1
|
Newton JB, Weiss SN, Nuss CA, Darrieutort-Laffite C, Eekhoff JD, Birk DE, Soslowsky LJ. Decorin and/or biglycan knockdown in aged mouse patellar tendon impacts fibril morphology, scar area, and mechanical properties. J Orthop Res 2024; 42:2400-2413. [PMID: 38967120 PMCID: PMC11479833 DOI: 10.1002/jor.25931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 05/29/2024] [Accepted: 06/20/2024] [Indexed: 07/06/2024]
Abstract
Small leucine-rich proteoglycans, such as decorin and biglycan, play pivotal roles in collagen fibrillogenesis during development, healing, and aging in tendon. Previous work has shown that the absence of decorin and biglycan affects fibril shape and mechanical properties during tendon healing. However, the roles of decorin and biglycan in the healing process of aged tendons are unclear. Therefore the objective of this study was to evaluate the differential roles of decorin and biglycan during healing of patellar tendon injury in aged mice. Aged (300 days old) female Dcn+/+/Bgn+/+ control (WT, n = 52), Dcnflox/flox (I-Dcn-/-, n = 36), Bgnflox/flox (I-Bgn-/-, n = 36), and compound Dcnflox/flox/Bgnflox/flox (I-Dcn-/-/Bgn-/-, n = 36) mice with a tamoxifen-inducible Cre were utilized. Targeted gene expression, collagen fibril diameter distributions, mechanical properties, and histological assays were employed to assess the effects of knockdown of decorin and/or biglycan at the time of injury. Knockdown resulted in alterations in fibril diameter distribution and scar area, but surprisingly did not lead to many differences in mechanical properties. Biglycan played a larger role in early healing stages, while decorin is more significant in later stages, particularly in scar remodeling. This study highlights some of the differential roles of biglycan and decorin in the regulation of fibril structure and scar area, as well as influencing gene expression during healing in aged mice.
Collapse
Affiliation(s)
- Joseph B Newton
- Department of Orthopaedic Surgery, McKay Orthopaedic Research Laboratory, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Stephanie N Weiss
- Department of Orthopaedic Surgery, McKay Orthopaedic Research Laboratory, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Courtney A Nuss
- Department of Orthopaedic Surgery, McKay Orthopaedic Research Laboratory, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Christelle Darrieutort-Laffite
- Department of Orthopaedic Surgery, McKay Orthopaedic Research Laboratory, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Jeremy D Eekhoff
- Department of Orthopaedic Surgery, McKay Orthopaedic Research Laboratory, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - David E Birk
- Department of Molecular Pharmacology and Physiology, Morsani College of Medicine, University of South Florida, Tampa, Flordia, USA
| | - Louis J Soslowsky
- Department of Orthopaedic Surgery, McKay Orthopaedic Research Laboratory, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
2
|
Leiphart RJ, Pham H, Harvey T, Komori T, Kilts TM, Shetye SS, Weiss SN, Adams SM, Birk DE, Soslowsky LJ, Young MF. Coordinate roles for collagen VI and biglycan in regulating tendon collagen fibril structure and function. Matrix Biol Plus 2022; 13:100099. [PMID: 35036900 PMCID: PMC8749075 DOI: 10.1016/j.mbplus.2021.100099] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 12/21/2021] [Accepted: 12/21/2021] [Indexed: 11/28/2022] Open
Abstract
Tendon is a vital musculoskeletal tissue that is prone to degeneration. Proper tendon maintenance requires complex interactions between extracellular matrix components that remain poorly understood. Collagen VI and biglycan are two matrix molecules that localize pericellularly within tendon and are critical regulators of tissue properties. While evidence suggests that collagen VI and biglycan interact within the tendon matrix, the relationship between the two molecules and its impact on tendon function remains unknown. We sought to elucidate potential coordinate roles of collagen VI and biglycan within tendon by defining tendon properties in knockout models of collagen VI, biglycan, or both molecules. We first demonstrated co-expression and co-localization of collagen VI and biglycan within the healing tendon, providing further evidence of cooperation between the two molecules during nascent tendon matrix formation. Deficiency in collagen VI and/or biglycan led to significant reductions in collagen fibril size and tendon mechanical properties. However, collagen VI-null tendons displayed larger reductions in fibril size and mechanics than seen in biglycan-null tendons. Interestingly, knockout of both molecules resulted in similar properties to collagen VI knockout alone. These results indicate distinct and non-additive roles for collagen VI and biglycan within tendon. This work provides better understanding of regulatory interactions between two critical tendon matrix molecules.
Collapse
Affiliation(s)
- Ryan J. Leiphart
- McKay Orthopedic Research Laboratory, University of Pennsylvania, Philadelphia, PA, USA
| | - Hai Pham
- National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892, USA
| | - Tyler Harvey
- Carnegie Institution for Science, Department of Embryology, The Johns Hopkins University, USA
| | - Taishi Komori
- National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892, USA
| | - Tina M. Kilts
- National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892, USA
| | - Snehal S. Shetye
- McKay Orthopedic Research Laboratory, University of Pennsylvania, Philadelphia, PA, USA
| | - Stephanie N. Weiss
- McKay Orthopedic Research Laboratory, University of Pennsylvania, Philadelphia, PA, USA
| | - Sheila M. Adams
- University of South Florida, Morsani College of Medicine, Tampa, FL 33612, USA
| | - David E. Birk
- University of South Florida, Morsani College of Medicine, Tampa, FL 33612, USA
| | - Louis J. Soslowsky
- McKay Orthopedic Research Laboratory, University of Pennsylvania, Philadelphia, PA, USA
| | - Marian F. Young
- National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
3
|
He SK, Ning LJ, Yao X, Hu RN, Cui J, Zhang Y, Ding W, Luo JC, Qin TW. Hierarchically Demineralized Cortical Bone Combined With Stem Cell-Derived Extracellular Matrix for Regeneration of the Tendon-Bone Interface. Am J Sports Med 2021; 49:1323-1332. [PMID: 33667131 DOI: 10.1177/0363546521994511] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
BACKGROUND Poor healing of the tendon-bone interface after rotator cuff repair is one of the main causes of surgical failure. Previous studies demonstrated that demineralized cortical bone (DCB) could improve healing of the enthesis. PURPOSE To evaluate the outcomes of hierarchically demineralized cortical bone (hDCB) coated with stem cell-derived extracellular matrix (hDCB-ECM) in the repair of the rotator cuff in a rabbit model. STUDY DESIGN Controlled laboratory study. METHODS Tendon-derived stem cells (TDSCs) were isolated, cultured, and identified. Then, hDCB was prepared by the graded demineralization procedure. Finally, hDCB-ECM was fabricated via 2-week cell culture and decellularization, and the morphologic features and biochemical compositions of the hDCB-ECM were evaluated. A total of 24 rabbits (48 samples) were randomly divided into 4 groups: control, DCB, hDCB, and hDCB-ECM. All rabbits underwent bilateral detachment of the infraspinatus tendon, and the tendon-bone interface was repaired with or without scaffolds. After surgery, 8 rabbits were assessed by immunofluorescence staining at 2 weeks, and the others were assessed by micro-computed tomography (CT) examination, immunohistochemical staining, histological staining, and biomechanical testing at 12 weeks. RESULTS TDSCs were identified to have universal stem cell characteristics including cell markers, clonogenicity, and multilineage differentiation. The hDCB-ECM contained 3 components (bone, partial DCB, and DCB coated with ECM) with a gradient of calcium and phosphorus elements, and the ECM had stromal cell-derived factor 1, biglycan, and fibromodulin. Macroscopic observations demonstrated the absence of infection and rupture around the enthesis. The results of immunofluorescence staining showed that hDCB-ECM promoted stromal cell recruitment. Results of micro-CT analysis, immunohistochemical staining, and histological staining showed that hDCB-ECM enhanced bone and fibrocartilage formation at the tendon-bone interface. Biomechanical analysis showed that the hDCB-ECM group had higher ultimate tensile stress and Young modulus than the DCB group. CONCLUSION The administration of hDCB-ECM promoted healing of the tendon-bone interface. CLINICAL RELEVANCE hDCB-ECM could provide useful information for the design of scaffolds to repair the tendon-bone interface, and further studies are needed to determine its effectiveness.
Collapse
Affiliation(s)
- Shu-Kun He
- Laboratory of Stem Cell and Tissue Engineering, Orthopedic Research Institute, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, China.,Department of Orthopedics, West China Hospital, Sichuan University, Chengdu, China
| | - Liang-Ju Ning
- Laboratory of Stem Cell and Tissue Engineering, Orthopedic Research Institute, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, China
| | - Xuan Yao
- Laboratory of Stem Cell and Tissue Engineering, Orthopedic Research Institute, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, China.,Department of Clinical Hematology, Faculty of Laboratory Medicine, Army Medical University, Chongqing, China
| | - Ruo-Nan Hu
- Laboratory of Stem Cell and Tissue Engineering, Orthopedic Research Institute, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, China
| | - Jing Cui
- Laboratory of Stem Cell and Tissue Engineering, Orthopedic Research Institute, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, China
| | - Yi Zhang
- Laboratory of Stem Cell and Tissue Engineering, Orthopedic Research Institute, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, China
| | - Wei Ding
- Laboratory of Stem Cell and Tissue Engineering, Orthopedic Research Institute, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, China
| | - Jing-Cong Luo
- Laboratory of Stem Cell and Tissue Engineering, Orthopedic Research Institute, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, China
| | - Ting-Wu Qin
- Laboratory of Stem Cell and Tissue Engineering, Orthopedic Research Institute, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University and Collaborative Innovation Center of Biotherapy, Chengdu, China
| |
Collapse
|
4
|
Zhang YJ, Qing Q, Zhang YJ, Ning LJ, Cui J, Yao X, Luo JC, Ding W, Qin TW. Enhancement of tenogenic differentiation of rat tendon-derived stem cells by biglycan. J Cell Physiol 2019; 234:15898-15910. [PMID: 30714152 DOI: 10.1002/jcp.28247] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Revised: 01/12/2019] [Accepted: 01/15/2019] [Indexed: 02/05/2023]
Abstract
Biglycan (BGN) has been identified as one of the critical components of the tendon-derived stem cells (TDSCs) niche and may be related to tendon formation. However, so far, no study has demonstrated whether the soluble BGN could induce the tenogenic differentiation of TDSCs in vitro. The aim of this study was to investigate the effect of BGN on the tenogenic differentiation of TDSCs. The proliferation and tenogenic differentiation of TDSCs exposed to different concentrations of BGN (0, 50, 100, and 500 ng/ml) were determined by the live/dead cell staining assay, CCK-8 assay, quantitative real-time polymerase chain reaction (qRT-PCR), and western blot analysis. The BGN signaling pathway of TDSCs (with and without 50 ng/ml of BGN) was determined by western blot analysis and qRT-PCR analysis. At a concentration of 50 ng/ml, BGN increased the expression of the tenogenic markers THBS-4 and TNMD at both the messenger RNA (mRNA) and protein levels. Meanwhile, 50 ng/ml of BGN inhibited the expression of the chondrogenic and osteogenic markers SOX9, ACN, and RUNX2 at both the mRNA and protein levels. Moreover, BGN (50 ng/ml) affected the expression of the components of the extracellular matrix of TDSCs. Additionally, BGN activated the Smad1/5/8 pathway as indicated by an increase in phosphorylation and demonstrated by inhibition experiments. Upregulation in the gene expression of BMP-associated receptors (BMPRII, ActR-IIa, and BMPR-Ib) and Smad pathway components (Smad4 and 8) was observed. Taken together, BGN regulates tenogenic differentiation of TDSCs via BMP7/Smad1/5/8 pathway and this regulation may provide a basic insight into treating tendon injury.
Collapse
Affiliation(s)
- Yan-Jing Zhang
- Laboratory of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Quan Qing
- Division of Tissue Engineering, Regenerative Medicine Research Center, West China Hospital, Sichuan University, Chengdu, People's Republic of China.,Faculty of Basic Medicine, Sichuan College of Traditional Chinese Medicine, Mianyang, People's Republic of China
| | - Ya-Jing Zhang
- Laboratory of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Liang-Ju Ning
- Laboratory of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Jing Cui
- Laboratory of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Xuan Yao
- Laboratory of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Jing-Cong Luo
- Laboratory of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Wei Ding
- Laboratory of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| | - Ting-Wu Qin
- Laboratory of Stem Cell and Tissue Engineering, State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, People's Republic of China
| |
Collapse
|
5
|
Delgado Caceres M, Pfeifer CG, Docheva D. Understanding Tendons: Lessons from Transgenic Mouse Models. Stem Cells Dev 2018; 27:1161-1174. [PMID: 29978741 PMCID: PMC6121181 DOI: 10.1089/scd.2018.0121] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Accepted: 07/05/2018] [Indexed: 12/26/2022] Open
Abstract
Tendons and ligaments are connective tissues that have been comparatively less studied than muscle and cartilage/bone, even though they are crucial for proper function of the musculoskeletal system. In tendon biology, considerable progress has been made in identifying tendon-specific genes (Scleraxis, Mohawk, and Tenomodulin) in the past decade. However, besides tendon function and the knowledge of a small number of important players in tendon biology, neither the ontogeny of the tenogenic lineage nor signaling cascades have been fully understood. This results in major drawbacks in treatment and repair options following tendon degeneration. In this review, we have systematically evaluated publications describing tendon-related genes, which were studied in depth and characterized by using knockout technologies and the subsequently generated transgenic mouse models (Tg) (knockout mice, KO). We report in a tabular manner, that from a total of 24 tendon-related genes, in 22 of the respective knockout mouse models, phenotypic changes were detected. Additionally, in some of the models it was described at which developmental stages these changes appeared and progressed. To summarize, only loss of Scleraxis and TGFβ signaling led to severe tendon developmental phenotypes, while mice deficient for various proteoglycans, Mohawk, EGR1 and 2, and Tenomodulin presented mild phenotypes. These data suggest that the tendon developmental system is well organized, orchestrated, and backed up; this is even more evident among the members of the proteoglycan family, where the compensatory effects are much clearer. In future, it will be of great importance to discover additional master tendon transcription factors and the genes that play crucial roles in tendon development. This would improve our understanding of the genetic makeup of tendons, and will increase the chances of generating tendon-specific drugs to advance overall treatment strategies.
Collapse
Affiliation(s)
- Manuel Delgado Caceres
- Experimental Trauma Surgery, Department of Trauma Surgery, University Regensburg Medical Centre, Regensburg, Germany
| | - Christian G. Pfeifer
- Experimental Trauma Surgery, Department of Trauma Surgery, University Regensburg Medical Centre, Regensburg, Germany
- Department of Trauma Surgery, University Regensburg Medical Centre, Regensburg, Germany
| | - Denitsa Docheva
- Experimental Trauma Surgery, Department of Trauma Surgery, University Regensburg Medical Centre, Regensburg, Germany
- Department of Medical Biology, Medical University-Plovdiv, Plovdiv, Bulgaria
| |
Collapse
|
6
|
Connizzo BK, Grodzinsky AJ. Tendon exhibits complex poroelastic behavior at the nanoscale as revealed by high-frequency AFM-based rheology. J Biomech 2017; 54:11-18. [PMID: 28233551 DOI: 10.1016/j.jbiomech.2017.01.029] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Revised: 12/26/2016] [Accepted: 01/17/2017] [Indexed: 12/14/2022]
Abstract
Tendons transmit load from muscle to bone by utilizing their unique static and viscoelastic tensile properties. These properties are highly dependent on the composition and structure of the tissue matrix, including the collagen I hierarchy, proteoglycans, and water. While the role of matrix constituents in the tensile response has been studied, their role in compression, particularly in matrix pressurization via regulation of fluid flow, is not well understood. Injured or diseased tendons and tendon regions that naturally experience compression are known to have alterations in glycosaminoglycan content, which could modulate fluid flow and ultimately mechanical function. While recent theoretical studies have predicted tendon mechanics using poroelastic theory, no experimental data have directly demonstrated such behavior. In this study, we use high-bandwidth AFM-based rheology to determine the dynamic response of tendons to compressive loading at the nanoscale and to determine the presence of poroelastic behavior. Tendons are found to have significant characteristic dynamic relaxation behavior occurring at both low and high frequencies. Classic poroelastic behavior is observed, although we hypothesize that the full dynamic response is caused by a combination of flow-dependent poroelasticity as well as flow-independent viscoelasticity. Tendons also demonstrate regional dependence in their dynamic response, particularly near the junction of tendon and bone, suggesting that the structural and compositional heterogeneity in tendon may be responsible for regional poroelastic behavior. Overall, these experiments provide the foundation for understanding fluid-flow-dependent poroelastic mechanics of tendon, and the methodology is valuable for assessing changes in tendon matrix compressive behavior at the nanoscale.
Collapse
Affiliation(s)
- Brianne K Connizzo
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, United States
| | - Alan J Grodzinsky
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, United States; Center for Biomedical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, United States; Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, Cambridge, MA 02139, United States; Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, United States.
| |
Collapse
|
7
|
Choi RK, Smith MM, Martin JH, Clarke JL, Dart AJ, Little CB, Clarke EC. Chondroitin sulphate glycosaminoglycans contribute to widespread inferior biomechanics in tendon after focal injury. J Biomech 2016; 49:2694-2701. [PMID: 27316761 DOI: 10.1016/j.jbiomech.2016.06.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Revised: 05/28/2016] [Accepted: 06/01/2016] [Indexed: 11/24/2022]
Abstract
Both mechanical and structural properties of tendon change after injury however the causal relationship between these properties is presently unclear. This study aimed to determine the extent of biomechanical change in post-injury tendon pathology and whether the sulphated glycosaminoglycans (glycosaminoglycans) present are a causal factor in these changes. Equine superficial digital flexor tendons (SDF tendons) were surgically-injured in vivo (n=6 injured, n=6 control). Six weeks later they were harvested and regionally dissected into twelve regions around the lesion (equal medial/lateral, proximal/distal). Glycosaminoglycans were removed by enzymatic (chondroitinase) treatment. Elastic modulus (modulus) and ultimate tensile strength (UTS) were measured under uniaxial tension to failure, and tendon glycosaminoglycan content was measured by spectrophotometry. Compared to healthy tendons, pathology induced by the injury decreased modulus (-38%; 95%CI -49% to -28%; P<0.001) and UTS (-38%; 95%CI -48% to -28%; P<0.001) and increased glycosaminoglycan content (+52%; 95%CI 39% - 64%; P<0.001) throughout the tendon. Chondroitinase-mediated glycosaminoglycan removal (50%; 95%CI 21-79%; P<0.001) in surgically-injured pathological tendons caused a significant increase in modulus (5.6MPa/µg removed; 95%CI 0.31-11; P=0.038) and UTS (1.0MPa per µg removed; 95%CI 0.043-2; P=0.041). These results demonstrate that the chondroitin/dermatan sulphate glycosaminoglycans that accumulate in pathological tendon post-injury are partly responsible for the altered biomechanical properties.
Collapse
Affiliation(s)
- Rachel K Choi
- Murray Maxwell Biomechanics Laboratory (Institute of Bone and Joint Research), Kolling Institute, Royal North Shore Hospital (Sydney Medical School, University of Sydney), St Leonards, New South Wales, Australia; Raymond Purves Bone and Joint Research Laboratories (Institute of Bone and Joint Research), Kolling Institute, Royal North Shore Hospital (Sydney Medical School, University of Sydney), St Leonards, New South Wales, Australia
| | - Margaret M Smith
- Raymond Purves Bone and Joint Research Laboratories (Institute of Bone and Joint Research), Kolling Institute, Royal North Shore Hospital (Sydney Medical School, University of Sydney), St Leonards, New South Wales, Australia
| | - Joshua H Martin
- Murray Maxwell Biomechanics Laboratory (Institute of Bone and Joint Research), Kolling Institute, Royal North Shore Hospital (Sydney Medical School, University of Sydney), St Leonards, New South Wales, Australia
| | - Jillian L Clarke
- Faculty of Health Sciences, University of Sydney, Lidcombe, New South Wales, Australia
| | - Andrew J Dart
- Research and Clinical Training Unit, University Veterinary Teaching Hospital, University of Sydney, Camden, New South Wales, Australia
| | - Christopher B Little
- Raymond Purves Bone and Joint Research Laboratories (Institute of Bone and Joint Research), Kolling Institute, Royal North Shore Hospital (Sydney Medical School, University of Sydney), St Leonards, New South Wales, Australia.
| | - Elizabeth C Clarke
- Murray Maxwell Biomechanics Laboratory (Institute of Bone and Joint Research), Kolling Institute, Royal North Shore Hospital (Sydney Medical School, University of Sydney), St Leonards, New South Wales, Australia
| |
Collapse
|
8
|
Connizzo BK, Freedman BR, Fried JH, Sun M, Birk DE, Soslowsky LJ. Regulatory role of collagen V in establishing mechanical properties of tendons and ligaments is tissue dependent. J Orthop Res 2015; 33:882-8. [PMID: 25876927 PMCID: PMC4417070 DOI: 10.1002/jor.22893] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Accepted: 03/10/2015] [Indexed: 02/04/2023]
Abstract
Patients with classic (type I) Ehlers-Danlos syndrome (EDS), characterized by heterozygous mutations in the Col5a1 and Col5a2 genes, exhibit connective tissue hyperelasticity and recurrent joint dislocations, indicating a potential regulatory role for collagen V in joint stabilizing soft tissues. This study asked whether the contribution of collagen V to the establishment of mechanical properties is tissue dependent. We mechanically tested four different tissues from wild type and targeted collagen V-null mice: the flexor digitorum longus (FDL) tendon, Achilles tendon (ACH), the anterior cruciate ligament (ACL), and the supraspinatus tendon (SST). Area was significantly reduced in the Col5a1(ΔTen/ΔTen) group in the FDL, ACH, and SST. Maximum load and stiffness were reduced in the Col5a1(ΔTen/ΔTen) group for all tissues. However, insertion site and midsubstance modulus were reduced only for the ACL and SST. This study provides evidence that the regulatory role of collagen V in extracellular matrix assembly is tissue dependent and that joint instability in classic EDS may be caused in part by insufficient mechanical properties of the tendons and ligaments surrounding each joint.
Collapse
Affiliation(s)
- Brianne K. Connizzo
- McKay Orthopaedic Research Laboratory, University of Pennsylvania, 424 Stemmler Hall, 36 and Hamilton Walk, Philadelphia, PA, 19104-6081
| | - Benjamin R. Freedman
- McKay Orthopaedic Research Laboratory, University of Pennsylvania, 424 Stemmler Hall, 36 and Hamilton Walk, Philadelphia, PA, 19104-6081
| | - Joanna H. Fried
- McKay Orthopaedic Research Laboratory, University of Pennsylvania, 424 Stemmler Hall, 36 and Hamilton Walk, Philadelphia, PA, 19104-6081
| | - Mei Sun
- Department of Molecular Pharmacology & Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL 33612
| | - David E. Birk
- Department of Molecular Pharmacology & Physiology, Morsani College of Medicine, University of South Florida, Tampa, FL 33612
| | - Louis J. Soslowsky
- McKay Orthopaedic Research Laboratory, University of Pennsylvania, 424 Stemmler Hall, 36 and Hamilton Walk, Philadelphia, PA, 19104-6081,Correspondence to: Louis J. Soslowsky, 424 Stemmler Hall, 36 and Hamilton Walk, Philadelphia, PA, 19104-6081, T:215-898-8653, F:215-573-2133,
| |
Collapse
|
9
|
Böl M, Ehret AE, Leichsenring K, Ernst M. Tissue-scale anisotropy and compressibility of tendon in semi-confined compression tests. J Biomech 2015; 48:1092-8. [DOI: 10.1016/j.jbiomech.2015.01.024] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Revised: 01/16/2015] [Accepted: 01/20/2015] [Indexed: 01/22/2023]
|
10
|
Achilles tendons from decorin- and biglycan-null mouse models have inferior mechanical and structural properties predicted by an image-based empirical damage model. J Biomech 2015; 48:2110-5. [PMID: 25888014 DOI: 10.1016/j.jbiomech.2015.02.058] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2014] [Revised: 02/24/2015] [Accepted: 02/28/2015] [Indexed: 01/08/2023]
Abstract
Achilles tendons are a common source of pain and injury, and their pathology may originate from aberrant structure function relationships. Small leucine rich proteoglycans (SLRPs) influence mechanical and structural properties in a tendon-specific manner. However, their roles in the Achilles tendon have not been defined. The objective of this study was to evaluate the mechanical and structural differences observed in mouse Achilles tendons lacking class I SLRPs; either decorin or biglycan. In addition, empirical modeling techniques based on mechanical and image-based measures were employed. Achilles tendons from decorin-null (Dcn(-/-)) and biglycan-null (Bgn(-/-)) C57BL/6 female mice (N=102) were used. Each tendon underwent a dynamic mechanical testing protocol including simultaneous polarized light image capture to evaluate both structural and mechanical properties of each Achilles tendon. An empirical damage model was adapted for application to genetic variation and for use with image based structural properties to predict tendon dynamic mechanical properties. We found that Achilles tendons lacking decorin and biglycan had inferior mechanical and structural properties that were age dependent; and that simple empirical models, based on previously described damage models, were predictive of Achilles tendon dynamic modulus in both decorin- and biglycan-null mice.
Collapse
|