1
|
Horsman MR. Targeting the Tumor Vascular Supply to Enhance Radiation Therapy Administered in Single or Clinically Relevant Fractionated Schedules. Int J Mol Sci 2024; 25:8078. [PMID: 39125647 PMCID: PMC11311563 DOI: 10.3390/ijms25158078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 07/16/2024] [Accepted: 07/23/2024] [Indexed: 08/12/2024] Open
Abstract
This pre-clinical study was designed to demonstrate how vascular disrupting agents (VDAs) should be administered, either alone or when combined with radiation in clinically relevant fractionated radiation schedules, for the optimal anti-tumor effect. CDF1 mice, implanted in the right rear foot with a 200 mm3 murine C3H mammary carcinoma, were injected with various doses of the most potent VDA drug, combretastatin A-1 phosphate (CA1P), under different schedules. Tumors were also locally irradiated with single-dose, or stereotactic (3 × 5-20 Gy) or conventional (30 × 2 Gy) fractionation schedules. Tumor growth and control were the endpoints used. Untreated tumors had a tumor growth time (TGT5; time to grow to 5 times the original treatment volume) of around 6 days. This increased with increasing drug doses (5-100 mg/kg). However, with single-drug treatments, the maximum TGT5 was only 10 days, yet this increased to 19 days when injecting the drug on a weekly basis or as three treatments in one week. CA1P enhanced radiation response regardless of the schedule or interval between the VDA and radiation. There was a dose-dependent increase in radiation response when the combined with a single, stereotactic, or conventional fractionated irradiation, but these enhancements plateaued at around a drug dose of 25 mg/kg. This pre-clinical study demonstrated how VDAs should be combined with clinically applicable fractionated radiation schedules for the optimal anti-tumor effect, thus suggesting the necessary pre-clinical testing required to ultimately establish VDAs in clinical practice.
Collapse
Affiliation(s)
- Michael R Horsman
- Experimental Clinical Oncology-Department of Oncology, Aarhus University Hospital, DK-8200 Aarhus, Denmark
| |
Collapse
|
2
|
Nielsen S, Sitarz MK, Sinha PM, Folefac CA, Høyer M, Sørensen BS, Horsman MR. Using immunotherapy to enhance the response of a C3H mammary carcinoma to proton radiation. Acta Oncol 2023; 62:1581-1586. [PMID: 37498559 DOI: 10.1080/0284186x.2023.2238550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 06/28/2023] [Indexed: 07/28/2023]
Abstract
BACKGROUND The benefit of combining immunotherapy with photon irradiation has been shown pre-clinically and clinically. This current pre-clinical study was designed to investigate the anti-tumour action of combining immunotherapy with protons. MATERIALS AND METHODS Male CDF1 mice, with a C3H mammary carcinoma inoculated on the right rear foot, were locally irradiated with single radiation doses when tumours reached 200mm3. Radiation was delivered with an 83-107MeV pencil scanning proton beam in the centre of a 3 cm spread out Bragg peak. Following irradiation (day 0), mice were injected intraperitoneal with anti-CTLA-4, anti-PD-1, or anti-PD-L1 (10 mg/kg) twice weekly for two weeks. Endpoints were tumour growth time (TGT3; time to reach 3 times treatment volume) or local tumour control (percent of mice showing tumour control at 90 days). A Student's T-test (tumour growth) or Chi-squared test (tumour control) were used for statistical analysis; significance levels of p < 0.05. RESULTS Untreated tumours had a mean (± 1 S.E.) TGT3 of 4.6 days (± 0.4). None of the checkpoint inhibitors changed this TGT3. A linear increase in TGT3 was seen with increasing radiation doses (5-20 Gy), reaching 17.2 days (± 0.7) with 20 Gy. Anti-CTLA-4 had no effect on radiation doses up to 15 Gy, but significantly enhanced 20 Gy; the TGT3 being 23.0 days (± 1.3). Higher radiation doses (35-60 Gy) were investigated using a tumour control assay. Logit analysis of the dose response curve, resulted in a TCD50 value (radiation dose causing 50% tumour control; with 95% confidence intervals) of 48 Gy (44-53) for radiation only. This significantly decreased to 43 Gy (38-49) when mice were treated with anti-CTLA-4. Neither anti-PD-1 nor anti-PD-L1 significantly affected tumour control. CONCLUSION Checkpoint inhibitors enhanced the response of this C3H mammary carcinoma to proton irradiation. However, this enhancement depended on the checkpoint inhibitor and radiation dose.
Collapse
Affiliation(s)
- Steffen Nielsen
- Experimental Clinical Oncology-Dept. Oncology, Aarhus University Hospital, Aarhus, Denmark
| | - Mateusz K Sitarz
- Danish Centre for Particle Therapy, Aarhus University Hospital, Aarhus, Denmark
| | - Priyanshu M Sinha
- Experimental Clinical Oncology-Dept. Oncology, Aarhus University Hospital, Aarhus, Denmark
| | - Charlemagne A Folefac
- Experimental Clinical Oncology-Dept. Oncology, Aarhus University Hospital, Aarhus, Denmark
| | - Morten Høyer
- Danish Centre for Particle Therapy, Aarhus University Hospital, Aarhus, Denmark
| | - Brita S Sørensen
- Experimental Clinical Oncology-Dept. Oncology, Aarhus University Hospital, Aarhus, Denmark
- Danish Centre for Particle Therapy, Aarhus University Hospital, Aarhus, Denmark
| | - Michael R Horsman
- Experimental Clinical Oncology-Dept. Oncology, Aarhus University Hospital, Aarhus, Denmark
| |
Collapse
|
3
|
Therapeutic Modification of Hypoxia. Clin Oncol (R Coll Radiol) 2021; 33:e492-e509. [PMID: 34535359 DOI: 10.1016/j.clon.2021.08.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 08/04/2021] [Accepted: 08/27/2021] [Indexed: 12/30/2022]
Abstract
Regions of reduced oxygenation (hypoxia) are a characteristic feature of virtually all animal and human solid tumours. Numerous preclinical studies, both in vitro and in vivo, have shown that decreasing oxygen concentration induces resistance to radiation. Importantly, hypoxia in human tumours is a negative indicator of radiotherapy outcome. Hypoxia also contributes to resistance to other cancer therapeutics, including immunotherapy, and increases malignant progression as well as cancer cell dissemination. Consequently, substantial effort has been made to detect hypoxia in human tumours and identify realistic approaches to overcome hypoxia and improve cancer therapy outcomes. Hypoxia-targeting strategies include improving oxygen availability, sensitising hypoxic cells to radiation, preferentially killing these cells, locating the hypoxic regions in tumours and increasing the radiation dose to those areas, or applying high energy transfer radiation, which is less affected by hypoxia. Despite numerous clinical studies with each of these hypoxia-modifying approaches, many of which improved both local tumour control and overall survival, hypoxic modification has not been established in routine clinical practice. Here we review the background and significance of hypoxia, how it can be imaged clinically and focus on the various hypoxia-modifying techniques that have undergone, or are currently in, clinical evaluation.
Collapse
|
4
|
Elming PB, Sørensen BS, Spejlborg H, Overgaard J, Horsman MR. Does the combination of hyperthermia with low LET (linear energy transfer) radiation induce anti-tumor effects equivalent to those seen with high LET radiation alone? Int J Hyperthermia 2021; 38:105-110. [PMID: 33530766 DOI: 10.1080/02656736.2021.1876929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Abstract
INTRODUCTION The combination of hyperthermia with low LET (linear energy transfer) radiation may have similar anti-tumor effects as high LET radiation alone. This pre-clinical study determined the optimal heating temperature and time interval between radiation and heat to achieve this equivalent effect. METHODS C3H mammary carcinomas (200 mm3 in size) growing in the right rear foot of CDF1 mice was used in all experiments. Tumors were locally irradiated with graded doses of either 240 kV ortho- or 6 MV mega-voltage X-rays to produce full dose-response curves. Heating (41.0-43.5 °C; 60 min) was achieved by immersing the tumor bearing foot in a water-bath applied at the same time, or up to 4-hours after, irradiating. The endpoint was the percentage of mice showing local tumor control at 90 days, with enhancements calculated from the ratios of the radiation doses causing 50% tumor control (± 95% confidence intervals). RESULTS Previous published results in this tumor model reported that carbon ions were 1.3-1.7 times more effective than low LET radiation at inducing tumor control. Similar enhancements occurred with a temperature of only 41.0 °C with a simultaneous heat and radiation treatment. However, higher temperatures were needed with the introduction of any interval; at 42.5 °C, the enhancement was 2.5 with a simultaneous treatment, decreasing to a value within the carbon ion range with a 4-hour interval. CONCLUSIONS Combining hyperthermia with low LET radiation can be as effective as high LET at inducing tumor control, but the temperature needed depended on the time interval between the two modalities.
Collapse
Affiliation(s)
- Pernille B Elming
- Experimental Clinical Oncology - Department of Oncology, Aarhus University Hospital, Aarhus, Denmark
| | - Brita S Sørensen
- Experimental Clinical Oncology - Department of Oncology, Aarhus University Hospital, Aarhus, Denmark
| | - Harald Spejlborg
- Experimental Clinical Oncology - Department of Oncology, Aarhus University Hospital, Aarhus, Denmark
| | - Jens Overgaard
- Experimental Clinical Oncology - Department of Oncology, Aarhus University Hospital, Aarhus, Denmark
| | - Michael R Horsman
- Experimental Clinical Oncology - Department of Oncology, Aarhus University Hospital, Aarhus, Denmark
| |
Collapse
|
5
|
Kim MY, Shin JY, Kim JO, Son KH, Kim YS, Jung CK, Kang JH. Anti-tumor efficacy of CKD-516 in combination with radiation in xenograft mouse model of lung squamous cell carcinoma. BMC Cancer 2020; 20:1057. [PMID: 33143663 PMCID: PMC7607852 DOI: 10.1186/s12885-020-07566-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Accepted: 10/26/2020] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Hypoxic tumors are known to be highly resistant to radiotherapy and cause poor prognosis in non-small cell lung cancer (NSCLC) patients. CKD-516, a novel vascular disrupting agent (VDA), mainly affects blood vessels in the central area of the tumor and blocks tubulin polymerization, thereby destroying the aberrant tumor vasculature with a rapid decrease in blood, resulting in rapid tumor cell death. Therefore, we evaluated the anti-tumor efficacy of CKD-516 in combination with irradiation (IR) and examined tumor necrosis, delayed tumor growth, and expression of proteins involved in hypoxia and angiogenesis in this study. METHODS A xenograft mouse model of lung squamous cell carcinoma was established, and the tumor was exposed to IR 5 days per week. CKD-516 was administered with two treatment schedules (day 1 or days 1 and 5) 1 h after IR. After treatment, tumor tissues were stained with hematoxylin and eosin, and pimonidazole. HIF-1α, Glut-1, VEGF, CD31, and Ki-67 expression levels were evaluated using immunohistochemical staining. RESULTS Short-term treatment with IR alone and CKD-516 + IR (d1) significantly reduced tumor volume (p = 0.006 and p = 0.048, respectively). Treatment with CKD-516 + IR (d1 and d1, 5) resulted in a marked reduction in the number of blood vessels (p < 0.005). More specifically, CKD-516 + IR (d1) caused the most extensive tumor necrosis, which resulted in a significantly large hypoxic area (p = 0.02) and decreased HIF-1α, Glut-1, VEGF, and Ki-67 expression. Long-term administration of CKD-516 + IR reduced tumor volume and delayed tumor growth. This combination also greatly reduced the number of blood vessels (p = 0.0006) and significantly enhanced tumor necrosis (p = 0.004). CKD-516 + IR significantly increased HIF-1α expression (p = 0.0047), but significantly reduced VEGF expression (p = 0.0046). CONCLUSIONS Taken together, our data show that when used in combination, CKD-516 and IR can significantly enhance anti-tumor efficacy compared to monotherapy in lung cancer xenograft mice.
Collapse
Affiliation(s)
- Min-Young Kim
- Laboratory of Medical Oncology, Cancer Research Institute, The Catholic University of Korea, Seoul, Republic of Korea
- Department of Biomedicine & Health Sciences, The Catholic University of Korea, Seoul, Republic of Korea
| | - Jung-Young Shin
- Laboratory of Medical Oncology, Cancer Research Institute, The Catholic University of Korea, Seoul, Republic of Korea
| | - Jeong-Oh Kim
- Laboratory of Medical Oncology, Cancer Research Institute, The Catholic University of Korea, Seoul, Republic of Korea
| | - Kyoung-Hwa Son
- Laboratory of Medical Oncology, Cancer Research Institute, The Catholic University of Korea, Seoul, Republic of Korea
- Department of Biomedicine & Health Sciences, The Catholic University of Korea, Seoul, Republic of Korea
| | - Yeon Sil Kim
- Department of Radiation Oncology, Seoul St. Mary’s Hospital, The Catholic University of Korea, Seoul, Republic of Korea
| | - Chan Kwon Jung
- Department of Pathology, Seoul St. Mary’s Hospital, The Catholic University of Korea, Seoul, Republic of Korea
| | - Jin-Hyoung Kang
- Laboratory of Medical Oncology, Cancer Research Institute, The Catholic University of Korea, Seoul, Republic of Korea
- Department of Biomedicine & Health Sciences, The Catholic University of Korea, Seoul, Republic of Korea
- Department of Medical Oncology, Seoul St. Mary’s Hospital, The Catholic University of Korea, 222, Banpo-daero, Seocho-gu, Seoul, 06591 Republic of Korea
| |
Collapse
|
6
|
Horsman MR, Wittenborn TR, Nielsen PS, Elming PB. Tumors Resistant to Checkpoint Inhibitors Can Become Sensitive after Treatment with Vascular Disrupting Agents. Int J Mol Sci 2020; 21:ijms21134778. [PMID: 32640548 PMCID: PMC7370297 DOI: 10.3390/ijms21134778] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 06/29/2020] [Accepted: 07/03/2020] [Indexed: 12/17/2022] Open
Abstract
Immune therapy improves cancer outcomes, yet many patients do not respond. This pre-clinical study investigated whether vascular disrupting agents (VDAs) could convert an immune unresponsive tumor into a responder. CDF1 mice, with 200 mm3 C3H mammary carcinomas in the right rear foot, were intraperitoneally injected with combretastatin A-4 phosphate (CA4P), its A-1 analogue OXi4503, and/or checkpoint inhibitors (anti-PD-1, PD-L1, or CTLA-4 antibodies), administered twice weekly for two weeks. Using the endpoint of tumor growth time (TGT5; time to reach five times the starting volume), we found that none of the checkpoint inhibitors (10 mg/kg) had any effect on TGT5 compared to untreated controls. However, CA4P (100 mg/kg) or OXi4503 (5–50 mg/kg) did significantly increase TGT5. This further significantly increased by combining the VDAs with checkpoint inhibitors, but was dependent on the VDA, drug dose, and inhibitor. For CA4P, a significant increase was found when CA4P (100 mg/kg) was combined with anti-PD-L1, but not with the other two checkpoint inhibitors. With OXi4503 (50 mg/kg), a significant enhancement occurred when combined with anti-PD-L1 or anti-CTLA-4, but not anti-PD-1. We observed no significant improvement with lower OXi4503 doses (5–25 mg/kg) and anti-CTLA-4, although 30% of tumors were controlled at the 25 mg/kg dose. Histological assessment of CD4/CD8 expression actually showed decreased levels up to 10 days after treatment with OXi4503 (50 mg/kg). Thus, the non-immunogenic C3H mammary carcinoma was unresponsive to checkpoint inhibitors, but became responsive in mice treated with VDAs, although the mechanism remains unclear.
Collapse
Affiliation(s)
- Michael R. Horsman
- Experimental Clinical Oncology-Department of Oncology, Aarhus University Hospital, DK-8200 Aarhus, Denmark; (T.R.W.); (P.B.E.)
- Correspondence: ; Tel.: +45-78454973
| | - Thomas R. Wittenborn
- Experimental Clinical Oncology-Department of Oncology, Aarhus University Hospital, DK-8200 Aarhus, Denmark; (T.R.W.); (P.B.E.)
| | - Patricia S. Nielsen
- Department of Pathology, Aarhus University Hospital, DK-8200 Aarhus, Denmark;
| | - Pernille B. Elming
- Experimental Clinical Oncology-Department of Oncology, Aarhus University Hospital, DK-8200 Aarhus, Denmark; (T.R.W.); (P.B.E.)
| |
Collapse
|
7
|
Yu H, Shen N, Bao Y, Chen L, Tang Z. Tumor regression and potentiation of polymeric vascular disrupting therapy through reprogramming of a hypoxia microenvironment with temsirolimus. Biomater Sci 2020; 8:325-332. [DOI: 10.1039/c9bm01398a] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
To relieve a tumor hypoxia microenvironment, the mTOR inhibitor temsirolimus was employed to modulate the tumor microenvironment when treated with CA4-NPs.
Collapse
Affiliation(s)
- Haiyang Yu
- Department of Chemistry
- Northeast Normal University
- Changchun 130024
- People's Republic of China
- Key Laboratory of Polymer Ecomaterials
| | - Na Shen
- Key Laboratory of Polymer Ecomaterials
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun 130022
- People's Republic of China
| | - Yanli Bao
- Department of Chemistry
- Northeast Normal University
- Changchun 130024
- People's Republic of China
| | - Li Chen
- Department of Chemistry
- Northeast Normal University
- Changchun 130024
- People's Republic of China
| | - Zhaohui Tang
- Key Laboratory of Polymer Ecomaterials
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun 130022
- People's Republic of China
| |
Collapse
|
8
|
Qin H, Yu H, Sheng J, Zhang D, Shen N, Liu L, Tang Z, Chen X. PI3Kgamma Inhibitor Attenuates Immunosuppressive Effect of Poly(l-Glutamic Acid)-Combretastatin A4 Conjugate in Metastatic Breast Cancer. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2019; 6:1900327. [PMID: 31380170 PMCID: PMC6662090 DOI: 10.1002/advs.201900327] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 03/26/2019] [Indexed: 05/16/2023]
Abstract
Vascular disrupting agents (VDAs) have great potential for cancer treatment. Poly(l-glutamic acid)-combretastatin A4 conjugate (PLG-CA4) is a novel class of VDAs. Though it has notable antitumor activity, it can induce host immune responses that promote tumor growth. Here, PLG-CA4 induces the polarization of tumor-associated macrophages (TAMs) toward the M2-like phenotype in 4T1 metastatic breast cancer (Control 30% vs PLG-CA4 53%; p < 0.05). Compared to the monotherapy of PLG-CA4, inhibition of phosphoinositide 3-kinase gamma (PI3Kγ) attenuates the immunosuppressive effect of PLG-CA4 treatment by decreasing the number of M2-like TAMs (2.0 × 104 to 1.5 × 104 per tumor) and potential enhancement of cytotoxic T lymphocyte (3.0 × 104 to 5.7 × 104 per tumor). Importantly, PI3Kγ inhibitor synergizing with PLG-CA4 significantly extends the mean survival time from 52 days in monotherapy-treated mice to 61.8 days. Additionally, the combination of PLG-CA4 and PI3Kγ inhibitor improves the tumor therapeutic effect of NLG919, an inhibitor of immune checkpoint indoleamine 2,3-dioxygenase (IDO). As far as it is known, this is the first demonstrated study that VDAs induce the reshaping of macrophages to the M2-like phenotype. The findings also indicate a potential therapeutic strategy of the combination VDAs with an accurate immune modifier in the tumor to reverse the immune resistance.
Collapse
Affiliation(s)
- Hanjiao Qin
- Department of Radiotherapythe Second Hospital of Jilin UniversityChangchun130041P. R. China
| | - Haiyang Yu
- Key Laboratory of Polymer EcomaterialsChangchun Institute of Applied ChemistryChinese Academy of SciencesChangchun130022P. R. China
- Jilin Biomedical Polymers Engineering LaboratoryChangchun130022P. R. China
| | - Jiyao Sheng
- Department of Hepatobiliary and Pancreatic Surgerythe Second Hospital of Jilin UniversityChangchun130041P. R. China
| | - Dawei Zhang
- Key Laboratory of Polymer EcomaterialsChangchun Institute of Applied ChemistryChinese Academy of SciencesChangchun130022P. R. China
| | - Na Shen
- Key Laboratory of Polymer EcomaterialsChangchun Institute of Applied ChemistryChinese Academy of SciencesChangchun130022P. R. China
- Jilin Biomedical Polymers Engineering LaboratoryChangchun130022P. R. China
| | - Linlin Liu
- Department of Radiotherapythe Second Hospital of Jilin UniversityChangchun130041P. R. China
| | - Zhaohui Tang
- Key Laboratory of Polymer EcomaterialsChangchun Institute of Applied ChemistryChinese Academy of SciencesChangchun130022P. R. China
- Jilin Biomedical Polymers Engineering LaboratoryChangchun130022P. R. China
| | - Xuesi Chen
- Key Laboratory of Polymer EcomaterialsChangchun Institute of Applied ChemistryChinese Academy of SciencesChangchun130022P. R. China
- Jilin Biomedical Polymers Engineering LaboratoryChangchun130022P. R. China
| |
Collapse
|
9
|
Lønbro S, Wiggins JM, Wittenborn T, Elming PB, Rice L, Pampo C, Lee JA, Siemann DW, Horsman MR. Reliability of blood lactate as a measure of exercise intensity in different strains of mice during forced treadmill running. PLoS One 2019; 14:e0215584. [PMID: 31050686 PMCID: PMC6499470 DOI: 10.1371/journal.pone.0215584] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Accepted: 04/04/2019] [Indexed: 12/21/2022] Open
Abstract
Exercise has long been known to be beneficial to human health. Studies aimed at understanding the effects of exercise specifically focus on predetermined exercise intensities defined by measuring the aerobic capacity of each individual. Many disease models involving animal training often establish aerobic capacity by using the maximal lactate steady state (MLSS), a widely used method in humans that has frequently been used in rodent studies. The MLSS is defined as the highest exercise intensity at which blood lactate concentration remains constant and is roughly equivalent to 70–80% of maximal aerobic capacity. Due to our up-coming experiments investigating the effect of different exercise intensities in specific strains of tumor-bearing mice, the aim of the present study was to determine the MLSS in athymic nude (NCr nu/nu and NMRI), CDF1, and C3H mice by treadmill running at increasing speeds. However, despite thorough exercise acclimation and the use of different exercise protocols and aversive stimuli, less than half of the experiments across strains pointed towards an established MLSS. Moreover, gently prodding the mice during low to moderate intensity running caused a 30–121% (p<0.05) increase in blood lactate concentration compared to running without stimulation, further questioning the use of lactate as a measure of exercise intensity. Overall, MLSS is difficult to determine and large variations of blood lactate levels were observed depending on the exercise protocol, mice handling strategy and strain. This should be considered when planning experiments in mice using forced exercise protocols.
Collapse
Affiliation(s)
- Simon Lønbro
- Dept. of Experimental Clinical Oncology, Aarhus University Hospital, Aarhus, Denmark
- Dept. of Public Health, Section for Sports Science, Aarhus University, Aarhus, Denmark
- * E-mail:
| | - Jennifer M. Wiggins
- Dept. of Radiation Oncology, College of Medicine, University of Florida, Gainesville, FL, United States of America
| | - Thomas Wittenborn
- Dept. of Experimental Clinical Oncology, Aarhus University Hospital, Aarhus, Denmark
| | | | - Lori Rice
- Dept. of Radiation Oncology, College of Medicine, University of Florida, Gainesville, FL, United States of America
| | - Christine Pampo
- Dept. of Radiation Oncology, College of Medicine, University of Florida, Gainesville, FL, United States of America
| | - Jennifer A. Lee
- Dept. of Radiation Oncology, College of Medicine, University of Florida, Gainesville, FL, United States of America
| | - Dietmar W. Siemann
- Dept. of Radiation Oncology, College of Medicine, University of Florida, Gainesville, FL, United States of America
| | - Michael R. Horsman
- Dept. of Experimental Clinical Oncology, Aarhus University Hospital, Aarhus, Denmark
| |
Collapse
|
10
|
How to Modulate Tumor Hypoxia for Preclinical In Vivo Imaging Research. CONTRAST MEDIA & MOLECULAR IMAGING 2018; 2018:4608186. [PMID: 30420794 PMCID: PMC6211155 DOI: 10.1155/2018/4608186] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Revised: 07/24/2018] [Accepted: 08/13/2018] [Indexed: 01/20/2023]
Abstract
Tumor hypoxia is related with tumor aggressiveness, chemo- and radiotherapy resistance, and thus a poor clinical outcome. Therefore, over the past decades, every effort has been made to develop strategies to battle the negative prognostic influence of tumor hypoxia. For appropriate patient selection and follow-up, noninvasive imaging biomarkers such as positron emission tomography (PET) radiolabeled ligands are unprecedentedly needed. Importantly, before being able to implement these new therapies and potential biomarkers into the clinical setting, preclinical in vivo validation in adequate animal models is indispensable. In this review, we provide an overview of the different attempts that have been made to create differential hypoxic in vivo cancer models with a particular focus on their applicability in PET imaging studies.
Collapse
|
11
|
Daei Farshchi Adli A, Jahanban-Esfahlan R, Seidi K, Samandari-Rad S, Zarghami N. An overview on Vadimezan (DMXAA): The vascular disrupting agent. Chem Biol Drug Des 2018; 91:996-1006. [DOI: 10.1111/cbdd.13166] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2017] [Revised: 11/29/2017] [Accepted: 12/17/2017] [Indexed: 01/02/2023]
Affiliation(s)
- Amir Daei Farshchi Adli
- Department of Medical Biotechnology; Faculty of Advanced Medical Sciences; Tabriz University of Medical Sciences; Tabriz Iran
| | - Rana Jahanban-Esfahlan
- Department of Medical Biotechnology; Faculty of Advanced Medical Sciences; Tabriz University of Medical Sciences; Tabriz Iran
- Student Research Committee; Tabriz University of Medical Sciences; Tabriz Iran
| | - Khaled Seidi
- Department of Medical Biotechnology; Faculty of Advanced Medical Sciences; Tabriz University of Medical Sciences; Tabriz Iran
| | - Sonia Samandari-Rad
- Faculty of Medicine; Physiology Research Center; Tehran University of Medical Sciences; Tehran Iran
- Department of Physiology; Faculty of Medicine; Tehran University of Medical Sciences; Tehran Iran
| | - Nosratollah Zarghami
- Department of Medical Biotechnology; Faculty of Advanced Medical Sciences; Tabriz University of Medical Sciences; Tabriz Iran
- Department of Clinical Biochemistry and Laboratory Medicine; Faculty of Medicine; Tabriz University of Medical Sciences; Tabriz Iran
- Iranian National Science Foundation; Tehran Iran
| |
Collapse
|
12
|
Horsman MR. Enhancing the radiation response of tumors but not early or late responding normal tissues using a vascular disrupting agent. Acta Oncol 2017; 56:1634-1638. [PMID: 28838284 DOI: 10.1080/0284186x.2017.1348629] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
INTRODUCTION Vascular disrupting agents (VDAs) damage tumor vasculature and enhance tumor radiation response. In this pre-clinical study, we combined radiation with the leading VDA in clinical development, combretastatin A-4 phosphate (CA4P), and compared the effects seen in tumors and relevant normal tissues. MATERIAL AND METHODS Radiation was applied locally to tissues in CDF1 mice to produce full radiation dose-response curves. CA4P (250 mg/kg) was intraperitoneally (i.p.) injected within 30 minutes after irradiating. Response of 200 mm3 foot implanted C3H mammary carcinomas was assessed using percent tumor control at 90 days. Normal tissue effects were evaluated using early responding skin (development of moist desquamation in the foot at 11-30 days), and late responding bladder (50% reduction in reservoir function estimated by cystometry up to 9 months after treatment), and lung (20% increase in ventilation rate measured by plethysmography within 9 months). A Chi-squared test was used for statistical comparisons (significance level of p < .05). RESULTS The radiation dose controlling 50% of irradiated tumors was 52 Gy. This significantly decreased to 45 Gy with CA4P. The radiation doses inducing a change in skin, bladder and lung response in 50% of mice were 31 Gy, 14 Gy and 12 Gy, respectively. CA4P had no significant effect on the radiation response of any of these normal tissues. CONCLUSIONS VDAs significantly enhance tumor radiation response, but had absolutely no effect on the radiation response of early or late responding normal tissues.
Collapse
Affiliation(s)
- Michael R. Horsman
- Department of Experimental Clinical Oncology, Aarhus University Hospital, Aarhus, Denmark
| |
Collapse
|
13
|
Iversen AB, Busk M, Bertelsen LB, Laustsen C, Munk OL, Nielsen T, Wittenborn TR, Bussink J, Lok J, Stødkilde-Jørgensen H, Horsman MR. The potential of hyperpolarized 13C magnetic resonance spectroscopy to monitor the effect of combretastatin based vascular disrupting agents. Acta Oncol 2017; 56:1626-1633. [PMID: 28840759 DOI: 10.1080/0284186x.2017.1351622] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
BACKGROUND Targeting tumor vasculature with vascular disrupting agents (VDAs) results in substantial cell death that precede tumor shrinkage. Here, we investigate the potential of hyperpolarized magnetic resonance spectroscopy (HPMRS) to monitor early metabolic changes associated with VDA treatment. METHODS Mice bearing C3H mammary carcinomas were treated with the VDAs combretastatin-A4-phosphate (CA4P) or the analog OXi4503, and HPMRS was performed following [1-13C]pyruvate administration. Similarly, treated mice were positron emission tomography (PET) scanned following administration of the glucose analog FDG. Finally, metabolic imaging parameters were compared to tumor regrowth delay and measures of vascular damage, derived from dynamic contrast-agent enhanced magnetic resonance imaging (DCE-MRI) and histology. RESULTS VDA-treatment impaired tumor perfusion (histology and DCE-MRI), reduced FDG uptake, increased necrosis, and slowed tumor growth. HPMRS, revealed that the [1-13C]pyruvate-to-[1-13C]lactate conversion remained unaltered, whereas [1-13C]lactate-to-[13C]bicarbonate (originating from respiratory CO2) ratios increased significantly following treatment. CONCLUSIONS DCE-MRI and FDG-PET revealed loss of vessel functionality, impaired glucose delivery and reduced metabolic activity prior to cell death. [1-13C]lactate-to-[13C]bicarbonate ratios increased significantly during treatment, indicating a decline in respiratory activity driven by the onset of hypoxia. HPMRS is promising for early detection of metabolic stress inflicted by VDAs, which cannot easily be inferred based on blood flow measurements.
Collapse
Affiliation(s)
- Ane B. Iversen
- Department of Experimental Clinical Oncology, Aarhus University Hospital, Aarhus, Denmark
| | - Morten Busk
- Department of Experimental Clinical Oncology, Aarhus University Hospital, Aarhus, Denmark
| | | | | | - Ole L. Munk
- PET Centre, Aarhus University Hospital, Aarhus, Denmark
| | - Thomas Nielsen
- Center of Functionally Integrative Neuroscience, Aarhus University Hospital, Aarhus, Denmark
| | - Thomas R. Wittenborn
- Department of Experimental Clinical Oncology, Aarhus University Hospital, Aarhus, Denmark
| | - Johan Bussink
- Department of Radiation Oncology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Jasper Lok
- Department of Radiation Oncology, Radboud University Medical Center, Nijmegen, The Netherlands
| | | | - Michael R. Horsman
- Department of Experimental Clinical Oncology, Aarhus University Hospital, Aarhus, Denmark
| |
Collapse
|
14
|
Jiang PS, Tsai HY, Drake P, Wang FN, Chiang CS. Gadolinium-doped iron oxide nanoparticles induced magnetic field hyperthermia combined with radiotherapy increases tumour response by vascular disruption and improved oxygenation. Int J Hyperthermia 2017; 33:770-778. [PMID: 28540811 DOI: 10.1080/02656736.2017.1308019] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Abstract
The gadolinium-doped iron oxide nanoparticles (GdIONP) with greater specific power adsorption rate (SAR) than Fe3O4 was developed and its potential application in tumour therapy and particle tracking were demonstrated in transgenic adenocarcinoma of the mouse prostate C1 (TRAMP-C1) tumours. The GdIONPs accumulated in tumour region during the treatment could be clearly tracked and quantified by T2-weighted MR imaging. The therapeutic effects of GdIONP-mediated hyperthermia alone or in combination with radiotherapy (RT) were also evaluated. A significant increase in the tumour growth time was observed following the treatment of thermotherapy (TT) only group (2.5 days), radiation therapy only group (4.5 days), and the combined radio-thermotherapy group (10 days). Immunohistochemical staining revealed a reduced hypoxia region with vascular disruption and extensive tumour necrosis following the combined radio-thermotherapy. These results indicate that GdIONP-mediated hyperthermia can improve the efficacy of RT by its dual functions in high temperature (temperature greater than 45 °C)-mediated thermal ablation and mild-temperature hyperthermia (MTH) (temperature between 39 and 42 °C)-mediated reoxygenation.
Collapse
Affiliation(s)
- Pei-Shin Jiang
- a Department of Biomedical Engineering and Environmental Sciences , National Tsing Hua University , Hsinchu , Taiwan.,b Biomedical Technology and Device Research Laboratories, Industrial Technology Research Institute , Hsinchu , Taiwan
| | - Hsin-Yu Tsai
- a Department of Biomedical Engineering and Environmental Sciences , National Tsing Hua University , Hsinchu , Taiwan
| | - Philip Drake
- c Chemistry and Forensic Science, Faculty of Life Sciences, University of Bradford , Braford , UK
| | - Fu-Nien Wang
- a Department of Biomedical Engineering and Environmental Sciences , National Tsing Hua University , Hsinchu , Taiwan
| | - Chi-Shiun Chiang
- a Department of Biomedical Engineering and Environmental Sciences , National Tsing Hua University , Hsinchu , Taiwan
| |
Collapse
|
15
|
Abstract
Radiation therapy is the primary treatment in nasopharyngeal carcinoma (NPC), and the effect of radiation therapy is strongly related to the oxygen content of cancer cells. That means, it is imperative to balance the interactions between radiotherapy and anti-angiogenesis therapy when giving combination therapy to improve clinical outcomes. The complicated mechanisms between antiangiogenic agents and radiation involve many interactions between the cancer cells, vasculature, and cancer stroma. The proliferation and metastasis of cancer depends on angiogenesis, while rapid growth of cancers will cause hypoxia, which contributes to radioresistance. Antiangiogenic agents can modulate the cancer blood flow and oxygenation through target cancer vasculature, leading to increased radiosensitivity. This study discusses the mechanisms of the synergistic effect of the antiangiogenic therapy with radiation therapy in metastatic NPC, and reviews the data supporting this strategy as a promising treatment for metastatic NPC.
Collapse
Affiliation(s)
- Zhuo Chen
- Department of Oncology, The First College of Clinical Medical Science, China Three Gorges University & Yichang Central People's Hospital, Yichang, China. E-mail.
| | | |
Collapse
|
16
|
Horsman MR, Overgaard J. The impact of hypoxia and its modification of the outcome of radiotherapy. JOURNAL OF RADIATION RESEARCH 2016; 57 Suppl 1:i90-i98. [PMID: 26983987 PMCID: PMC4990104 DOI: 10.1093/jrr/rrw007] [Citation(s) in RCA: 214] [Impact Index Per Article: 26.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Revised: 12/14/2015] [Accepted: 01/01/2016] [Indexed: 05/21/2023]
Abstract
Since the initial observations made at the beginning of the last century, it has been established that solid tumors contain regions of low oxygenation (hypoxia). Tumor cells can survive in these hypoxic conditions and are a major factor in tumor radioresistance. This significance has resulted in hypoxia becoming the most cited biological topic in translational radiation oncology. Identifying hypoxic cells in human tumors has become paramount, and the ability to do this has been improved by the help of new imaging techniques and the use of predictive gene profiles. Substantial data confirm the presence of hypoxia in many types of human tumors, although with considerable heterogeneity among individual tumors. Various approaches have been investigated for eliminating the hypoxic population. These include increasing oxygen availability, directly radiosensitizing or killing the hypoxic cells, indirectly affecting them by targeting the tumor vascular supply, increasing the radiation dose to this resistant population, or by using radiation with a high linear energy transfer, for which hypoxia is believed to be less of an issue. Many of these approaches have undergone controlled clinical trials during the last 50 years, and the results have shown that hypoxic radiation resistance can indeed be overcome. Thus, ample data exists to support a high level of evidence for the benefit of hypoxic modification. However, such hypoxic modification still has no impact on general clinical practice. In this review we summarize the biological rationale, and the current activities and trials, related to identifying and overcoming hypoxia in modern radiotherapy.
Collapse
Affiliation(s)
- Michael R Horsman
- Department of Experimental Clinical Oncology, Aarhus University Hospital, Nørrebrogade 44, Building 5, DK-8000 Aarhus C, Denmark
| | - Jens Overgaard
- Department of Experimental Clinical Oncology, Aarhus University Hospital, Nørrebrogade 44, Building 5, DK-8000 Aarhus C, Denmark
| |
Collapse
|
17
|
Liang W, Ni Y, Chen F. Tumor resistance to vascular disrupting agents: mechanisms, imaging, and solutions. Oncotarget 2016; 7:15444-59. [PMID: 26812886 PMCID: PMC4941252 DOI: 10.18632/oncotarget.6999] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2015] [Accepted: 01/14/2016] [Indexed: 01/04/2023] Open
Abstract
The emergence of vascular disrupting agents (VDAs) is a significant advance in the treatment of solid tumors. VDAs induce rapid and selective shutdown of tumor blood flow resulting in massive necrosis. However, a viable marginal tumor rim always remains after VDA treatment and is a major cause of recurrence. In this review, we discuss the mechanisms involved in the resistance of solid tumors to VDAs. Hypoxia, tumor-associated macrophages, and bone marrow-derived circulating endothelial progenitor cells all may contribute to resistance. Resistance can be monitored using magnetic resonance imaging markers. The various solutions proposed to manage tumor resistance to VDAs emphasize combining these agents with other approaches including antiangiogenic agents, chemotherapy, radiotherapy, radioimmunotherapy, and sequential dual-targeting internal radiotherapy.
Collapse
Affiliation(s)
- Wenjie Liang
- Department of Radiology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yicheng Ni
- Radiology Section, University Hospitals, University of Leuven, Leuven, Belgium
| | - Feng Chen
- Department of Radiology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| |
Collapse
|
18
|
Horsman MR. Realistic biological approaches for improving thermoradiotherapy. Int J Hyperthermia 2015; 32:14-22. [DOI: 10.3109/02656736.2015.1099169] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
19
|
Grau C, Overgaard J, Høyer M, Tanderup K, Lindegaard JC, Muren LP. Biology-guided adaptive radiotherapy (BiGART) is progressing towards clinical reality. Acta Oncol 2015; 54:1245-50. [PMID: 26390238 DOI: 10.3109/0284186x.2015.1076992] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Cai Grau
- a Department of Oncology , Aarhus University Hospital , Aarhus , Denmark
| | - Jens Overgaard
- b Department of Experimental Clinical Oncology , Aarhus University Hospital , Aarhus , Denmark
| | - Morten Høyer
- a Department of Oncology , Aarhus University Hospital , Aarhus , Denmark
| | - Kari Tanderup
- a Department of Oncology , Aarhus University Hospital , Aarhus , Denmark
- c Department of Medical Physics , Aarhus University Hospital , Aarhus , Denmark
| | | | - Ludvig Paul Muren
- a Department of Oncology , Aarhus University Hospital , Aarhus , Denmark
- c Department of Medical Physics , Aarhus University Hospital , Aarhus , Denmark
| |
Collapse
|
20
|
Abstract
BACKGROUND Hypoxia is a characteristic feature of solid tumours that significantly reduces the efficacy of conventional radiation therapy. In this study we investigated the role of hypoxia in a stereotactic radiation schedule by using a variety of hypoxic modifiers in a preclinical tumour model. MATERIAL AND METHODS C3H mammary carcinomas were irradiated with 3 × 15 Gy during a one-week period, followed three days later by a clamped top-up dose to produce a dose response curve; the endpoint was tumour control. The hypoxic modifiers were nimorazole (200 mg/kg), nicotinamide (120 mg/kg) and carbogen (95% O2 + 5% CO2) breathing, OXi4503 (10 mg/kg), and hyperthermia (41.5°C; 1 h). RESULTS The radiation dose controlling 50% of clamped tumours (TCD50) following 3 × 15 Gy was 30 Gy. Giving nimorazole or nicotinamide+ carbogen prior to the final 15 Gy fraction non-significantly (χ(2)-test; p < 0.05) reduced this TCD50 to 20-23 Gy; when administered with each 3 × 15 Gy fraction these values were significantly reduced to ≤ 2.5 Gy. Injecting OXi4503 or heating after irradiating significantly reduced the TCD50 to 9-12 Gy regardless of whether administered with one or all three 15 Gy fractions. Combining OXi4503 and heat with the final 15 Gy had a significantly larger effect (TCD50 = 2 Gy). CONCLUSIONS Clinically relevant modifiers of hypoxia effectively enhanced an equivalent stereotactic radiation treatment confirming the importance of hypoxia in such schedules.
Collapse
Affiliation(s)
- Thomas R Wittenborn
- a Department of Experimental Clinical Oncology , Aarhus University Hospital , Aarhus , Denmark
| | - Michael R Horsman
- a Department of Experimental Clinical Oncology , Aarhus University Hospital , Aarhus , Denmark
| |
Collapse
|
21
|
Inglis DJ, Lavranos TC, Beaumont DM, Leske AF, Brown CK, Hall AJ, Kremmidiotis G. The vascular disrupting agent BNC105 potentiates the efficacy of VEGF and mTOR inhibitors in renal and breast cancer. Cancer Biol Ther 2015; 15:1552-60. [PMID: 25482941 DOI: 10.4161/15384047.2014.956605] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
BNC105 is a tubulin targeting compound that selectively disrupts vasculature within solid tumors. The severe tumor hypoxia and necrosis that ensues translates to short term tumor growth inhibition. We sought to identify the molecular and cellular events activated following BNC105 treatment that drives tumor recovery. We investigated tumor adaptation to BNC105-induced hypoxia in animal models of breast and renal cancer. HIF-1α and GLUT-1 were found to be strongly upregulated by BNC105 as was the VEGF signaling axis. Phosphorylation of mTOR, 4E-BP-1 and elF2α were upregulated, consistent with increased protein synthesis and increased expression of VEGF-A. We sought to investigate the potential therapeutic utility of combining BNC105 with agents targeting VEGF and mTOR signaling. Bevacizumab and pazopanib target the VEGF axis and have been approved for first line use in renal cancer. Everolimus targets mTOR and is currently approved in second line therapy of renal and particular breast cancers. We combined these agents with BNC105 to explore the effects on tumor vasculature, tumor growth inhibition and animal survival. Bevacizumab hindered tumor vascular recovery following BNC105 treatment leading to greater tumor growth inhibition in a breast cancer model. Consistent with this, addition of BNC105 to pazopanib treatment resulted in a significant increase in survival in an orthotopic renal cancer model. Combination treatment of BNC105 with everolimus also increased tumor growth inhibition. BNC105 is currently being evaluated in a randomized phase II clinical trial in combination with everolimus in renal cancer.
Collapse
Key Words
- 4EBP1, eukaryotic translation initiation factor 4E binding protein 1
- GLUT-1, glucose transporter 1
- H&E, hematoxylin and eosin.
- HIF1α, hypoxia-inducible factor 1-alpha
- IFNα, interferon α
- NSCLC, non-small-cell lung carcinoma
- PDGFR, platelet-derived growth factor receptor
- PERK, protein kinase-like endoplasmic reticulum kinase
- PFS, progression free survival
- TKI, tyrosine kinase inhibitor
- VDA, vascular disrupting agent
- VEGF
- VEGF, vascular endothelial growth factor
- breast
- eIF2a, eukaryotic translation initiation factor 2a
- hypoxia
- mTOR
- mTOR, mammalian target of rapamycin
- renal
Collapse
|
22
|
Siemann DW, Horsman MR. Modulation of the tumor vasculature and oxygenation to improve therapy. Pharmacol Ther 2015; 153:107-24. [PMID: 26073310 DOI: 10.1016/j.pharmthera.2015.06.006] [Citation(s) in RCA: 92] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Accepted: 06/03/2015] [Indexed: 12/12/2022]
Abstract
The tumor microenvironment is increasingly recognized as a major factor influencing the success of therapeutic treatments and has become a key focus for cancer research. The progressive growth of a tumor results in an inability of normal tissue blood vessels to oxygenate and provide sufficient nutritional support to tumor cells. As a consequence the expanding neoplastic cell population initiates its own vascular network which is both structurally and functionally abnormal. This aberrant vasculature impacts all aspects of the tumor microenvironment including the cells, extracellular matrix, and extracellular molecules which together are essential for the initiation, progression and spread of tumor cells. The physical conditions that arise are imposing and manifold, and include elevated interstitial pressure, localized extracellular acidity, and regions of oxygen and nutrient deprivation. No less important are the functional consequences experienced by the tumor cells residing in such environments: adaptation to hypoxia, cell quiescence, modulation of transporters and critical signaling molecules, immune escape, and enhanced metastatic potential. Together these factors lead to therapeutic barriers that create a significant hindrance to the control of cancers by conventional anticancer therapies. However, the aberrant nature of the tumor microenvironments also offers unique therapeutic opportunities. Particularly interventions that seek to improve tumor physiology and alleviate tumor hypoxia will selectively impair the neoplastic cell populations residing in these environments. Ultimately, by combining such therapeutic strategies with conventional anticancer treatments it may be possible to bring cancer growth, invasion, and metastasis to a halt.
Collapse
Affiliation(s)
- Dietmar W Siemann
- Department of Radiation Oncology, University of Florida Health Cancer Center, Gainesville, FL, USA.
| | - Michael R Horsman
- Department of Experimental Clinical Oncology, Aarhus University Hospital-NBG, Aarhus, Denmark
| |
Collapse
|
23
|
Horsman MR. Therapeutic potential of using the vascular disrupting agent OXi4503 to enhance mild temperature thermoradiation. Int J Hyperthermia 2015; 31:453-9. [PMID: 25915829 DOI: 10.3109/02656736.2015.1024289] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
PURPOSE The response of tissues to radiation with mild temperature hyperthermia is dependent on the interval between the two modalities. This study investigated the effect that the vascular disrupting agent OXi4503 had on this time-interval interaction. METHODS The normal right rear foot of female CDF1 mice or foot-implanted C3H mammary carcinomas were locally irradiated (230 kV X-rays) and heated (41.5 °C for 60 min) by foot immersion in a water bath. OXi4503 (50 mg/kg) was injected intraperitoneally 1.5 h before irradiating. Irradiation was performed either in the middle of the heating period (simultaneous treatment) or at 1 or 4 h prior to starting the heating (sequential treatments). Response was the percentage of mice showing local tumour control at 90 days or skin moist desquamation between days 11-23. From the radiation dose response curves the dose producing tumour control (TCD(50)) or moist desquamation (MDD50) in 50% of mice was calculated. RESULTS The TCD(50) and MDD50 values for radiation alone were 54 Gy and 29 Gy, respectively. Simultaneously heating the tissues enhanced radiation response, the respective TCD(50) and MDD50 values being significantly (chi-square test, p < 0.05) reduced to 33 Gy and 14 Gy. A smaller enhancement was obtained with a sequential treatment in both tissues. OXi4503 enhanced the radiation response of tumour and skin. Combined with radiation and heat, the only effect was in tumours where OXi4503 prevented the decrease in sensitisation seen with the sequential treatment. CONCLUSION Combining OXi4503 with a sequential radiation and heat treatment resulted in a 1.4-fold therapeutic gain.
Collapse
Affiliation(s)
- Michael R Horsman
- Department of Experimental Clinical Oncology, Aarhus University Hospital , Aarhus , Denmark
| |
Collapse
|
24
|
Colliez F, Fruytier AC, Magat J, Neveu MA, Cani PD, Gallez B, Jordan BF. Monitoring Combretastatin A4-induced tumor hypoxia and hemodynamic changes using endogenous MR contrast and DCE-MRI. Magn Reson Med 2015; 75:866-72. [PMID: 25765253 DOI: 10.1002/mrm.25642] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2014] [Revised: 12/15/2014] [Accepted: 01/07/2015] [Indexed: 01/01/2023]
Abstract
PURPOSE To benchmark MOBILE (Mapping of Oxygen By Imaging Lipid relaxation Enhancement), a recent noninvasive MR method of mapping changes in tumor hypoxia, electron paramagnetic resonance (EPR) oximetry, and dynamic contrast-enhanced MRI (DCE-MRI) as biomarkers of changes in tumor hemodynamics induced by the antivascular agent combretastatin A4 (CA4). METHODS NT2 and MDA-MB-231 mammary tumors were implanted subcutaneously in FVB/N and nude NMRI mice. Mice received 100 mg/kg of CA4 intraperitoneally 3 hr before imaging. The MOBILE sequence (assessing R1 of lipids) and the DCE sequence (assessing K(trans) hemodynamic parameter), were assessed on different cohorts. pO2 changes were confirmed on matching tumors using EPR oximetry consecutive to the MOBILE sequence. Changes in tumor vasculature were assessed using immunohistology consecutive to DCE-MRI studies. RESULTS Administration of CA4 induced a significant decrease in lipids R1 (P = 0.0273) on pooled tumor models and a reduction in tumor pO2 measured by EPR oximetry. DCE-MRI also exhibited a significant drop of K(trans) (P < 0.01) that was confirmed by immunohistology. CONCLUSION MOBILE was identified as a marker to follow a decrease in oxygenation induced by CA4. However, DCE-MRI showed a higher dynamic range to follow changes in tumor hemodynamics induced by CA4.
Collapse
Affiliation(s)
- Florence Colliez
- Université Catholique de Louvain, Louvain Drug Research Institute, Biomedical Magnetic Resonance Group, Avenue Mounier 73, B1.73.08, Brussels, Belgium
| | - Anne-Catherine Fruytier
- Université Catholique de Louvain, Louvain Drug Research Institute, Biomedical Magnetic Resonance Group, Avenue Mounier 73, B1.73.08, Brussels, Belgium
| | - Julie Magat
- Université Catholique de Louvain, Louvain Drug Research Institute, Biomedical Magnetic Resonance Group, Avenue Mounier 73, B1.73.08, Brussels, Belgium
| | - Marie-Aline Neveu
- Université Catholique de Louvain, Louvain Drug Research Institute, Biomedical Magnetic Resonance Group, Avenue Mounier 73, B1.73.08, Brussels, Belgium
| | - Patrice D Cani
- Université Catholique de Louvain, Louvain Drug Research Institute, Metabolism and Nutrition Research Group, Avenue Mounier 73, B1.73.08, Brussels, Belgium
| | - Bernard Gallez
- Université Catholique de Louvain, Louvain Drug Research Institute, Biomedical Magnetic Resonance Group, Avenue Mounier 73, B1.73.08, Brussels, Belgium
| | - Bénédicte F Jordan
- Université Catholique de Louvain, Louvain Drug Research Institute, Biomedical Magnetic Resonance Group, Avenue Mounier 73, B1.73.08, Brussels, Belgium
| |
Collapse
|
25
|
Colliez F, Neveu MA, Magat J, Cao Pham TT, Gallez B, Jordan BF. Qualification of a Noninvasive Magnetic Resonance Imaging Biomarker to Assess Tumor Oxygenation. Clin Cancer Res 2014; 20:5403-11. [DOI: 10.1158/1078-0432.ccr-13-3434] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|