1
|
Leahy TP, Chenna SS, Soslowsky LJ, Dyment NA. Focal adhesion kinase regulates tendon cell mechanoresponse and physiological tendon development. FASEB J 2024; 38:e70050. [PMID: 39259535 PMCID: PMC11522781 DOI: 10.1096/fj.202400151r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 07/17/2024] [Accepted: 08/30/2024] [Indexed: 09/13/2024]
Abstract
Tendons enable locomotion by transmitting high tensile mechanical forces between muscle and bone via their dense extracellular matrix (ECM). The application of extrinsic mechanical stimuli via muscle contraction is necessary to regulate healthy tendon function. Specifically, applied physiological levels of mechanical loading elicit an anabolic tendon cell response, while decreased mechanical loading evokes a degradative tendon state. Although the tendon response to mechanical stimuli has implications in disease pathogenesis and clinical treatment strategies, the cell signaling mechanisms by which tendon cells sense and respond to mechanical stimuli within the native tendon ECM remain largely unknown. Therefore, we explored the role of cell-ECM adhesions in regulating tendon cell mechanotransduction by perturbing the genetic expression and signaling activity of focal adhesion kinase (FAK) through both in vitro and in vivo approaches. We determined that FAK regulates tendon cell spreading behavior and focal adhesion morphology, nuclear deformation in response to applied mechanical strain, and mechanosensitive gene expression. In addition, our data reveal that FAK signaling plays an essential role in in vivo tendon development and postnatal growth, as FAK-knockout mouse tendons demonstrated reduced tendon size, altered mechanical properties, differences in cellular composition, and reduced maturity of the deposited ECM. These data provide a foundational understanding of the role of FAK signaling as a critical regulator of in situ tendon cell mechanotransduction. Importantly, an increased understanding of tendon cell mechanotransductive mechanisms may inform clinical practice as well as lead to the discovery of diagnostic and/or therapeutic molecular targets.
Collapse
Affiliation(s)
- Thomas P. Leahy
- McKay Orthopaedic Laboratory, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Srish S. Chenna
- McKay Orthopaedic Laboratory, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Louis J. Soslowsky
- McKay Orthopaedic Laboratory, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Nathaniel A. Dyment
- McKay Orthopaedic Laboratory, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
2
|
Monteiro N, Fangueiro J, Reis R, Neves N. Replication of natural surface topographies to generate advanced cell culture substrates. Bioact Mater 2023; 28:337-347. [PMID: 37519922 PMCID: PMC10382971 DOI: 10.1016/j.bioactmat.2023.06.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 04/29/2023] [Accepted: 06/04/2023] [Indexed: 08/01/2023] Open
Abstract
Surface topographies of cell culture substrates can be used to generate in vitro cell culture environments similar to the in vivo cell niches. In vivo, the physical properties of the extracellular matrix (ECM), such as its topography, provide physical cues that play an important role in modulating cell function. Mimicking these properties remains a challenge to provide in vitro realistic environments for cells. Artificially generated substrates' topographies were used extensively to explore this important surface cue. More recently, the replication of natural surface topographies has been enabling to exploration of characteristics such as hierarchy and size scales relevant for cells as advanced biomimetic substrates. These substrates offer more realistic and mimetic environments regarding the topographies found in vivo. This review will highlight the use of natural surface topographies as a template to generate substrates for in-vitro cell culture. This review starts with an analysis of the main cell functions that can be regulated by the substrate's surface topography through cell-substrate interactions. Then, we will discuss research works wherein substrates for cell biology decorated with natural surface topographies were used and investigated regarding their influence on cellular performance. At the end of this review, we will highlight the advantages and challenges of the use of natural surface topographies as a template for the generation of advanced substrates for cell culture.
Collapse
Affiliation(s)
- N.O. Monteiro
- 3B's Research Group, I3Bs – Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017, Barco, Guimarães, Portugal
- ICVS/3B's–PT Government Associate Laboratory, Braga, Guimarães, Portugal
| | - J.F. Fangueiro
- 3B's Research Group, I3Bs – Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017, Barco, Guimarães, Portugal
- ICVS/3B's–PT Government Associate Laboratory, Braga, Guimarães, Portugal
| | - R.L. Reis
- 3B's Research Group, I3Bs – Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017, Barco, Guimarães, Portugal
- ICVS/3B's–PT Government Associate Laboratory, Braga, Guimarães, Portugal
| | - N.M. Neves
- 3B's Research Group, I3Bs – Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017, Barco, Guimarães, Portugal
- ICVS/3B's–PT Government Associate Laboratory, Braga, Guimarães, Portugal
| |
Collapse
|
3
|
Donderwinkel I, Tuan RS, Cameron NR, Frith JE. Tendon tissue engineering: Current progress towards an optimized tenogenic differentiation protocol for human stem cells. Acta Biomater 2022; 145:25-42. [PMID: 35470075 DOI: 10.1016/j.actbio.2022.04.028] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 04/10/2022] [Accepted: 04/18/2022] [Indexed: 12/19/2022]
Abstract
Tendons are integral to our daily lives by allowing movement and locomotion but are frequently injured, leading to patient discomfort and impaired mobility. Current clinical procedures are unable to fully restore the native structure of the tendon, resulting in loss of full functionality, and the weakened tissue following repair often re-ruptures. Tendon tissue engineering, involving the combination of cells with biomaterial scaffolds to form new tendon tissue, holds promise to improve patient outcomes. A key requirement for efficacy in promoting tendon tissue formation is the optimal differentiation of the starting cell populations, most commonly adult tissue-derived mesenchymal stem/stromal cells (MSCs), into tenocytes, the predominant cellular component of tendon tissue. Currently, a lack of consensus on the protocols for effective tenogenic differentiation is hampering progress in tendon tissue engineering. In this review, we discuss the current state of knowledge regarding human stem cell differentiation towards tenocytes and tendon tissue formation. Tendon development and healing mechanisms are described, followed by a comprehensive overview of the current protocols for tenogenic differentiation, including the effects of biochemical and biophysical cues, and their combination, on tenogenesis. Lastly, a synthesis of the key features of these protocols is used to design future approaches. The holistic evaluation of current knowledge should facilitate and expedite the development of efficacious stem cell tenogenic differentiation protocols with future impact in tendon tissue engineering. STATEMENT OF SIGNIFICANCE: The lack of a widely-adopted tenogenic differentiation protocol has been a major hurdle in the tendon tissue engineering field. Building on current knowledge on tendon development and tendon healing, this review surveys peer-reviewed protocols to present a holistic evaluation and propose a pathway to facilitate and expedite the development of a consensus protocol for stem cell tenogenic differentiation and tendon tissue engineering.
Collapse
|
4
|
He P, Ruan D, Huang Z, Wang C, Xu Y, Cai H, Liu H, Fei Y, Heng BC, Chen W, Shen W. Comparison of Tendon Development Versus Tendon Healing and Regeneration. Front Cell Dev Biol 2022; 10:821667. [PMID: 35141224 PMCID: PMC8819183 DOI: 10.3389/fcell.2022.821667] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 01/07/2022] [Indexed: 12/27/2022] Open
Abstract
Tendon is a vital connective tissue in human skeletal muscle system, and tendon injury is very common and intractable in clinic. Tendon development and repair are two closely related but still not fully understood processes. Tendon development involves multiple germ layer, as well as the regulation of diversity transcription factors (Scx et al.), proteins (Tnmd et al.) and signaling pathways (TGFβ et al.). The nature process of tendon repair is roughly divided in three stages, which are dominated by various cells and cell factors. This review will describe the whole process of tendon development and compare it with the process of tendon repair, focusing on the understanding and recent advances in the regulation of tendon development and repair. The study and comparison of tendon development and repair process can thus provide references and guidelines for treatment of tendon injuries.
Collapse
Affiliation(s)
- Peiwen He
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, China
- Institute of Sports Medicine, Zhejiang University, Hangzhou, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, China
| | - Dengfeng Ruan
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, China
- Institute of Sports Medicine, Zhejiang University, Hangzhou, China
| | - Zizhan Huang
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, China
- Institute of Sports Medicine, Zhejiang University, Hangzhou, China
| | - Canlong Wang
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, China
- Institute of Sports Medicine, Zhejiang University, Hangzhou, China
| | - Yiwen Xu
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, China
- Institute of Sports Medicine, Zhejiang University, Hangzhou, China
| | - Honglu Cai
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, China
- Institute of Sports Medicine, Zhejiang University, Hangzhou, China
| | - Hengzhi Liu
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, China
- Institute of Sports Medicine, Zhejiang University, Hangzhou, China
| | - Yang Fei
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, China
- Institute of Sports Medicine, Zhejiang University, Hangzhou, China
| | - Boon Chin Heng
- Central Laboratory, Peking University School of Stomatology, Bejing, China
| | - Weishan Chen
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, China
- Institute of Sports Medicine, Zhejiang University, Hangzhou, China
- *Correspondence: Weishan Chen, ; Weiliang Shen,
| | - Weiliang Shen
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, China
- Institute of Sports Medicine, Zhejiang University, Hangzhou, China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, China
- Dr. Li Dak Sum and Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University, Hangzhou, China
- China Orthopaedic Regenerative Medicine (CORMed), Hangzhou, China
- *Correspondence: Weishan Chen, ; Weiliang Shen,
| |
Collapse
|
5
|
Chae S, Sun Y, Choi YJ, Ha DH, Jeon IH, Cho DW. 3D cell-printing of tendon-bone interface using tissue-derived extracellular matrix bioinks for chronic rotator cuff repair. Biofabrication 2020; 13. [PMID: 33285539 DOI: 10.1088/1758-5090/abd159] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 12/07/2020] [Indexed: 01/01/2023]
Abstract
The tendon-bone interface (TBI) in rotator cuffs exhibits a structural and compositional gradient integrated through the fibrocartilaginous transition. Owing to restricted healing capacity, functional regeneration of the TBI is considered a great clinical challenge. Here, we establish a novel therapeutic platform based on 3D cell-printing and tissue-specific bioinks to achieve spatially-graded physiology for functional TBI regeneration. The 3D cell-printed TBI patch constructs are created via a spatial arrangement of cell-laden tendon and bone-specific bioinks in a graded manner, approximating a multi-tissue fibrocartilaginous interface. This TBI patch offers a cell favorable microenvironment, including high cell viability, proliferative capacity, and zonal-specific differentiation of encapsulated stem cells for TBI formation in vitro. Furthermore, in vivo application of spatially-graded TBI patches with stem cells demonstrates their regenerative potential, indicating that repair with 3D cell-printed TBI patch significantly accelerates and promotes TBI healing in a rat chronic tear model. Therefore, our findings propose a new therapeutic strategy for functional TBI regeneration using 3D cell-printing and tissue-specific decellularized extracellular matrix (dECM) bioink-based approach.
Collapse
Affiliation(s)
- Suhun Chae
- Department of Mechanical Engineering, Pohang University of Science and Technology, 77 Cheongam-ro, Nam-gu, Pohang, Gyeongsangbuk-do, 37673, Korea (the Republic of)
| | - Yucheng Sun
- Department of Hand Surgery, Affiliated Hospital of Nantong University, College of Medicine, Nantong University, No 20, West Temple Road, Nantong, 226000, CHINA
| | - Yeong-Jin Choi
- Department of Advanced Biomaterials Research, Korea Institute of Materials Science, 797, Changwon-daero, Seongsan-gu, Gyeongsangnam-do, Changwon, 51508, Korea (the Republic of)
| | - Dong-Heon Ha
- EDmicBio Inc., 117-3, Hoegi-ro, Dongdaemun-gu, Seoul, 02445, Korea (the Republic of)
| | - In-Ho Jeon
- Orthopaedic Surgery, University of Ulsan, Asan Medical Center, 88, OLYMPIC-RO 43-GIL, SONGPA-GU, Seoul, 05505, Korea (the Republic of)
| | - Dong-Woo Cho
- Department of Mechanical Engineering, Pohang University of Science and Technology, 77 Cheongam-ro, Nam-gu, Pohang, Gyeongsangbuk-do, 37673, Korea (the Republic of)
| |
Collapse
|
6
|
Jaiswal D, Yousman L, Neary M, Fernschild E, Zolnoski B, Katebifar S, Rudraiah S, Mazzocca AD, Kumbar SG. Tendon tissue engineering: biomechanical considerations. Biomed Mater 2020; 15:052001. [DOI: 10.1088/1748-605x/ab852f] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
7
|
Phase I Study of the Focal Adhesion Kinase Inhibitor BI 853520 in Japanese and Taiwanese Patients with Advanced or Metastatic Solid Tumors. Target Oncol 2020; 14:57-65. [PMID: 30725402 PMCID: PMC6407737 DOI: 10.1007/s11523-019-00620-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
BACKGROUND Focal adhesion kinase (FAK) inhibitors have demonstrated anti-tumor activity preclinically and are currently being evaluated in humans. A first-in-human study evaluating the novel FAK inhibitor BI 853520 in a predominantly Caucasian population with advanced or metastatic non-hematologic malignancies demonstrated acceptable tolerability and favorable pharmacokinetics. OBJECTIVE This study was undertaken to investigate the safety, tolerability, and maximum tolerated dose (MTD) of BI 853520 in Japanese and Taiwanese patients with advanced solid tumors. PATIENTS AND METHODS In this open-label, phase I, dose-finding study, BI 853520 was administered once daily (QD) in a continuous daily dosing regimen with 28-day cycles and escalating doses to sequential cohorts of patients. Twenty-one patients (62% male; median age 65 years) were treated at two sites in Japan and Taiwan. RESULTS The median duration of treatment was 1.2 months (range 0.2-7.7). As no dose-limiting toxicities were observed during cycle 1 in the 50, 100, or 200 mg cohorts, the MTD of BI 853520 was determined to be 200 mg QD. Drug-related adverse events were reported in 19 patients (90%), and all except one were of grade 1 or 2. Pharmacokinetic parameters were supportive of a once-daily dosing schedule. A confirmed objective response rate of 5% and disease control rate of 29% were achieved; median duration of disease control was 3.7 months. CONCLUSIONS This trial demonstrated a manageable and acceptable safety profile, favorable pharmacokinetics, and potential anti-tumor activity of BI 853520 in pretreated Japanese and Taiwanese patients with advanced or metastatic solid tumors. CLINICAL TRIALS REGISTRATION NCT01905111.
Collapse
|
8
|
Chang W, Callan KT, Dragoo JL. The Behavior of Tendon Progenitor Cells from Tendinopathic Tendons: Implications for Treatment. Tissue Eng Part A 2019; 26:38-46. [PMID: 31111771 DOI: 10.1089/ten.tea.2019.0042] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Tendinopathy remains a significant clinical challenge. Although there is some evidence that leukocyte-rich platelet-rich plasma can improve the symptoms of tendinopathy, more efficacious treatments will be required in the future to improve probability of successfully resolving this condition in athletes. Because optimal treatments are not currently available, there is a need to better understand the pathology of tendinopathy from the perspective of tendon progenitor cells (TPCs). TPCs isolated from normal and tendinopathy donors were characterized by their stem cell properties and proliferation capacities, along with their ability to become tenocytes under mechanical loading. The results showed a significant 2.6-fold increase in the viable cell population in tendinopathy versus normal donors. Although the percentage of self-renewing cells was similar, the total number of TPCs in tendinopathy was significantly higher (1.6-fold) than normal TPCs based on the colony formation assays. In contrast, TPCs from tendinopathy tissue showed significantly lower cellular proliferation rate by cumulative population doublings. Next, the expanded TPCs from both tissues successfully demonstrated the trilineage differentiation capabilities with specific gene markers, staining, and biochemical assays. To induce tenogenic differentiation, stretchable silicone wells were designed and fabricated, plus the creation of an adaptor platform used on a syringe pump for mechanical stretch. This economic design provided the adequate cyclic loading to drive tenogenic differentiation. With these devices, the stretch duration was optimized and showed the significant increase in scleraxis (SCX) and tenomodulin (TNMD) expression at 2.60 (fold change) and 3.86 (fold change in logarithm), respectively, by reverse transcription-quantitative polymerase chain reaction in normal TPCs after stretch. This assay also demonstrated the widespread cell reorientation following stretch in normal TPCs. In contrast, the mechanical loading did not increase the SCX gene expression; TNMD expression remained undetectable, and cell realignment was significantly less in tendinopathy TPCs. In addition, western blot analysis confirmed the elevated TNMD protein expression in normal TPCs following stretch and the lack of expression in tendinopathy TPCs. In summary, tendinopathy TPCs were unable to differentiate into tenocytes following mechanical stretch. Future studies may aim to reprogram tendinopathy TPCs to allow tenogenic induction. Impact Statement This article presents a model to distinguish between normal and tendinopathy progenitor cell behavior, which reveals insight into the pathophysiology of tendinopathy. With the design of a platform adaptor, mechanical stretch was applied to tendon progenitor cells (TPCs) that promoted tenogenic differentiation. This design provided programmable features for more flexible application with low cost. These devices successfully stimulated tenogenic differentiation of TPCs from normal, but not tendinopathic tendons under cyclic stretch. The scientific method provided in this article will allow testing of biologics, exosomes, and other treatment strategies to derive new, more efficient treatment of tendinopathy in the future.
Collapse
Affiliation(s)
- Wenteh Chang
- Department of Orthopaedic Surgery, Stanford University, Redwood City, California
| | - Kylie T Callan
- Department of Orthopaedic Surgery, Stanford University, Redwood City, California
| | - Jason L Dragoo
- Department of Orthopaedic Surgery, Stanford University, Redwood City, California
| |
Collapse
|
9
|
Uniaxial Cyclic Tensile Stretching at 8% Strain Exclusively Promotes Tenogenic Differentiation of Human Bone Marrow-Derived Mesenchymal Stromal Cells. Stem Cells Int 2019; 2019:9723025. [PMID: 30918524 PMCID: PMC6409073 DOI: 10.1155/2019/9723025] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Revised: 10/13/2018] [Accepted: 11/08/2018] [Indexed: 12/18/2022] Open
Abstract
The present study was conducted to establish the amount of mechanical strain (uniaxial cyclic stretching) required to provide optimal tenogenic differentiation expression in human mesenchymal stromal cells (hMSCs) in vitro, in view of its potential application for tendon maintenance and regeneration. Methods. In the present study, hMSCs were subjected to 1 Hz uniaxial cyclic stretching for 6, 24, 48, and 72 hours; and were compared to unstretched cells. Changes in cell morphology were observed under light and atomic force microscopy. The tenogenic, osteogenic, adipogenic, and chondrogenic differentiation potential of hMSCs were evaluated using biochemical assays, extracellular matrix expressions, and selected mesenchyme gene expression markers; and were compared to primary tenocytes. Results. Cells subjected to loading displayed cytoskeletal coarsening, longer actin stress fiber, and higher cell stiffness as early as 6 hours. At 8% and 12% strains, an increase in collagen I, collagen III, fibronectin, and N-cadherin production was observed. Tenogenic gene expressions were highly expressed (p < 0.05) at 8% (highest) and 12%, both comparable to tenocytes. In contrast, the osteoblastic, chondrogenic, and adipogenic marker genes appeared to be downregulated. Conclusion. Our study suggests that mechanical loading at 8% strain and 1 Hz provides exclusive tenogenic differentiation; and produced comparable protein and gene expression to primary tenocytes.
Collapse
|
10
|
Gaspar D, Ryan CNM, Zeugolis DI. Multifactorial bottom-up bioengineering approaches for the development of living tissue substitutes. FASEB J 2019; 33:5741-5754. [PMID: 30681885 DOI: 10.1096/fj.201802451r] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Bottom-up bioengineering utilizes the inherent capacity of cells to build highly sophisticated structures with high levels of biomimicry. Despite the significant advancements in the field, monodomain approaches require prolonged culture time to develop an implantable device, usually associated with cell phenotypic drift in culture. Herein, we assessed the simultaneous effect of macromolecular crowding (MMC) and mechanical loading in enhancing extracellular matrix (ECM) deposition while maintaining tenocyte (TC) phenotype and differentiating bone marrow stem cells (BMSCs) or transdifferentiating neonatal and adult dermal fibroblasts toward tenogenic lineage. At d 7, all cell types presented cytoskeleton alignment perpendicular to the applied load independently of the use of MMC. MMC enhanced ECM deposition in all cell types. Gene expression analysis indicated that MMC and mechanical loading maintained TC phenotype, whereas tenogenic differentiation of BMSCs or transdifferentiation of dermal fibroblasts was not achieved. Our data suggest that multifactorial bottom-up bioengineering approaches significantly accelerate the development of biomimetic tissue equivalents.-Gaspar, D., Ryan, C. N. M., Zeugolis, D. I. Multifactorial bottom-up bioengineering approaches for the development of living tissue substitutes.
Collapse
Affiliation(s)
- Diana Gaspar
- Regenerative, Modular, and Developmental Engineering Laboratory (REMODEL), National University of Ireland Galway, Galway, Ireland.,Science Foundation Ireland (SFI), Centre for Research in Medical Devices (CÚRAM), National University of Ireland-Galway, Galway, Ireland
| | - Christina N M Ryan
- Regenerative, Modular, and Developmental Engineering Laboratory (REMODEL), National University of Ireland Galway, Galway, Ireland.,Science Foundation Ireland (SFI), Centre for Research in Medical Devices (CÚRAM), National University of Ireland-Galway, Galway, Ireland
| | - Dimitrios I Zeugolis
- Regenerative, Modular, and Developmental Engineering Laboratory (REMODEL), National University of Ireland Galway, Galway, Ireland.,Science Foundation Ireland (SFI), Centre for Research in Medical Devices (CÚRAM), National University of Ireland-Galway, Galway, Ireland
| |
Collapse
|
11
|
Liu C, Luo JW, Liang T, Lin LX, Luo ZP, Zhuang YQ, Sun YL. Matrix stiffness regulates the differentiation of tendon-derived stem cells through FAK-ERK1/2 activation. Exp Cell Res 2018; 373:62-70. [PMID: 30138615 DOI: 10.1016/j.yexcr.2018.08.023] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 08/16/2018] [Accepted: 08/19/2018] [Indexed: 12/12/2022]
Abstract
Tendon derived stem cells (TDSCs) were vital in tendon homeostasis. Nevertheless, the regulation of TDSCs differentiation in tendinopathy is unclear. Matrix stiffness modulated stem cells differentiation, and matrix stiffness of tendinopathic tissues decreased significantly. In order to clarify the role of matrix stiffness in TDSCs differentiation, they were cultured on the gelatin hydrogels with the stiffness from 2.34 ± 1.48 kPa to 24.09 ± 14.03 kPa. The effect of matrix stiffness on TDSCs proliferation and differentiation were investigated with CCK8 assay, immunofluorescences, real time PCR and western blot. It was found the proliferation of TDSCs increased and more stress fibers formed with increasing matrix stiffness. The differentiation of TDSCs into tenogenic, chondrogenic, and osteogenic lineages were inhibited on stiff hydrogel evidenced by reduced expression of tenocyte markers THBS4, TNMD, SCX, chondrocyte marker COL2, and osteocyte markers Runx2, Osterix, and ALP. Furthermore, the phosphorylation of FAK and ERK1/2 were enhanced when TDSCs grew on stiff hydrogel. After FAK or ERK1/2 was inhibited, the effect of matrix stiffness on differentiation of TDSCs was inhibited as well. The above results indicated matrix stiffness modulated the proliferation and differentiation of TDSCs, and the regulation effect could correlate to the activation of FAK or ERK1/2.
Collapse
Affiliation(s)
- Chang Liu
- Center for Translational Medicine Research and Development, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518000, China; Central Laboratory, Dalian Municipal Central Hospital, Dalian 116033, China.
| | - Jing-Wan Luo
- Center for Translational Medicine Research and Development, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518000, China.
| | - Ting Liang
- Institute of Orthopaedics, Soochow University, Suzhou 215007, China.
| | - Long-Xiang Lin
- Center for Translational Medicine Research and Development, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518000, China.
| | - Zong-Ping Luo
- Institute of Orthopaedics, Soochow University, Suzhou 215007, China
| | | | - Yu-Long Sun
- Center for Translational Medicine Research and Development, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518000, China.
| |
Collapse
|
12
|
Madhurakkat Perikamana SK, Lee J, Ahmad T, Kim EM, Byun H, Lee S, Shin H. Harnessing biochemical and structural cues for tenogenic differentiation of adipose derived stem cells (ADSCs) and development of an in vitro tissue interface mimicking tendon-bone insertion graft. Biomaterials 2018. [PMID: 29522987 DOI: 10.1016/j.biomaterials.2018.02.046] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Tendon-bone interface tissue is extremely challenging to engineer because it exhibits complex gradients of structure, composition, biologics, and cellular phenotypes. As a step toward engineering these transitional zones, we initially analyzed how different (topographical or biological) cues affect tenogenic differentiation of adipose-derived stem cells (ADSCs). We immobilized platelet-derived growth factor - BB (PDGF-BB) using polydopamine (PD) chemistry on random and aligned nanofibers and investigated ADSC proliferation and tenogenic differentiation. Immobilized PDGF greatly enhanced the proliferation and tenogenic differentiation of ADSCs; however, nanofiber alignment had no effect. Interestingly, the PDGF immobilized aligned nanofiber group showed a synergistic effect with maximum expression of tenogenic markers for 14 days. We also generated a nanofiber surface with spatially controlled presentation of immobilized PDGF on an aligned architecture, mimicking native tendon tissue. A gradient of immobilized PDGF was able to control the phenotypic differentiation of ADSCs into tenocytes in a spatially controlled manner, as confirmed by analysis of the expression of tenogenic markers and immunofluorescence staining. We further explored the gradient formation strategy by generation of a symmetrical gradient on the nanofiber surface for the generation of a structure mimicking bone-patellar-tendon-bone with provision for gradient immobilization of PDGF and controlled mineralization. Our study reveals that, together with biochemical cues, favorable topographical cues are important for tenogenic differentiation of ADSCs, and gradient presentation of PDGF can be used as a tool for engineering stem cell-based bone-tendon interface tissues.
Collapse
Affiliation(s)
- Sajeesh Kumar Madhurakkat Perikamana
- Department of Bioengineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 04763, Republic of Korea; BK21 Plus Future Biopharmaceutical Human Resources Training and Research Team, 222 Wangsimni-ro, Seongdong-gu, Seoul 04763, Republic of Korea
| | - Jinkyu Lee
- Department of Bioengineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 04763, Republic of Korea; BK21 Plus Future Biopharmaceutical Human Resources Training and Research Team, 222 Wangsimni-ro, Seongdong-gu, Seoul 04763, Republic of Korea
| | - Taufiq Ahmad
- Department of Bioengineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 04763, Republic of Korea; BK21 Plus Future Biopharmaceutical Human Resources Training and Research Team, 222 Wangsimni-ro, Seongdong-gu, Seoul 04763, Republic of Korea
| | - Eun Mi Kim
- Department of Bioengineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 04763, Republic of Korea; BK21 Plus Future Biopharmaceutical Human Resources Training and Research Team, 222 Wangsimni-ro, Seongdong-gu, Seoul 04763, Republic of Korea
| | - Hayeon Byun
- Department of Bioengineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 04763, Republic of Korea; BK21 Plus Future Biopharmaceutical Human Resources Training and Research Team, 222 Wangsimni-ro, Seongdong-gu, Seoul 04763, Republic of Korea
| | - Sangmin Lee
- Department of Bioengineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 04763, Republic of Korea; BK21 Plus Future Biopharmaceutical Human Resources Training and Research Team, 222 Wangsimni-ro, Seongdong-gu, Seoul 04763, Republic of Korea
| | - Heungsoo Shin
- Department of Bioengineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul 04763, Republic of Korea; BK21 Plus Future Biopharmaceutical Human Resources Training and Research Team, 222 Wangsimni-ro, Seongdong-gu, Seoul 04763, Republic of Korea.
| |
Collapse
|
13
|
Multiple intracellular signaling pathways orchestrate adipocytic differentiation of human bone marrow stromal stem cells. Biosci Rep 2018; 38:BSR20171252. [PMID: 29298881 PMCID: PMC5789155 DOI: 10.1042/bsr20171252] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Revised: 01/02/2018] [Accepted: 01/02/2018] [Indexed: 12/24/2022] Open
Abstract
Bone marrow adipocyte formation plays a role in bone homeostasis and whole body energy metabolism. However, the transcriptional landscape and signaling pathways associated with adipocyte lineage commitment and maturation are not fully delineated. Thus, we performed global gene expression profiling during adipocyte differentiation of human bone marrow stromal (mesenchymal) stem cells (hMSCs) and identified 2,589 up-regulated and 2,583 down-regulated mRNA transcripts. Pathway analysis on the up-regulated gene list untraveled enrichment in multiple signaling pathways including insulin receptor signaling, focal Adhesion, metapathway biotransformation, a number of metabolic pathways e.g. selenium metabolism, Benzo(a)pyrene metabolism, fatty acid, triacylglycerol, ketone body metabolism, tryptophan metabolism, and catalytic cycle of mammalian flavin-containing monooxygenase (FMOs). On the other hand, pathway analysis on the down-regulated genes revealed significant enrichment in pathways related to cell cycle regulation. Based on these data, we assessed the effect of pharmacological inhibition of FAK signaling using PF-573228, PF-562271, and InsR/IGF-1R using NVP-AEW541 and GSK-1904529A on adipocyte differentiation. hMSCs exposed to FAK or IGF-1R/InsR inhibitors exhibited fewer adipocyte formation (27–58% inhibition, P<0005). Concordantly, the expression of adipocyte-specific genes AP2, AdipoQ, and CEBPα was significantly reduced. On the other hand, we did not detect significant effects on cell viability as a result of FAK or IGF-1R/InsR inhibition. Our data identified FAK and insulin signaling as important intracellular signaling pathways relevant to bone marrow adipogenesis.
Collapse
|
14
|
Bogdanowicz DR, Lu HH. Designing the stem cell microenvironment for guided connective tissue regeneration. Ann N Y Acad Sci 2018; 1410:3-25. [PMID: 29265419 DOI: 10.1111/nyas.13553] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Revised: 10/20/2017] [Accepted: 10/24/2017] [Indexed: 12/13/2022]
Abstract
Adult mesenchymal stem cells (MSCs) are an attractive cell source for regenerative medicine because of their ability to self-renew and their capacity for multilineage differentiation and tissue regeneration. For connective tissues, such as ligaments or tendons, MSCs are vital to the modulation of the inflammatory response following acute injury while also interacting with resident fibroblasts to promote cell proliferation and matrix synthesis. To date, MSC injection for connective tissue repair has yielded mixed results in vivo, likely due to a lack of appropriate environmental cues to effectively control MSC response and promote tissue healing instead of scar formation. In healthy tissues, stem cells reside within a complex microenvironment comprising cellular, structural, and signaling cues that collectively maintain stemness and modulate tissue homeostasis. Changes to the microenvironment following injury regulate stem cell differentiation, trophic signaling, and tissue healing. Here, we focus on models of the stem cell microenvironment that are used to elucidate the mechanisms of stem cell regulation and inspire functional approaches to tissue regeneration. Recent studies in this frontier area are highlighted, focusing on how microenvironmental cues modulate MSC response following connective tissue injury and, more importantly, how this unique cell environment can be programmed for stem cell-guided tissue regeneration.
Collapse
Affiliation(s)
- Danielle R Bogdanowicz
- Biomaterials and Interface Tissue Engineering Laboratory, Department of Biomedical Engineering, Columbia University, New York, New York
| | - Helen H Lu
- Biomaterials and Interface Tissue Engineering Laboratory, Department of Biomedical Engineering, Columbia University, New York, New York
| |
Collapse
|
15
|
Liu J, Yan XL, Zheng XL, Mei L, Wang S, Han J, Yan H. Electric field exposure promotes epithelial‑mesenchymal transition in human lens epithelial cells via integrin β1‑FAK signaling. Mol Med Rep 2017; 16:4008-4014. [PMID: 28765922 PMCID: PMC5646981 DOI: 10.3892/mmr.2017.7086] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2016] [Accepted: 05/17/2017] [Indexed: 01/14/2023] Open
Abstract
Electric field (EF) exposure can affect the elongation, migration, orientation, and division of cells. The present study tested the hypothesis that EF may also affect epithelial-mesenchymal transition (EMT) in lens epithelial cells and that this effect may be an important inducer in the pathological process of posterior capsule opacification (PCO). Human lens epithelial (HLE)-B3 cells were exposed to an EF. Experiments were performed in the presence or absence of an anti-integrin β1 blocking antibody or a small molecule inhibitor targeting focal adhesion kinase (FAK). Cell morphology changes were observed by microscopy. The expression levels of integrin β1, FAK, phosphorylated (p)FAK and of EMT markers, E-cadherin and Vimentin, were examined by immunofluorescence, reverse transcription-quantitative polymerase chain reaction and western blotting. Following exposure to EF, HLE-B3 cells appeared elongated and resembled more fibroblast-like cells. Expression of E-cadherin was decreased, while expression of Vimentin was increased in HLE-B3 cells exposed to EF, compared with control cells. In addition, the mRNA expression levels of integrin β1 were increased, and the protein expression levels of integrin β1 and pFAK were increased in HLE-B3 cells exposed to EF, compared with control cells. Blocking of integrin β1 suppressed the EMT-related morphological changes of HLE-B3 cells and reduced the activation of FAK following EF exposure. However, blocking of pFAK did not affect the EMT status of HLE-B3 cells induced by EF. In conclusion, the present study demonstrated that EF exposure induced EMT in HLE-B3 cells and that this effect may partially be mediated by the activation of integrin β1-FAK signaling. The present results may provide a new mechanistic approach to prevent the development of PCO.
Collapse
Affiliation(s)
- Jun Liu
- Department of Ophthalmology, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710038, P.R. China
| | - Xiao-Long Yan
- Department of Thoracic Surgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710038, P.R. China
| | - Xiao-Liang Zheng
- Department of Thoracic Surgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710038, P.R. China
| | - Lin Mei
- Department of Ophthalmology, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710038, P.R. China
| | - Song Wang
- Department of Ophthalmology, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710038, P.R. China
| | - Jing Han
- Department of Ophthalmology, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710038, P.R. China
| | - Hong Yan
- Department of Ophthalmology, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710038, P.R. China
| |
Collapse
|
16
|
Rehmann MS, Luna JI, Maverakis E, Kloxin AM. Tuning microenvironment modulus and biochemical composition promotes human mesenchymal stem cell tenogenic differentiation. J Biomed Mater Res A 2016; 104:1162-74. [PMID: 26748903 PMCID: PMC5510610 DOI: 10.1002/jbm.a.35650] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Revised: 12/19/2015] [Accepted: 01/08/2016] [Indexed: 12/14/2022]
Abstract
Mesenchymal stem cells (MSCs) are promising for the regeneration of tendon and ligament tissues. Toward realizing this potential, microenvironment conditions are needed for promoting robust lineage-specific differentiation into tenocytes/ligament fibroblasts. Here, we utilized a statistical design of experiments approach to examine combinations of matrix modulus, composition, and soluble factors in human MSC tenogenic/ligamentogenic differentiation. Specifically, well-defined poly(ethylene glycol)-based hydrogels were synthesized using thiol-ene chemistry providing a bioinert base for probing cell response to extracellular matrix cues. Monomer concentrations were varied to achieve a range of matrix moduli (E ∼ 10-90 kPa), and different ratios of integrin-binding peptides were incorporated (GFOGER and RGDS for collagen and fibronectin, respectively), mimicking aspects of developing tendon/ligament tissue. A face-centered central composite response surface design was utilized to understand the contributions of these cues to human MSC differentiation in the presence of soluble factors identified to promote tenogenesis/ligamentogenesis (BMP-13 and ascorbic acid). Increasing modulus and collagen mimetic peptide content increased relevant gene expression and protein production or retention (scleraxis, collagen I, tenascin-C). These findings could inform the design of materials for tendon/ligament regeneration. More broadly, the design of experiments enabled efficient data acquisition and analysis, requiring fewer replicates than if each factor had been varied one at a time. This approach can be combined with other stimuli (for example, mechanical stimulation) toward a better mechanistic understanding of differentiation down these challenging lineages.
Collapse
Affiliation(s)
- Matthew S Rehmann
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware, 19716
| | - Jesus I Luna
- Department of Dermatology, School of Medicine, University of California, Davis, California, 95816
| | - Emanual Maverakis
- Department of Dermatology, School of Medicine, University of California, Davis, California, 95816
| | - April M Kloxin
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, Delaware, 19716
- Department of Materials Science and Engineering, University of Delaware, Newark, Delaware, 19716
| |
Collapse
|
17
|
Guo S, Nighot M, Al-Sadi R, Alhmoud T, Nighot P, Ma TY. Lipopolysaccharide Regulation of Intestinal Tight Junction Permeability Is Mediated by TLR4 Signal Transduction Pathway Activation of FAK and MyD88. THE JOURNAL OF IMMUNOLOGY 2015; 195:4999-5010. [PMID: 26466961 DOI: 10.4049/jimmunol.1402598] [Citation(s) in RCA: 287] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Accepted: 08/26/2015] [Indexed: 12/24/2022]
Abstract
Gut-derived bacterial LPS plays an essential role in inducing intestinal and systemic inflammatory responses and have been implicated as a pathogenic factor in necrotizing enterocolitis and inflammatory bowel disease. The defective intestinal tight junction barrier was shown to be an important factor contributing to the development of intestinal inflammation. LPS, at physiological concentrations, causes an increase in intestinal tight junction permeability (TJP) via a TLR4-dependent process; however, the intracellular mechanisms that mediate LPS regulation of intestinal TJP remain unclear. The aim of this study was to investigate the adaptor proteins and the signaling interactions that mediate LPS modulation of intestinal tight junction barrier using in vitro and in vivo model systems. LPS caused a TLR4-dependent activation of membrane-associated adaptor protein focal adhesion kinase (FAK) in Caco-2 monolayers. LPS caused an activation of both MyD88-dependent and -independent pathways. Small interfering RNA silencing of MyD88 prevented an LPS-induced increase in TJP. LPS caused MyD88-dependent activation of IL-1R-associated kinase 4. TLR4, FAK, and MyD88 were colocalized. Small interfering silencing of TLR4 inhibited TLR4-associated FAK activation, and FAK knockdown prevented MyD88 activation. In vivo studies also confirmed that the LPS-induced increase in mouse intestinal permeability was associated with FAK and MyD88 activation; knockdown of intestinal epithelial FAK prevented an LPS-induced increase in intestinal permeability. Additionally, high-dose LPS-induced intestinal inflammation was dependent on the TLR4/FAK/MyD88 signal transduction axis. To our knowledge, our data show for the first time that the LPS-induced increases in intestinal TJP and intestinal inflammation were regulated by TLR4-dependent activation of the FAK/MyD88/IL-1R-associated kinase 4 signaling pathway.
Collapse
Affiliation(s)
- Shuhong Guo
- Department of Internal Medicine, University of New Mexico School of Medicine, Albuquerque, NM 87131; and Albuquerque Veterans Affairs Medical Center, Albuquerque, NM 87108
| | - Meghali Nighot
- Department of Internal Medicine, University of New Mexico School of Medicine, Albuquerque, NM 87131; and
| | - Rana Al-Sadi
- Department of Internal Medicine, University of New Mexico School of Medicine, Albuquerque, NM 87131; and Albuquerque Veterans Affairs Medical Center, Albuquerque, NM 87108
| | - Tarik Alhmoud
- Department of Internal Medicine, University of New Mexico School of Medicine, Albuquerque, NM 87131; and
| | - Prashant Nighot
- Department of Internal Medicine, University of New Mexico School of Medicine, Albuquerque, NM 87131; and
| | - Thomas Y Ma
- Department of Internal Medicine, University of New Mexico School of Medicine, Albuquerque, NM 87131; and Albuquerque Veterans Affairs Medical Center, Albuquerque, NM 87108
| |
Collapse
|
18
|
Liu L, Zhu Q, Wang J, Xi Q, Zhu H, Gu M. Gene expression changes in human mesenchymal stem cells from patients with osteoporosis. Mol Med Rep 2015; 12:981-7. [PMID: 25815782 PMCID: PMC4438949 DOI: 10.3892/mmr.2015.3514] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2014] [Accepted: 12/09/2014] [Indexed: 01/02/2023] Open
Abstract
The aim of the present study was to investigate the underlying molecular mechanisms of osteoporosis and to identify novel candidate genes involved in this disease. The gene expression profile of GSE35958 was downloaded from Gene Expression Omnibus, including five samples of human mesenchymal stem cells from patients with osteoporosis and four control samples. Differentially expressed genes (DEGs) were initially identified following an analysis using Student’s t-test. Subsequently, a protein-protein interaction (PPI) network of the significant pathways was constructed, based on the Human Protein Reference Database. In the significant pathways, DEGs were screened using cut-off criteria of FDR<0.1 and |log2FC|>1.5. A co-change network for pathways was also constructed using the method of cumulative hypergeometric probability distribution. Finally, the transcriptional regulatory network for DEGs was constructed based on the TRANSFAC database. In total, 1,127 DEGs, including 554 upregulated and 573 downregulated DEGs, were screened. The constructed PPI network for the DEGs involved in the two significant pathways, including focal adhesion and lysosome, demonstrated that the five DEGs with a high degree (>60) were β-catenin, SHC-transforming protein 1, RAC-α serine/threonine-protein kinase, caveolin 1 and filamin A, with degrees of 135, 117, 117, 73 and 63, respectively. The pathway with the degree of 22 in the constructed co-change network was neuroactive ligand receptor interaction. The nine genes with a high (≥9) degree in the constructed transcriptional regulatory network were REL-associated protein, upstream stimulatory factor 1, specificity protein 1, Fos-related antigen 1, cyclin-dependent kinase inhibitor 1A, upstream stimulatory factor 2, ETS domain-containing protein Elk-1, JUND and retinoic acid receptor α, with degrees of 29, 27, 19, 18, 17, 13, 11, 11 and 9, respectively. The DEGs with high degree in the PPI and transcriptional regulatory networks may be candidate target molecules, which may be used to monitor, diagnose and treat osteoporosis.
Collapse
Affiliation(s)
- Lianyong Liu
- Department of Endocrinology, Shanghai Pudong Gongli Hospital, Shanghai 200135, P.R. China
| | - Qingyun Zhu
- Department of Gastroenterology, Shanghai Pudong Gongli Hospital, Shanghai 200135, P.R. China
| | - Jingnan Wang
- Department of Endocrinology, Shanghai Pudong Gongli Hospital, Shanghai 200135, P.R. China
| | - Qian Xi
- Department of Endocrinology, Shanghai Pudong Gongli Hospital, Shanghai 200135, P.R. China
| | - Hongling Zhu
- Department of Endocrinology, Shanghai Pudong Gongli Hospital, Shanghai 200135, P.R. China
| | - Mingjun Gu
- Department of Endocrinology, Shanghai Pudong Gongli Hospital, Shanghai 200135, P.R. China
| |
Collapse
|
19
|
Chen JL, Zhang W, Liu ZY, Heng BC, Ouyang HW, Dai XS. Physical regulation of stem cells differentiation into teno-lineage: current strategies and future direction. Cell Tissue Res 2014; 360:195-207. [DOI: 10.1007/s00441-014-2077-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Accepted: 11/17/2014] [Indexed: 12/18/2022]
|
20
|
Noronha-Matos JB, Coimbra J, Sá-e-Sousa A, Rocha R, Marinhas J, Freitas R, Guerra-Gomes S, Ferreirinha F, Costa MA, Correia-de-Sá P. P2X7-induced zeiosis promotes osteogenic differentiation and mineralization of postmenopausal bone marrow-derived mesenchymal stem cells. FASEB J 2014; 28:5208-22. [PMID: 25169056 DOI: 10.1096/fj.14-257923] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Polymorphisms of the P2X7 receptor have been associated with increased risk of fractures in postmenopausal women. Although both osteoblasts and osteoclasts express P2X7 receptors, their function in osteogenesis remains controversial. Here, we investigated the role of the P2X7 receptor on osteogenic differentiation and mineralization of bone marrow mesenchymal stem cell (BMSC) cultures from postmenopausal women (age 71±3 yr, n=18). We focused on the mechanisms related to intracellular [Ca(2+)]i oscillations and plasma membrane-dynamics. ATP, and the P2X7 agonist BzATP (100 μM), increased [Ca(2+)]i in parallel to the formation of membrane pores permeable to TO-PRO-3 dye uptake. ATP and BzATP elicited reversible membrane blebs (zeiosis) in 38 ± 1 and 70 ± 1% of the cells, respectively. P2X7-induced zeiosis was Ca(2+) independent, but involved phospholipase C, protein kinase C, and Rho-kinase activation. BzATP (100 μM) progressively increased the expression of Runx-2 and Osterix transcription factors by 452 and 226% (at d 21), respectively, alkaline phosphatase activity by 88% (at d 28), and mineralization by 329% (at d 43) of BMSC cultures in a Rho-kinase-dependent manner. In summary, reversible plasma membrane zeiosis involving cytoskeleton rearrangements due to activation of the P2X7-Rho-kinase axis promotes osteogenic differentiation and mineralization of BMSCs, thus providing new therapeutic targets for postmenopausal bone loss.
Collapse
Affiliation(s)
- José Bernardo Noronha-Matos
- Laboratório de Farmacologia e Neurobiologia and Center for Drug Discovery and Innovative Medicines, Instituto de Ciências Biomédicas Abel Salazar-Universidade do Porto (ICBAS-UP), Porto, Portugal; and
| | - João Coimbra
- Laboratório de Farmacologia e Neurobiologia and Center for Drug Discovery and Innovative Medicines, Instituto de Ciências Biomédicas Abel Salazar-Universidade do Porto (ICBAS-UP), Porto, Portugal; and
| | - Ana Sá-e-Sousa
- Laboratório de Farmacologia e Neurobiologia and Center for Drug Discovery and Innovative Medicines, Instituto de Ciências Biomédicas Abel Salazar-Universidade do Porto (ICBAS-UP), Porto, Portugal; and
| | - Rui Rocha
- Serviço de Ortopedia e Traumatologia, Centro Hospitalar de Vila Nova de Gaia/Espinho, Vila Nova de Gaia, Portugal
| | - José Marinhas
- Serviço de Ortopedia e Traumatologia, Centro Hospitalar de Vila Nova de Gaia/Espinho, Vila Nova de Gaia, Portugal
| | - Rolando Freitas
- Serviço de Ortopedia e Traumatologia, Centro Hospitalar de Vila Nova de Gaia/Espinho, Vila Nova de Gaia, Portugal
| | - Sónia Guerra-Gomes
- Laboratório de Farmacologia e Neurobiologia and Center for Drug Discovery and Innovative Medicines, Instituto de Ciências Biomédicas Abel Salazar-Universidade do Porto (ICBAS-UP), Porto, Portugal; and
| | - Fátima Ferreirinha
- Laboratório de Farmacologia e Neurobiologia and Center for Drug Discovery and Innovative Medicines, Instituto de Ciências Biomédicas Abel Salazar-Universidade do Porto (ICBAS-UP), Porto, Portugal; and
| | - Maria Adelina Costa
- Laboratório de Farmacologia e Neurobiologia and Departamento de Química, Unit for Multidisciplinary Research in Biomedicine (UMIB), and Center for Drug Discovery and Innovative Medicines, Instituto de Ciências Biomédicas Abel Salazar-Universidade do Porto (ICBAS-UP), Porto, Portugal; and
| | - Paulo Correia-de-Sá
- Laboratório de Farmacologia e Neurobiologia and Center for Drug Discovery and Innovative Medicines, Instituto de Ciências Biomédicas Abel Salazar-Universidade do Porto (ICBAS-UP), Porto, Portugal; and
| |
Collapse
|
21
|
In vitro experimental study for the determination of cellular axial strain threshold and preferential axial strain from cell orientation behavior in a non-uniform deformation field. Cell Biochem Biophys 2014; 67:1249-59. [PMID: 23703662 DOI: 10.1007/s12013-013-9643-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Cells within connective tissues are routinely subjected to a wide range of non-uniform mechanical loads that regulate many cell behaviors. In the present study, the relationship between cell orientation angle and strain value of the membrane was comprehensively investigated using an inhomogeneous strain field. Additionally, the cellular axial strain threshold, which corresponds to the launching of cell reorientation response, was elucidated. Human bone marrow mesenchymal stem cells were used for these experiments. In this study, an inhomogeneous strain distribution was easily created by removing one side holes of an elastic chamber in a commonly used uniaxial stretching device. The strains of 2D stretched membranes were quantified on a position-by-position basis using the digital image correlation method. The normal strain in the direction of stretch was changed continuously from 2.0 to 15.0%. A 3D histogram of the cell frequency, which was correlated with the cell orientation angle and normal strain of the membrane, made it possible to determine the axial strain threshold accurately. The value of the axial strain threshold was 4.4 ± 0.3%, which was reasonable compared with previous studies based on cyclic uniaxial stretch stimulation (homogeneous strain field). Additionally, preferential axial strain of cells, which was a cell property firstly introduced, was also achieved and the value was -2.0 ± 0.1%. This study is novel in three respects: (i) it precisely and easily determined the axial strain threshold of cells; (ii) it is the first to suggest preferential axial strain of cells; and (iii) it methodically investigated cell behavior in an inhomogeneous strain field.
Collapse
|
22
|
Xu B, Ju Y, Song G. Role of p38, ERK1/2, focal adhesion kinase, RhoA/ROCK and cytoskeleton in the adipogenesis of human mesenchymal stem cells. J Biosci Bioeng 2014; 117:624-31. [DOI: 10.1016/j.jbiosc.2013.10.018] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2013] [Revised: 09/27/2013] [Accepted: 10/23/2013] [Indexed: 12/26/2022]
|
23
|
Morita Y, Mukai T, Ju Y, Watanabe S. Evaluation of stem cell-to-tenocyte differentiation by atomic force microscopy to measure cellular elastic moduli. Cell Biochem Biophys 2013; 66:73-80. [PMID: 23090789 DOI: 10.1007/s12013-012-9455-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
In the present study, we evaluated whether stem cell-to-tenocyte differentiation could be evaluated via measurement of the mechanical properties of the cell. We used mechanical uniaxial cyclic stretching to induce the differentiation of human bone marrow mesenchymal stem cells into tenocytes. The cells were subjected to cyclic elongation of 10 or 15 % at a cyclic frequency of 1 Hz for 24 or 48 h, and differentiation was assessed by real-time PCR (rtPCR) determination of messenger RNA expression levels for four commonly used markers of stem cell-to-tenocyte differentiation: type I collagen, type III collagen, tenascin-C, and scleraxis. The rtPCR results showed that cells subjected to 10 % cyclic elongation for 24 or 48 h differentiated into tenocytes. Atomic force microscopy (AFM) was then used to measure the force curves around the cell nuclei, and the AFM data were used to calculate the elastic moduli of the cell surfaces. The elastic modulus values of the control (non-stretched) cells differed significantly from those of cells stretched at 10 % for 24 or 48 h (P < 0.01). Confocal fluorescence microscopic observations of actin stress fibers suggested that the change in elastic modulus was ascribable to the development of the cellular cytoskeleton during the differentiation process. Therefore, we conclude that the atomic force microscopic measurement of the elastic modulus of the cell surface can be used to evaluate stem cell-to-tenocyte differentiation.
Collapse
Affiliation(s)
- Yasuyuki Morita
- Department of Mechanical Science & Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8603, Japan
| | | | | | | |
Collapse
|
24
|
Schiele NR, Marturano JE, Kuo CK. Mechanical factors in embryonic tendon development: potential cues for stem cell tenogenesis. Curr Opin Biotechnol 2013; 24:834-40. [PMID: 23916867 DOI: 10.1016/j.copbio.2013.07.003] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2013] [Revised: 07/12/2013] [Accepted: 07/12/2013] [Indexed: 12/22/2022]
Abstract
Tendons are connective tissues required for motion and are frequently injured. Poor healing and inadequate return to normal tissue structure and mechanical function make tendon a prime candidate for tissue engineering; however functional tendons have yet to be engineered. The physical environment, from substrate stiffness to dynamic mechanical loading, may regulate tenogenic stem cell differentiation. Tissue stiffness and loading parameters derived from embryonic development may enhance tenogenic stem cell differentiation and tendon tissue formation. We highlight the current understanding of the mechanical environment experienced by embryonic tendons and how progenitor cells may sense and respond to physical inputs. We further discuss how mechanical factors have only recently been used to induce tenogenic fate in stem cells.
Collapse
Affiliation(s)
- Nathan R Schiele
- Department of Biomedical Engineering, Tufts University, 4 Colby Street, Medford, MA 02155, USA
| | | | | |
Collapse
|
25
|
Song Y, Ju Y, Song G, Morita Y. In vitro proliferation and osteogenic differentiation of mesenchymal stem cells on nanoporous alumina. Int J Nanomedicine 2013; 8:2745-56. [PMID: 23935364 PMCID: PMC3735283 DOI: 10.2147/ijn.s44885] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Cell adhesion, migration, and proliferation are significantly affected by the surface topography of the substrates on which the cells are cultured. Alumina is one of the most popular implant materials used in orthopedics, but few data are available concerning the cellular responses of mesenchymal stem cells (MSCs) grown on nanoporous structures. MSCs were cultured on smooth alumina substrates and nanoporous alumina substrates to investigate the interaction between surface topographies of nanoporous alumina and cellular behavior. Nanoporous alumina substrates with pore sizes of 20 nm and 100 nm were used to evaluate the effect of pore size on MSCs as measured by proliferation, morphology, expression of integrin β1, and osteogenic differentiation. An MTT assay was used to measure cell viability of MSCs on different substrates, and determined that cell viability decreased with increasing pore size. Scanning electron microscopy was used to investigate the effect of pore size on cell morphology. Extremely elongated cells and prominent cell membrane protrusions were observed in cells cultured on alumina with the larger pore size. The expression of integrin β1 was enhanced in MSCs cultured on porous alumina, revealing that porous alumina substrates were more favorable for cell growth than smooth alumina substrates. Higher levels of osteoblastic differentiation markers such as alkaline phosphatase, osteocalcin, and mineralization were detected in cells cultured on alumina with 100 nm pores compared with cells cultured on alumina with either 20 nm pores or smooth alumina. This work demonstrates that cellular behavior is affected by variation in pore size, providing new insight into the potential application of this novel biocompatible material for the developing field of tissue engineering.
Collapse
Affiliation(s)
- Yuanhui Song
- Department of Mechanical Science and Engineering, Nagoya University, Nagoya, Japan
| | - Yang Ju
- Department of Mechanical Science and Engineering, Nagoya University, Nagoya, Japan
| | - Guanbin Song
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, People’s Republic of China
| | - Yasuyuki Morita
- Department of Mechanical Science and Engineering, Nagoya University, Nagoya, Japan
| |
Collapse
|
26
|
Saldaña L, Crespo L, Bensiamar F, Arruebo M, Vilaboa N. Mechanical forces regulate stem cell response to surface topography. J Biomed Mater Res A 2013; 102:128-40. [PMID: 23613185 DOI: 10.1002/jbm.a.34674] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2013] [Accepted: 02/21/2013] [Indexed: 12/21/2022]
Abstract
The interactions between bone tissue and orthopedic implants are strongly affected by mechanical forces at the bone-implant interface, but the interplay between surface topographies, mechanical stimuli, and cell behavior is complex and not well understood yet. This study reports on the influence of mechanical stretch on human mesenchymal stem cells (hMSCs) attached to metallic substrates with different roughness. Controlled forces were applied to plasma membrane of hMSCs cultured on smooth and rough stainless steel surfaces using magnetic collagen-coated particles and an electromagnet system. Degree of phosphorylation of focal adhesion kinase (p-FAK) on the active form (Tyr-397), prostaglandin E2 (PGE2) and vascular endothelial growth factor (VEGF) levels increased on rough samples under static conditions. Cell viability and fibronectin production decreased on rough substrates, while hMSCs maturated to the osteoblastic lineage to a similar extent on both surfaces. PGE2 production and osteoprotegerin/receptor activator of nuclear factor kappa-B ligand ratio increased after force application on both surfaces, although to a greater extent on smooth substrates. p-FAK on Tyr-397 was induced fairly rapidly by mechanical stimulation on rough surfaces while cells cultured on smooth samples failed to activate this kinase in response to tensile forces. Mechanical forces enhanced VEGF secretion and reduced cell viability, fibronetin levels and osteoblastic maturation on smooth surfaces but not on rough samples. The magnetite beads model used in this study is well suited to characterize the response of hMSCs cultured on metallic surfaces to tensile forces and collected data suggest a mechanism whereby mechanotransduction driven by FAK is essential for stem cell growth and functioning on metallic substrates.
Collapse
Affiliation(s)
- Laura Saldaña
- Unidad de Investigación, Hospital Universitario La Paz-IdiPAZ, Paseo de la Castellana 261, 28046 Madrid, Spain; CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Spain
| | | | | | | | | |
Collapse
|
27
|
Xu B, Song G, Ju Y, Li X, Song Y, Watanabe S. RhoA/ROCK, cytoskeletal dynamics, and focal adhesion kinase are required for mechanical stretch-induced tenogenic differentiation of human mesenchymal stem cells. J Cell Physiol 2012; 227:2722-9. [PMID: 21898412 DOI: 10.1002/jcp.23016] [Citation(s) in RCA: 125] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Human bone marrow mesenchymal stem cells (hMSCs) have the potential to differentiate into tendon/ligament-like lineages when they are subjected to mechanical stretching. However, the means through which mechanical stretch regulates the tenogenic differentiation of hMSCs remains unclear. This study examined the role of RhoA/ROCK, cytoskeletal organization, and focal adhesion kinase (FAK) in mechanical stretch-induced tenogenic differentiation characterized by the up-regulation of tendon-related marker gene expression. Our findings showed that RhoA/ROCK and FAK regulated mechanical stretch-induced realignment of hMSCs by regulating cytoskeletal organization and that RhoA/ROCK and cytoskeletal organization were essential to mechanical stretch-activated FAK phosphorylation at Tyr397. We also demonstrated that this process can be blocked by Y-27632 (a specific inhibitor of RhoA/ROCK), cytochalasin D (an inhibitor of cytoskeletal organization) or PF 573228 (a specific inhibitor of FAK). The results of this study suggest that RhoA/ROCK, cytoskeletal organization, and FAK compose a "signaling network" that senses mechanical stretching and drives mechanical stretch-induced tenogenic differentiation of hMSCs. This work provides novel insights regarding the mechanisms of tenogenesis in a stretch-induced environment and supports the therapeutic potential of hMSCs.
Collapse
Affiliation(s)
- Baiyao Xu
- Department of Mechanical Science and Engineering, Nagoya University, Nagoya, Japan
| | | | | | | | | | | |
Collapse
|
28
|
Riehl BD, Park JH, Kwon IK, Lim JY. Mechanical stretching for tissue engineering: two-dimensional and three-dimensional constructs. TISSUE ENGINEERING PART B-REVIEWS 2012; 18:288-300. [PMID: 22335794 DOI: 10.1089/ten.teb.2011.0465] [Citation(s) in RCA: 139] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Mechanical cell stretching may be an attractive strategy for the tissue engineering of mechanically functional tissues. It has been demonstrated that cell growth and differentiation can be guided by cell stretch with minimal help from soluble factors and engineered tissues that are mechanically stretched in bioreactors may have superior organization, functionality, and strength compared with unstretched counterparts. This review explores recent studies on cell stretching in both two-dimensional (2D) and three-dimensional (3D) setups focusing on the applications of stretch stimulation as a tool for controlling cell orientation, growth, gene expression, lineage commitment, and differentiation and for achieving successful tissue engineering of mechanically functional tissues, including cardiac, muscle, vasculature, ligament, tendon, bone, and so on. Custom stretching devices and lab-specific mechanical bioreactors are described with a discussion on capabilities and limitations. While stretch mechanotransduction pathways have been examined using 2D stretch, studying such pathways in physiologically relevant 3D environments may be required to understand how cells direct tissue development under stretch. Cell stretch study using 3D milieus may also help to develop tissue-specific stretch regimens optimized with biochemical feedback, which once developed will provide optimal tissue engineering protocols.
Collapse
Affiliation(s)
- Brandon D Riehl
- Department of Mechanical and Materials Engineering, University of Nebraska-Lincoln, Lincoln, Nebraska 68588, USA
| | | | | | | |
Collapse
|