1
|
Zheng S, Zhou C, Yang H, Li J, Feng Z, Liao L, Li Y. Melatonin Accelerates Osteoporotic Bone Defect Repair by Promoting Osteogenesis-Angiogenesis Coupling. Front Endocrinol (Lausanne) 2022; 13:826660. [PMID: 35273570 PMCID: PMC8902312 DOI: 10.3389/fendo.2022.826660] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 01/18/2022] [Indexed: 01/10/2023] Open
Abstract
Previous studies have revealed that melatonin could play a role in anti-osteoporosis and promoting osteogenesis. However, the effects of melatonin treatment on osteoporotic bone defect and the mechanism underlying the effects of melatonin on angiogenesis are still unclear. Our study was aimed to investigate the potential effects of melatonin on angiogenesis and osteoporotic bone defect. Bone marrow mesenchymal stem cells (BMSCs) were isolated from the femur and tibia of rats. The BMSC osteogenic ability was assessed using alkaline phosphatase (ALP) staining, alizarin red S staining, qRT-PCR, western blot, and immunofluorescence. BMSC-mediated angiogenic potentials were determined using qRT-PCR, western blot, enzyme-linked immunosorbent assay, immunofluorescence, scratch wound assay, transwell migration assay, and tube formation assay. Ovariectomized (OVX) rats with tibia defect were used to establish an osteoporotic bone defect model and then treated with melatonin. The effects of melatonin treatment on osteoporotic bone defect in OVX rats were analyzed using micro-CT, histology, sequential fluorescent labeling, and biomechanical test. Our study showed that melatonin promoted both osteogenesis and angiogenesis in vitro. BMSCs treated with melatonin indicated higher expression levels of osteogenesis-related markers [ALP, osteocalcin (OCN), runt-related transcription factor 2, and osterix] and angiogenesis-related markers [vascular endothelial growth factor (VEGF), angiopoietin-2, and angiopoietin-4] compared to the untreated group. Significantly, melatonin was not able to facilitate human umbilical vein endothelial cell angiogenesis directly, but it possessed the ability to promote BMSC-mediated angiogenesis by upregulating the VEGF levels. In addition, we further found that melatonin treatment increased bone mineralization and formation around the tibia defect in OVX rats compared with the control group. Immunohistochemical staining indicated higher expression levels of osteogenesis-related marker (OCN) and angiogenesis-related markers (VEGF and CD31) in the melatonin-treated OVX rats. Then, it showed that melatonin treatment also increased the bone strength of tibia defect in OVX rats, with increased ultimate load and stiffness, as performed by three-point bending test. In conclusion, our study demonstrated that melatonin could promote BMSC-mediated angiogenesis and promote osteogenesis-angiogenesis coupling. We further found that melatonin could accelerate osteoporotic bone repair by promoting osteogenesis and angiogenesis in OVX rats. These findings may provide evidence for the potential application of melatonin in osteoporotic bone defect.
Collapse
Affiliation(s)
- Sheng Zheng
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Chunhao Zhou
- Department of Orthopedics-Spine Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Han Yang
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Junhua Li
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Ziyu Feng
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Liqing Liao
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Yikai Li
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
- *Correspondence: Yikai Li,
| |
Collapse
|
2
|
Luo C, Yang X, Li M, Huang H, Kang Q, Zhang X, Hui H, Zhang X, Cen C, Luo Y, Xie L, Wang C, He T, Jiang D, Li T, An H. A novel strategy for in vivo angiogenesis and osteogenesis: magnetic micro-movement in a bone scaffold. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2018; 46:636-645. [DOI: 10.1080/21691401.2018.1465947] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Affiliation(s)
- Cong Luo
- Department of Orthopaedics, Children's Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders, Key Laboratory of Pediatrics in Chongqing, Chongqing International Science and Technology Cooperation Center for Child Development and Disorders, Chongqing, China
| | - Xiaolan Yang
- College of Laboratory Medicine, Chongqing Medical University, Chongqing, China
| | - Ming Li
- Department of Orthopaedics, Children's Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders, Key Laboratory of Pediatrics in Chongqing, Chongqing International Science and Technology Cooperation Center for Child Development and Disorders, Chongqing, China
| | - Hua Huang
- Department of Pharmacology, Chongqing Medical University, Chongqing, China
| | - Quan Kang
- Department of Orthopaedics, Children's Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders, Key Laboratory of Pediatrics in Chongqing, Chongqing International Science and Technology Cooperation Center for Child Development and Disorders, Chongqing, China
| | - Xiaobo Zhang
- Department of Orthopaedics, Children's Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders, Key Laboratory of Pediatrics in Chongqing, Chongqing International Science and Technology Cooperation Center for Child Development and Disorders, Chongqing, China
| | - Hui Hui
- Department of Orthopaedics, Children's Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders, Key Laboratory of Pediatrics in Chongqing, Chongqing International Science and Technology Cooperation Center for Child Development and Disorders, Chongqing, China
| | - Xin Zhang
- Department of Orthopaedics, Children's Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders, Key Laboratory of Pediatrics in Chongqing, Chongqing International Science and Technology Cooperation Center for Child Development and Disorders, Chongqing, China
| | - Chaode Cen
- Department of Orthopaedics, Children's Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders, Key Laboratory of Pediatrics in Chongqing, Chongqing International Science and Technology Cooperation Center for Child Development and Disorders, Chongqing, China
| | - Yujia Luo
- Clinical Medicine Department, The First Clinical Institute, Zunyi Medical University, Zunyi, Guizhou, China
| | - Lina Xie
- Department of Orthopaedics, Children's Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders, Key Laboratory of Pediatrics in Chongqing, Chongqing International Science and Technology Cooperation Center for Child Development and Disorders, Chongqing, China
| | - Changxuan Wang
- Department of Orthopaedics, Children's Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders, Key Laboratory of Pediatrics in Chongqing, Chongqing International Science and Technology Cooperation Center for Child Development and Disorders, Chongqing, China
| | - Tongchuan He
- Molecular Oncology Laboratory, Medical Center, University of Chicago, IL, USA
| | - Dianming Jiang
- Department of Orthopaedics, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Tingyu Li
- Department of Orthopaedics, Children's Hospital of Chongqing Medical University, Ministry of Education Key Laboratory of Child Development and Disorders, Key Laboratory of Pediatrics in Chongqing, Chongqing International Science and Technology Cooperation Center for Child Development and Disorders, Chongqing, China
| | - Hong An
- Department of Orthopaedics, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
3
|
Chan RC, Forrester K, McDougall JJ, Bray RC, Zernicke RF. Dynamic measurement of bone blood perfusion with modified laser Doppler imaging. J Orthop Res 1999; 17:578-81. [PMID: 10459765 DOI: 10.1002/jor.1100170417] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Although the mechanisms are not clearly defined, blood flow may play an important role in moderating skeletal adaptation. Most techniques currently available to measure blood flow in bone are time-consuming and require destruction of the tissue, but laser Doppler technology offers a less invasive method. The present study assessed whether laser Doppler perfusion imaging could detect changes in perfusion in cortical bone. By use of modified laser Doppler perfusion imaging with an adjustable, incorporated, near infrared-laser gain photodetection system, perfusion of blood in the mid-diaphyseal tibial cortex of New Zealand White rabbits (n = 5) was measured before, during, and after occlusion of the femoral artery. During occlusion, perfusion decreased 69% compared with control levels; removal of the arterial clip caused flux values to return to near normal. Laser Doppler perfusion imaging provides a two-dimensional image related to blood flow, and the results of this pilot study suggest that it may be an effective technique for imaging in vivo dynamic changes in perfusion in cortical bone.
Collapse
Affiliation(s)
- R C Chan
- Department of Mechanical and Manufacturing Engineering, University of Calgary, Alberta, Canada
| | | | | | | | | |
Collapse
|