1
|
Zakiyanov O, Kalousová M, Zima T, Tesař V. Matrix Metalloproteinases in Renal Diseases: A Critical Appraisal. Kidney Blood Press Res 2019; 44:298-330. [PMID: 31185475 DOI: 10.1159/000499876] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Accepted: 03/10/2019] [Indexed: 11/19/2022] Open
Abstract
Matrix metalloproteinases (MMPs) are endopeptidases within the metzincin protein family that not only cleave extracellular matrix (ECM) components, but also process the non-ECM molecules, including various growth factors and their binding proteins. MMPs participate in cell to ECM interactions, and MMPs are known to be involved in cell proliferation mechanisms and most probably apoptosis. These proteinases are grouped into six classes: collagenases, gelatinases, stromelysins, matrilysins, membrane type MMPs, and other MMPs. Various mechanisms regulate the activity of MMPs, inhibition by tissue inhibitors of metalloproteinases being the most important. In the kidney, intrinsic glomerular cells and tubular epithelial cells synthesize several MMPs. The measurement of circulating MMPs can provide valuable information in patients with kidney diseases. They play an important role in many renal diseases, both acute and chronic. This review attempts to summarize the current knowledge of MMPs in the kidney and discusses recent data from patient and animal studies with reference to specific diseases. A better understanding of the MMPs' role in renal remodeling may open the way to new interventions favoring deleterious renal changes in a number of kidney diseases.
Collapse
Affiliation(s)
- Oskar Zakiyanov
- Department of Nephrology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czechia,
| | - Marta Kalousová
- Institute of Medical Biochemistry and Laboratory Diagnostics, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czechia
| | - Tomáš Zima
- Institute of Medical Biochemistry and Laboratory Diagnostics, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czechia
| | - Vladimír Tesař
- Department of Nephrology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czechia
| |
Collapse
|
2
|
Kirchhain A, Poma N, Salvo P, Tedeschi L, Melai B, Vivaldi F, Bonini A, Franzini M, Caponi L, Tavanti A, Di Francesco F. Biosensors for measuring matrix metalloproteinases: An emerging research field. Trends Analyt Chem 2019. [DOI: 10.1016/j.trac.2018.10.027] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
3
|
Haskett DG, Maestas D, Howerton SJ, Smith T, Ardila DC, Doetschman T, Utzinger U, McGrath D, McIntyre JO, Vande Geest JP. 2-Photon Characterization of Optical Proteolytic Beacons for Imaging Changes in Matrix-Metalloprotease Activity in a Mouse Model of Aneurysm. MICROSCOPY AND MICROANALYSIS : THE OFFICIAL JOURNAL OF MICROSCOPY SOCIETY OF AMERICA, MICROBEAM ANALYSIS SOCIETY, MICROSCOPICAL SOCIETY OF CANADA 2016; 22:349-360. [PMID: 26903264 PMCID: PMC4823162 DOI: 10.1017/s1431927616000088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Abdominal aortic aneurysm is a multifactorial disease that is a leading cause of death in developed countries. Matrix-metalloproteases (MMPs) are part of the disease process, however, assessing their role in disease initiation and progression has been difficult and animal models have become essential. Combining Förster resonance energy transfer (FRET) proteolytic beacons activated in the presence of MMPs with 2-photon microscopy allows for a novel method of evaluating MMP activity within the extracellular matrix (ECM). Single and 2-photon spectra for proteolytic beacons were determined in vitro. Ex vivo experiments using the apolipoprotein E knockout angiotensin II-infused mouse model of aneurysm imaged ECM architecture simultaneously with the MMP-activated FRET beacons. 2-photon spectra of the two-color proteolytic beacons showed peaks for the individual fluorophores that enable imaging of MMP activity through proteolytic cleavage. Ex vivo imaging of the beacons within the ECM revealed both microstructure and MMP activity. 2-photon imaging of the beacons in aneurysmal tissue showed an increase in proteolytic cleavage within the ECM (p<0.001), thus indicating an increase in MMP activity. Our data suggest that FRET-based proteolytic beacons show promise in assessing MMP activity within the ECM and will therefore allow future studies to identify the heterogeneous distribution of simultaneous ECM remodeling and protease activity in aneurysmal disease.
Collapse
Affiliation(s)
- Darren G. Haskett
- Graduate Interdisciplinary Program of Biomedical Engineering, The University of Arizona, Tucson, AZ 85721, USA
| | - David Maestas
- Department of Biomedical Engineering, The University of Arizona, Tucson, AZ 85721, USA
- Department of Molecular and Cellular Biology, The University of Arizona, Tucson, AZ 85721, USA
| | - Stephen J. Howerton
- Department of Aerospace and Mechanical Engineering, The University of Arizona, Tucson, AZ 85721, USA
| | - Tyler Smith
- Department of Aerospace and Mechanical Engineering, The University of Arizona, Tucson, AZ 85721, USA
| | - D. Catalina Ardila
- Graduate Interdisciplinary Program of Biomedical Engineering, The University of Arizona, Tucson, AZ 85721, USA
| | - Tom Doetschman
- Department of Cellular and Molecular Medicine, The University of Arizona, Tucson, AZ 85721, USA
- BIO5 Institute, The University of Arizona, Tucson, AZ 85721, USA
| | - Urs Utzinger
- Graduate Interdisciplinary Program of Biomedical Engineering, The University of Arizona, Tucson, AZ 85721, USA
- Department of Biomedical Engineering, The University of Arizona, Tucson, AZ 85721, USA
- BIO5 Institute, The University of Arizona, Tucson, AZ 85721, USA
| | - Dominic McGrath
- Graduate Interdisciplinary Program of Biomedical Engineering, The University of Arizona, Tucson, AZ 85721, USA
- Department of Chemistry and Biochemistry, The University of Arizona, Tucson, AZ 85721, USA
- BIO5 Institute, The University of Arizona, Tucson, AZ 85721, USA
| | - J. Oliver McIntyre
- Departments of Radiology and Radiological Sciences and Cancer Biology, Vanderbilt University, Nashville, TN 37232, USA
| | - Jonathan P. Vande Geest
- Graduate Interdisciplinary Program of Biomedical Engineering, The University of Arizona, Tucson, AZ 85721, USA
- Department of Biomedical Engineering, The University of Arizona, Tucson, AZ 85721, USA
- Department of Aerospace and Mechanical Engineering, The University of Arizona, Tucson, AZ 85721, USA
- BIO5 Institute, The University of Arizona, Tucson, AZ 85721, USA
- Department of Bioengineering, The University of Pittsburgh, Pittsburgh, PA 15219, USA
| |
Collapse
|
4
|
Matrix metalloproteinases as input and output signals for post-myocardial infarction remodeling. J Mol Cell Cardiol 2015; 91:134-40. [PMID: 26721597 DOI: 10.1016/j.yjmcc.2015.12.018] [Citation(s) in RCA: 77] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Revised: 12/16/2015] [Accepted: 12/20/2015] [Indexed: 12/11/2022]
Abstract
Despite current optimal therapeutic regimens, approximately one in four patients diagnosed with myocardial infarction (MI) will go on to develop congestive heart failure, and heart failure has a high five-year mortality rate of 50%. Elucidating mechanisms whereby heart failure develops post-MI, therefore, is highly needed. Matrix metalloproteinases (MMPs) are key enzymes involved in post-MI remodeling of the left ventricle (LV). While MMPs process cytokine and extracellular matrix (ECM) substrates to regulate the inflammatory and fibrotic components of the wound healing response to MI, MMPs also serve as upstream signaling initiators with direct actions on cell signaling cascades. In this review, we summarize the current literature regarding MMP roles in post-MI LV remodeling. We also identify the current knowledge gaps and provide templates for experiments to fill these gaps. A more complete understanding of MMP roles, particularly with regards to upstream signaling roles, may provide new strategies to limit adverse LV remodeling.
Collapse
|
5
|
Oelusarz A, Nichols LA, Grunz-Borgmann EA, Chen G, Akintola AD, Catania JM, Burghardt RC, Trzeciakowski JP, Parrish AR. Overexpression of MMP-7 Increases Collagen 1A2 in the Aging Kidney. Physiol Rep 2013; 1. [PMID: 24273653 PMCID: PMC3834982 DOI: 10.1002/phy2.90] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
The percentage of the U.S. population over 65 is rapidly increasing, as is the incidence of chronic kidney disease (CKD). The kidney is susceptible to age-dependent alterations in structure, specifically tubulointerstitial fibrosis that leads to CKD. Matrix metalloproteinases (MMPs) were initially characterized as extracellular matrix (ECM) proteinases; however, it is clear that their biological role is much larger. We have observed increased gene expression of several MMPs in the aging kidney, including MMP-7. MMP-7 overexpression was observed starting at 16 months, with over a 500-fold upregulation in 2-year-old animals. Overexpression of MMP-7 is not observed in age-matched, calorically restricted controls that do not develop fibrosis and renal dysfunction, suggesting a role in the pathogenesis. In order to delineate the contributions of MMP-7 to renal dysfunction, we overexpressed MMP-7 in NRK-52E cells. High-throughput sequencing of the cells revealed that two collagen genes, Col1a2 and Col3a1, were elevated in the MMP-7 overexpressing cells. These two collagen genes were also elevated in aging rat kidneys and temporally correlated with increased MMP-7 expression. Addition of exogenous MMP-7, or conditioned media from MMP-7 overexpressing cells also increased Col1A2 expression. Inhibition of protein kinase A (PKA), src, and MAPK signaling at p38 and ERK was able to attenuate the MMP-7 upregulation of Col1a2. Consistent with this finding, increased phosphorylation of PKA, src, and ERK was seen in MMP-7 overexpressing cells and upon exogenous MMP-7 treatment of NRK-52E cells. These data suggest a novel mechanism by which MMP-7 contributes to the development of fibrosis leading to CKD.
Collapse
Affiliation(s)
- Anna Oelusarz
- Medical Pharmacology and Physiology, School of Medicine, University of Missouri
| | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Steffensen B, Chen Z, Pal S, Mikhailova M, Su J, Wang Y, Xu X. Fragmentation of fibronectin by inherent autolytic and matrix metalloproteinase activities. Matrix Biol 2010; 30:34-42. [PMID: 20932906 DOI: 10.1016/j.matbio.2010.09.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2010] [Revised: 09/24/2010] [Accepted: 09/29/2010] [Indexed: 11/16/2022]
Abstract
Fibronectin (FN) purified by gelatin affinity chromatography is unstable and undergoes fragmentation. The cleavage has been ascribed to inherent autolytic protease activities as well as co-purified matrix metalloproteinases (MMP). Understanding the mechanism by which the proteolysis of FN occurs is important, because the FN fragments have biological activities that differ from those of intact FN. Having excluded contributions of other plasma-derived proteases, the present experiments demonstrated that cleavage of FN by MMP-2 to distinct fragments occurred in synergy with inherent FN activities. Limited heat treatment of FN at 56°C for 30 min inactivated the inherent protease activities sharply reducing autolysis of FN in a manner similar to that seen in the presence of serine proteinase inhibitors. Heat treatment did not alter cell attachment to FN, but significantly increased the susceptibility of FN to enzymatic cleavage by MMP-2. The carboxyl-terminal hemopexin-like domain (PEX) of MMP-2 was shown to possess critical exodomain properties required for the interactions of MMP-2 with FN, and FN was cleaved at a significantly reduced rate by an MMP-2 variant with deletion of PEX. Verifying the specificity of interactions, isolated PEX competed FN cleavage by MMP-2 in a concentration-dependent manner. These results have further elucidated the synergistic contributions of inherent autolytic serine protease-like activities and MMP-2 to fragmentation of FN and provide the rationale and basis for modified preparation and handling of FN used in biological research.
Collapse
Affiliation(s)
- Bjorn Steffensen
- Department of Periodontics, The University of Texas Health Science Center at San Antonio, San Antonio, Texas 78229-3900, USA.
| | | | | | | | | | | | | |
Collapse
|
7
|
McIntyre JO, Scherer RL, Matrisian LM. Near-infrared optical proteolytic beacons for in vivo imaging of matrix metalloproteinase activity. Methods Mol Biol 2010; 622:279-304. [PMID: 20135290 DOI: 10.1007/978-1-60327-299-5_18] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/20/2023]
Abstract
The exuberant expression of proteinases by tumor cells has long been associated with the breakdown of the extracellular matrix, tumor invasion, and metastasis to distant organs. There are both epidemiological and experimental data that support a causative role for proteinases of the matrix metalloproteinase (MMP) family in tumor progression. Optical imaging techniques provide an extraordinary opportunity for non-invasive "molecular imaging" of tumor-associated proteolytic activity. The application of optical proteolytic beacons for the detection of specific proteinase activities associated with tumors has several potential purposes: (1) Detection of small, early-stage tumors with increased sensitivity due to the catalytic nature of the proteolytic activity, (2) diagnosis and prognosis to distinguish tumors that require particularly aggressive therapy or those that will not benefit from therapy, (3) identification of tumors appropriate for specific anti-proteinase therapeutics and optimization of drug and its dose based on determination of target modulation, and (4) as an indicator of the efficacy of proteolytically activated pro-drugs. This chapter describes the synthesis, characterization, and application of reagents that use visible and near-infrared fluorescence resonance energy transfer (FRET) fluorophore pairs to detect and measure MMP proteolytic activity in tumors in murine models of cancer.
Collapse
Affiliation(s)
- J Oliver McIntyre
- Department of Cancer Biology, Vanderbilt University, Nashville, TN, USA.
| | | | | |
Collapse
|
8
|
McIntyre JO, Matrisian LM. Optical proteolytic beacons for in vivo detection of matrix metalloproteinase activity. Methods Mol Biol 2009; 539:155-74. [PMID: 19377965 DOI: 10.1007/978-1-60327-003-8_9] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/26/2023]
Abstract
The exuberant expression of proteinases by tumor cells has long been associated with the breakdown of the extracellular matrix, tumor invasion, and metastasis to distant organs. There are both epidemiological and experimental data that support a causative role for proteinases of the matrix metalloproteinase (MMP) family in tumor progression. Optical imaging techniques provide an extraordinary opportunity for noninvasive "molecular imaging" of tumor-associated proteolytic activity. The application of optical proteolytic beacons for the detection of specific proteinase activities associated with tumors has several potential purposes: (1) Detection of small, early-stage tumors with increased sensitivity due to the catalytic nature of proteolytic activity, (2) diagnosis and prognosis to distinguished tumors that require particularly aggressive therapy or those that will not benefit from therapy, (3) identification of tumors appropriate for specific antiproteinase therapeutics and optimization of drug and dose based on determination of target modulation, and (4) as an indicator of efficacy of proteolytically activated prodrugs. This chapter describes the synthesis, characterization, and application of reagents that use visible and near infrared fluorescence resonance energy transfer (FRET) fluorophore pairs to detect and measure MMP-referable proteolytic activity in tumors in mouse models of cancer.
Collapse
Affiliation(s)
- J Oliver McIntyre
- Department of Cancer Biology, Box 6840, Vanderbilt University, Nashville, TN, USA
| | | |
Collapse
|
9
|
Nishihara S, Someya A, Yonemoto H, Ota A, Itoh S, Nagaoka I, Takeda S. Evaluation of the expression and enzyme activity of matrix metalloproteinase-7 in fetal membranes during premature rupture of membranes at term in humans. Reprod Sci 2008; 15:156-65. [PMID: 18276951 DOI: 10.1177/1933719107310308] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Amnion, chorion, and decidua were separated from fetal membranes at term from women with no labor (cesarean delivery [CS], n = 10), labor (normal delivery, n = 10), and labor during premature rupture of membranes (PROM; n = 8) for evaluation of matrix metalloproteinase (MMP)-7. The expression of pro-MMP-7 was immunohistochemically demonstrated in amnion, chorion, and decidua. Interestingly, however, Western blotting revealed that pro-MMP-7 and MMP-7 expression was the lowest in amnion from PROM, whereas it was the highest in chorion and decidua from PROM. Importantly, the enzymatic activity of MMP-7 determined with an MMP-7-specific substrate was higher in amnion from PROM than that from CS. Moreover, the tissue inhibitor of metalloproteinase (TIMP)-1 level was lower in amnion from PROM than that from CS. Thus, MMP-7 is expressed in fetal membranes (amnion, chorion, and decidua), and its activity is increased in amnion of PROM at term, accompanied with the reduced level of TIMP-1, which may suggest the possible involvement of MMP-7 in PROM.
Collapse
Affiliation(s)
- Saori Nishihara
- Department of Obstetrics and Gynecology, Juntendo University School of Medicine, Tokyo, Japan.
| | | | | | | | | | | | | |
Collapse
|
10
|
Martin EL, McCaig LA, Moyer BZ, Pape MC, Leco KJ, Lewis JF, Veldhuizen RAW. Differential response of TIMP-3 null mice to the lung insults of sepsis, mechanical ventilation, and hyperoxia. Am J Physiol Lung Cell Mol Physiol 2005; 289:L244-51. [PMID: 15805139 DOI: 10.1152/ajplung.00070.2005] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
An imbalance in matrix metalloproteinases (MMPs) and the tissue inhibitors of metalloproteinases (TIMPs) leads to excessive or insufficient tissue breakdown, which is associated with many disease processes. The TIMP-3 null mouse is a model of MMP/TIMP imbalance, which develops air space enlargement and decreased lung function. These mice responded differently to cecal ligation and perforation (CLP)-induced septic lung injury than wild-type controls. The current study addresses whether the TIMP-3 knockout lung is susceptible to different types of insults or only those involving sepsis, by examining its response to lipopolysaccharide (LPS)-induced sepsis, mechanical ventilation (MV), and hyperoxia. TIMP-3 null noninjured controls of each insult consistently demonstrated significantly higher compliance vs. wild-type mice. Null mice treated with LPS had a further significantly increased compliance compared with untreated controls. Conversely, MV and hyperoxia did not alter compliance in the null lung. MMP abundance and activity increased in response to LPS but were generally unaltered following MV or hyperoxia, correlating with compliance alterations. All three insults produced inflammatory cytokines; however, the response of the null vs. wild-type lung was dependent on the type of insult. Overall, this study demonstrated that 1) LPS-induced sepsis produced a similar response in null mice to CLP-induced sepsis, 2) the null lung responded differently to various insults, and 3) the null susceptibility to compliance changes correlated with increased MMPs. In conclusion, this study provides insight into the role of TIMP-3 in response to various lung insults, specifically its importance in regulating MMPs to maintain compliance during a sepsis.
Collapse
Affiliation(s)
- Erica L Martin
- Departments of Physiology and Pharmacology Lawson Health Research Inst. H417, 268 Grosvenor St., London, ON, Canada, N6A 4V2.
| | | | | | | | | | | | | |
Collapse
|