) of gastric cancer cells and their cell biological behaviors. Human gastric cancer cell lines BGC823 and SGC7901 were cultivated in different oxygen tensions for proliferation, colony formation, soft agar formation, migration, and invasion analyses. Markers of EMT (E-cadherin, N-cadherin, Vimentin, and Snail) and markers of CSCs (Sox2, Oct4, and Bmi1) were investigated by real-time polymerase chain reaction, Western blotting, and immunofluorescent analysis. Cultivated at hypoxic condition, BGC823 and SGC7901 cells morphology began to change significantly. The cells pretreated under hypoxia grew faster than those cells always cultivated in normoxia. Meanwhile, hypoxia pretreatment dramatically promoted cell proliferation, migration and invasion, and increased capability of colony and soft agar colony formation. Furthermore, under hypoxia, E-cadherin decreased and N-cadherin, Vimentin, Snail, Sox2, Oct4, and Bmi1 increased both on the level of messenger RNA and protein. We drew a conclusion that the hypoxic microenvironment induced EMT, upgraded stem-like properties of gastric cancer cells, promoted invasion and metastasis, and behaved more malignantly.
Collapse
Affiliation(s)
- Jinbao Guo
- Department of Gastrointestinal Surgery, the First Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Bin Wang
- Department of Cardiothoracic Surgery, the First Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Zhongxue Fu
- Department of Gastrointestinal Surgery, the First Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Jinlai Wei
- Department of Gastrointestinal Surgery, the First Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Weidong Lu
- Department of Gastrointestinal Surgery, the First Affiliated Hospital, Chongqing Medical University, Chongqing, China
| |
Collapse
|
26
|
Nedd4-1 is an exceptional prognostic biomarker for gastric cardia adenocarcinoma and functionally associated with metastasis. Mol Cancer 2014; 13:248. [PMID: 25395181 PMCID: PMC4239324 DOI: 10.1186/1476-4598-13-248] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2014] [Accepted: 10/29/2014] [Indexed: 12/12/2022] Open
Abstract
Background Gastric cardia adenocarcinoma (GCA) is the most aggressive subtype of gastric carcinoma. New molecular markers and therapeutic targets are needed for diagnosis, prognosis and treatment of GCA. This study is to establish the E3 ubiquitin ligase Nedd4-1 as a prognostic biomarker to predict the survival and guide the treatment of GCA patients. Methods Expression of Nedd4-1 in 214 GCA tumor samples was detected by immunohistochemistry staining (IHC) using tissue microarray assay (TMA). Association of Nedd4-1 with cumulative survival of the TNM stages I-III patients and clinicopathological characteristics was statistically analyzed. The role of Nedd4-1 in gastric cancer cell migration and invasion were determined by transwell and wound healing assays. Results Nedd4-1 is overexpressed in 83% of the GCA tumors. The 5-year survival rate in Nedd4-1 negative GCA patients is as high as 96%. Log-rank analysis indicated that overexpression of Nedd4-1 is inversely correlated with cumulative survival (χ2 = 21.885, p <0.001). Multivariate logistic regression analysis showed that overexpression of Nedd4-1 is associated with an extremely low GCA survival rate with a hazard ratio (HR) = 0.068 (p = 0.008) in TNM stages I-III patients. Statistical analysis of association of Nedd4-1 overexpression with clinicopathological characteristics revealed that overexpression of Nedd4-1 is tightly associated with TNM stage (p < 0.001). Knockdown of Nedd4-1 in gastric cancer cell lines AGS and N87 dramatically inhibited the gastric cancer cell migration and invasion. Conclusions Our results indicate that Nedd4-1 is an exceptional prognostic biomarker for GCA and suggest that Nedd4-1 may play an essential role in GCA metastasis. Electronic supplementary material The online version of this article (doi:10.1186/1476-4598-13-248) contains supplementary material, which is available to authorized users.
Collapse
|
27
|
Roychaudhuri R, Hergrueter AH, Polverino F, Laucho-Contreras ME, Gupta K, Borregaard N, Owen CA. ADAM9 is a novel product of polymorphonuclear neutrophils: regulation of expression and contributions to extracellular matrix protein degradation during acute lung injury. THE JOURNAL OF IMMUNOLOGY 2014; 193:2469-82. [PMID: 25063875 DOI: 10.4049/jimmunol.1303370] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
A disintegrin and a metalloproteinase domain (ADAM) 9 is known to be expressed by monocytes and macrophages. In this study, we report that ADAM9 is also a product of human and murine polymorphonuclear neutrophils (PMNs). ADAM9 is not synthesized de novo by circulating PMNs. Rather, ADAM9 protein is stored in the gelatinase and specific granules and the secretory vesicles of human PMNs. Unstimulated PMNs express minimal quantities of surface ADAM9, but activation of PMNs with degranulating agonists rapidly (within 15 min) increases PMN surface ADAM9 levels. Human PMNs produce small quantities of soluble forms of ADAM9. Surprisingly, ADAM9 degrades several extracellular matrix (ECM) proteins, including fibronectin, entactin, laminin, and insoluble elastin, as potently as matrix metalloproteinase-9. However, ADAM9 does not degrade types I, III, or IV collagen or denatured collagens in vitro. To determine whether Adam9 regulates PMN recruitment or ECM protein turnover during inflammatory responses, we compared wild-type and Adam9(-/-) mice in bacterial LPS- and bleomycin-mediated acute lung injury (ALI). Adam9 lung levels increase 10-fold during LPS-mediated ALI in wild-type mice (due to increases in leukocyte-derived Adam9), but Adam9 does not regulate lung PMN (or macrophage) counts during ALI. Adam9 increases mortality, promotes lung injury, reduces lung compliance, and increases degradation of lung elastin during LPS- and/or bleomycin-mediated ALI. Adam9 does not regulate collagen accumulation in the bleomycin-treated lung. Thus, ADAM9 is expressed in an inducible fashion on PMN surfaces where it degrades some ECM proteins, and it promotes alveolar-capillary barrier injury during ALI in mice.
Collapse
Affiliation(s)
- Robin Roychaudhuri
- Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, 02115
| | - Anja H Hergrueter
- Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, 02115
| | - Francesca Polverino
- Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, 02115; Lovelace Respiratory Research Institute, Albuquerque, NM 87108; Pulmonary Department, University of Parma, 43100 Parma, Italy; and
| | - Maria E Laucho-Contreras
- Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, 02115
| | - Kushagra Gupta
- Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, 02115
| | - Niels Borregaard
- Granulocyte Research Laboratory, Department of Hematology, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Caroline A Owen
- Division of Pulmonary and Critical Care Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, 02115; Lovelace Respiratory Research Institute, Albuquerque, NM 87108;
| |
Collapse
|
28
|
Zhao H, Li Y, Wang S, Yang Y, Wang J, Ruan X, Yang Y, Cai K, Zhang B, Cui P, Yan J, Zhao Y, Wakeland EK, Li Q, Hu S, Fang X. Whole transcriptome RNA-seq analysis: tumorigenesis and metastasis of melanoma. Gene 2014; 548:234-43. [PMID: 25034661 DOI: 10.1016/j.gene.2014.07.038] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2014] [Revised: 06/27/2014] [Accepted: 07/12/2014] [Indexed: 12/31/2022]
Abstract
Melanoma is the most malignant cutaneous cancer and causes over 9000 deaths annually. Because fatality rates from malignant melanoma (MM) increase dramatically upon metastasis, we investigated tumorigenesis and metastasis of MM in transcriptome analyses of three distinct cell lines that correspond with the stages of MM pathogenesis: the normal stage (HEMn-LP), the onset of MM (A375), and the metastasis stage (A2058). Using next-generation sequencing (NGS) technology, we detected asymmetrical expression of genes among the three cell lines, notably on chromosomes 9, 11, 12, and 14, suggesting their involvement in tumorigenesis and metastasis of MM. These genes were clustered into 41 categories based on their expression patterns, and their biological functions were analyzed using Ingenuity Pathway Analysis. In the top cancer-associated category, HIF1A, IL8, TERT, ONECUT1, and FOXA1 directly interacted with either transcription factors or cytokines that are known to be involved in the tumorigenesis or metastasis of other malignant tumors. The present data suggest that cytokine regulatory pathways in macrophages predominate over other pathways during the pathogenesis of MM. This study provides new targets for the downstream mechanistic studies of the tumorigenesis and metastasis of MM and demonstrates a new strategy for studies of the progression of other malignant cancers.
Collapse
Affiliation(s)
- Hua Zhao
- Department of Dermatology, General Hospital of People's Liberation Army, Beijing 100853, China
| | - Yongjun Li
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
| | - Shaobin Wang
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
| | - Yadong Yang
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
| | - Junyun Wang
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
| | - Xiuyan Ruan
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
| | - Yaran Yang
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
| | - Kan Cai
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
| | - Bing Zhang
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
| | - Peng Cui
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
| | - Jiangwei Yan
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
| | - Yongliang Zhao
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
| | - Edward K Wakeland
- Department of Immunology & Microarray Core Facility, The University of Texas Southwestern Medical Center at Dallas, Dallas, TX 75390, USA; CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
| | - Quanzhen Li
- Department of Immunology & Microarray Core Facility, The University of Texas Southwestern Medical Center at Dallas, Dallas, TX 75390, USA
| | - Songnian Hu
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China.
| | - Xiangdong Fang
- CAS Key Laboratory of Genome Sciences and Information, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China.
| |
Collapse
|
29
|
Anti-inflammatory macrophages activate invasion in pancreatic adenocarcinoma by increasing the MMP9 and ADAM8 expression. Med Oncol 2014; 31:884. [DOI: 10.1007/s12032-014-0884-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2013] [Accepted: 02/04/2014] [Indexed: 02/01/2023]
|
30
|
Winther M, Alsner J, Tramm T, Nordsmark M. Hypoxia-regulated gene expression and prognosis in loco-regional gastroesophageal cancer. Acta Oncol 2013; 52:1327-35. [PMID: 23957682 DOI: 10.3109/0284186x.2013.818247] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
UNLABELLED Gastroesophageal cancers are heterogeneous diseases with a poor outcome. Prognostic and predictive factors are needed to improve patient survival. Hypoxia is an adverse prognostic factor and is associated with resistance to chemo- and radiotherapy in various cancers. However, knowledge on the impact of hypoxia in gastroesophageal cancer is limited. The aim of this study was to evaluate potential prognostic factors in terms of a subset of hypoxia-responsive genes and clinicopathological parameters in patients with gastroesophageal cancer. MATERIAL AND METHODS Ninety-five patients with loco-regional gastroesophageal cancer treated with curative intent were retrospectively analyzed. Based on formalin-fixed paraffin-embedded diagnostic biopsies gene expressions of 15 hypoxia-induced and pH-independent genes from a previously described hypoxia gene expression classifier was quantified. The prognostic impact was evaluated for overall survival (OS) and disease-specific survival (DSS). Uni- and multivariate Cox proportional hazards model was used to identify hypoxia-responsive gene expression and clinicopathological parameters as prognostic markers. RESULTS An unsupervised hierarchical clustering of hypoxia regulated genes showed two well-differentiated patient clusters: One cluster of tumors with high gene expression and another with low gene expression, indicating a more hypoxic genotype versus a less hypoxic genotype respectively. As the group of esophageal squamous cell carcinomas (ESCC) alone showed intra-group heterogeneity this group was ranked according to the gene expression of the 15 genes. The most hypoxic third showed a trend towards a poorer outcome in terms of OS [HR = 0.48 (CI 0.21-1.07), p = 0.07] and DSS [HR = 0.48 (CI 0.18-1.24), p = 0.13]. Treatment response was identified as an independent prognostic factor for DSS in the group of ESCC [HR = 0.21 (CI 0.05-0.95), p = 0.04]. CONCLUSION Gene expression analysis of 15 hypoxia-responsive genes was identified as a promising prognostic marker in patients with ESCC. Further studies confirming these results in larger patient cohorts are needed.
Collapse
Affiliation(s)
- Mette Winther
- Department of Experimental Clinical Oncology, Aarhus University Hospital , Aarhus , Denmark
| | | | | | | |
Collapse
|