1
|
Norcia LF, Watanabe EM, Hamamoto Filho PT, Hasimoto CN, Pelafsky L, de Oliveira WK, Sassaki LY. Polycystic Liver Disease: Pathophysiology, Diagnosis and Treatment. Hepat Med 2022; 14:135-161. [PMID: 36200122 PMCID: PMC9528914 DOI: 10.2147/hmer.s377530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 09/07/2022] [Indexed: 11/25/2022] Open
Abstract
Polycystic liver disease (PLD) is a clinical condition characterized by the presence of more than 10 cysts in the liver. It is a rare disease Of genetic etiology that presents as an isolated disease or assoc\iated with polycystic kidney disease. Ductal plate malformation, ciliary dysfunction, and changes in cell signaling are the main factors involved in its pathogenesis. Most patients with PLD are asymptomatic, but in 2–5% of cases the disease has disabling symptoms and a significant reduction in quality of life. The diagnosis is based on family history of hepatic and/or renal polycystic disease, clinical manifestations, patient age, and polycystic liver phenotype shown on imaging examinations. PLD treatment has evolved considerably in the last decades. Somatostatin analogues hold promise in controlling disease progression, but liver transplantation remains a unique curative treatment modality.
Collapse
Affiliation(s)
- Luiz Fernando Norcia
- Department of Surgery, São Paulo State University (Unesp), Medical School, Botucatu, São Paulo, Brazil
- Correspondence: Luiz Fernando Norcia, Department of Surgery, São Paulo State University (UNESP), Medical School, 783 Pedro Delmanto Street, Botucatu, São Paulo, 18610-303, Brazil, Tel +55 19982840542, Email
| | - Erika Mayumi Watanabe
- Department of Radiology, São Paulo State University (Unesp), Medical School, Botucatu, São Paulo, Brazil
| | - Pedro Tadao Hamamoto Filho
- Department of Neurology, Psychology and Psychiatry, São Paulo State University (Unesp), Medical School, Botucatu, São Paulo, Brazil
| | - Claudia Nishida Hasimoto
- Department of Surgery, São Paulo State University (Unesp), Medical School, Botucatu, São Paulo, Brazil
| | - Leonardo Pelafsky
- Department of Surgery, São Paulo State University (Unesp), Medical School, Botucatu, São Paulo, Brazil
| | - Walmar Kerche de Oliveira
- Department of Surgery, São Paulo State University (Unesp), Medical School, Botucatu, São Paulo, Brazil
| | - Ligia Yukie Sassaki
- Department of Internal Medicine, São Paulo State University (Unesp), Medical School, Botucatu, São Paulo, Brazil
| |
Collapse
|
2
|
Cordido A, Vizoso-Gonzalez M, Nuñez-Gonzalez L, Molares-Vila A, Chantada-Vazquez MDP, Bravo SB, Garcia-Gonzalez MA. Quantitative Proteomic Study Unmasks Fibrinogen Pathway in Polycystic Liver Disease. Biomedicines 2022; 10:290. [PMID: 35203500 PMCID: PMC8869147 DOI: 10.3390/biomedicines10020290] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/21/2022] [Accepted: 01/24/2022] [Indexed: 02/05/2023] Open
Abstract
(1) Background: Polycystic liver disease (PLD) is a heterogeneous group of congenital disorders characterized by bile duct dilatation and cyst development derived from cholangiocytes. Nevertheless, the cystogenesis mechanism is currently unknown and the PLD treatment is limited to liver transplantation. Novel and efficient therapeutic approaches are th6us needed. In this context, the present work has a principal aim to find novel molecular pathways, as well as new therapeutic targets, involved in the hepatic cystogenesis process. (2) Methods: Quantitative proteomics based on SWATH-MS technology were performed comparing hepatic proteomes of Wild Type and mutant/polycystic livers in a polycystic kidney disease (PKD) murine model (Pkd1cond/cond;Tam-Cre-/+). (3) Results: We identified several proteins altered in abundance, with two-fold cut-off up-regulation or down-regulation and an adjusted p-value significantly related to hepatic cystogenesis. Then, we performed enrichment and a protein-protein analysis identifying a cluster focused on hepatic fibrinogens. Finally, we validated a selection of targets by RT-qPCR, Western blotting and immunohistochemistry, finding a high correlation with quantitative proteomics data and validating the fibrinogen complex. (4) Conclusions: This work identified a novel molecular pathway in cystic liver disease, highlighting the fibrinogen complex as a possible new therapeutic target for PLD.
Collapse
Affiliation(s)
- Adrian Cordido
- Group of Genetics and Developmental Biology of Renal Diseases, Nephrology Laboratory (N°11), Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela Clinical Hospital Complex (CHUS), 15706 Santiago de Compostela, Spain; (A.C.); (M.V.-G.); (L.N.-G.)
- Genomic Medicine Group, Santiago de Compostela Clinical Hospital Complex (CHUS), 15706 Santiago de Compostela, Spain
| | - Marta Vizoso-Gonzalez
- Group of Genetics and Developmental Biology of Renal Diseases, Nephrology Laboratory (N°11), Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela Clinical Hospital Complex (CHUS), 15706 Santiago de Compostela, Spain; (A.C.); (M.V.-G.); (L.N.-G.)
- Genomic Medicine Group, Santiago de Compostela Clinical Hospital Complex (CHUS), 15706 Santiago de Compostela, Spain
| | - Laura Nuñez-Gonzalez
- Group of Genetics and Developmental Biology of Renal Diseases, Nephrology Laboratory (N°11), Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela Clinical Hospital Complex (CHUS), 15706 Santiago de Compostela, Spain; (A.C.); (M.V.-G.); (L.N.-G.)
- Genomic Medicine Group, Santiago de Compostela Clinical Hospital Complex (CHUS), 15706 Santiago de Compostela, Spain
| | - Alberto Molares-Vila
- Biostatistics Platform, Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela Clinical Hospital Complex (CHUS), 15706 Santiago de Compostela, Spain;
| | - Maria del Pilar Chantada-Vazquez
- Proteomic Platform, Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela Clinical Hospital Complex (CHUS), 15706 Santiago de Compostela, Spain;
| | - Susana B. Bravo
- Proteomic Platform, Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela Clinical Hospital Complex (CHUS), 15706 Santiago de Compostela, Spain;
| | - Miguel A. Garcia-Gonzalez
- Group of Genetics and Developmental Biology of Renal Diseases, Nephrology Laboratory (N°11), Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela Clinical Hospital Complex (CHUS), 15706 Santiago de Compostela, Spain; (A.C.); (M.V.-G.); (L.N.-G.)
- Genomic Medicine Group, Santiago de Compostela Clinical Hospital Complex (CHUS), 15706 Santiago de Compostela, Spain
- Galician Public Foundation of Genomic Medicine, Santiago de Compostela Clinical Hospital Complex (CHUS), 15706 Santiago de Compostela, Spain
| |
Collapse
|
3
|
Irazabal MV, Torres VE. Reactive Oxygen Species and Redox Signaling in Chronic Kidney Disease. Cells 2020; 9:cells9061342. [PMID: 32481548 PMCID: PMC7349188 DOI: 10.3390/cells9061342] [Citation(s) in RCA: 177] [Impact Index Per Article: 44.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 05/18/2020] [Accepted: 05/20/2020] [Indexed: 02/07/2023] Open
Abstract
Chronic kidney disease (CKD) remains a worldwide public health problem associated with serious complications and increased mortality rates. Accumulating evidence indicates that elevated intracellular levels of reactive oxygen species (ROS) play a major role in the pathogenesis of CKD. Increased intracellular levels of ROS can lead to oxidation of lipids, DNA, and proteins, contributing to cellular damage. On the other hand, ROS are also important secondary messengers in cellular signaling. Consequently, normal kidney cell function relies on the "right" amount of ROS. Mitochondria and NADPH oxidases represent major sources of ROS in the kidney, but renal antioxidant systems, such as superoxide dismutase, catalase, or glutathione peroxidase counterbalance ROS-mediated injury. This review discusses the main sources of ROS and antioxidant systems in the kidney, and redox signaling pathways leading to inflammation and fibrosis, which result in abnormal kidney function and CKD progression. We further discuss the important role of the nuclear factor erythroid 2-related factor 2 (Nrf2) in regulating antioxidant responses, and other mechanisms of redox signaling.
Collapse
Affiliation(s)
- Maria V. Irazabal
- Department of Internal Medicine, Division of Nephrology and Hypertension, Mayo Clinic, 200 First Street, Rochester, MN 55905, USA;
- Mayo Translational PKD Center, Mayo Clinic, Rochester, MN 55905, USA
- Correspondence: ; Tel.: +1-(507)-293-6388; Fax: +1-(507)-266-9315
| | - Vicente E. Torres
- Department of Internal Medicine, Division of Nephrology and Hypertension, Mayo Clinic, 200 First Street, Rochester, MN 55905, USA;
- Mayo Translational PKD Center, Mayo Clinic, Rochester, MN 55905, USA
| |
Collapse
|
4
|
Tashiro R, Fujimura M, Endo H, Endo T, Niizuma K, Tominaga T. Biphasic Development of Focal Cerebral Hyperperfusion After Revascularization Surgery for Adult Moyamoya Disease Associated With Autosomal Dominant Polycystic Kidney Disease. J Stroke Cerebrovasc Dis 2018; 27:3256-3260. [PMID: 30093201 DOI: 10.1016/j.jstrokecerebrovasdis.2018.07.024] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 07/02/2018] [Accepted: 07/07/2018] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Cerebral hyperperfusion (CHP) syndrome is a potential complication of superficial temporal artery-middle cerebral artery (STA-MCA) anastomosis for moyamoya disease (MMD), but its biphasic and delayed development is extremely rare. CASE REPORT A 47-year-old woman with autosomal dominant kidney disease (ADPKD) presented with transient ischemic attacks due to MMD, and underwent left STA-MCA anastomosis. N-isopropyl-p-[123I] iodoamphetamine single-photon emission computed tomography (123IMP-SPECT) 1 day after surgery revealed asymptomatic CHP at the site of anastomosis. Strict blood pressure control and minocycline hydrochloride relieved CHP at postoperative day 7. However, 2 days later, the patient complained of sensory aphasia, and 123IMP-SPECT demonstrated significant focal CHP at the site of anastomosis accompanying high-intensity signal on magnetic resonance (MR) imaging of fluid attenuated inversion recovery (FLAIR) in her left temporal lobe near the site of anastomosis. We continued strict blood pressure control and additionally administered free radical scavenger (Edaravone) and antiepileptic agents, which gradually improved sensory aphasia. MR imaging and 123IMP-SPECT also confirmed the amelioration of the FLAIR-high lesion and focal CHP in her left temporal lobe. Two months later, the patient underwent right STA-MCA anastomosis without complications. CONCLUSIONS Although the underlying mechanism is unknown, biphasic development of focal CHP after revascularization surgery in an MMD patient with ADPKD is unique. Due to the potential vulnerability of the systemic vessels in ADPKD, it is conceivable that intrinsic vascular wall fragility in MMD could be enhanced by ADPKD and have partly led to this rare complication.
Collapse
Affiliation(s)
- Ryosuke Tashiro
- Department of Neurosurgery, Kohnan Hospital, Sendai, Japan (R.T., M.F., T.E.); Department of Neurosurgery, Tohoku Univeristy, Sendai, Japan (R.T., H.E., K.N., T.T.)
| | - Miki Fujimura
- Department of Neurosurgery, Kohnan Hospital, Sendai, Japan (R.T., M.F., T.E.); Department of Neurosurgery, Tohoku Univeristy, Sendai, Japan (R.T., H.E., K.N., T.T.).
| | - Hidenori Endo
- Department of Neurosurgery, Kohnan Hospital, Sendai, Japan (R.T., M.F., T.E.); Department of Neurosurgery, Tohoku Univeristy, Sendai, Japan (R.T., H.E., K.N., T.T.)
| | - Toshiki Endo
- Department of Neurosurgery, Kohnan Hospital, Sendai, Japan (R.T., M.F., T.E.); Department of Neurosurgery, Tohoku Univeristy, Sendai, Japan (R.T., H.E., K.N., T.T.)
| | - Kuniyasu Niizuma
- Department of Neurosurgery, Kohnan Hospital, Sendai, Japan (R.T., M.F., T.E.); Department of Neurosurgery, Tohoku Univeristy, Sendai, Japan (R.T., H.E., K.N., T.T.)
| | - Teiji Tominaga
- Department of Neurosurgery, Kohnan Hospital, Sendai, Japan (R.T., M.F., T.E.); Department of Neurosurgery, Tohoku Univeristy, Sendai, Japan (R.T., H.E., K.N., T.T.)
| |
Collapse
|
5
|
Wong MY, McCaughan GW, Strasser SI. An update on the pathophysiology and management of polycystic liver disease. Expert Rev Gastroenterol Hepatol 2017; 11:569-581. [PMID: 28317394 DOI: 10.1080/17474124.2017.1309280] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Polycystic liver disease (PLD) is characterized by the presence of multiple cholangiocyte-derived hepatic cysts that progressively replace liver tissue. They are classified as an inherited ciliopathy /cholangiopathy as pathology exists at the level of the primary cilia of cholangiocytes. Aberrant expression of the proteins in primary cilia can impair their structures and functions, thereby promoting cystogenesis. Areas covered: This review begins by looking at the epidemiology of PLD and its natural history. It then describes the pathophysiology and corresponding potential treatment strategies for PLD. Expert commentary: Traditionally, therapies for symptomatic PLD have been limited to symptomatic management and surgical interventions. Such techniques are not completely effective, do not alter the natural history of the disease, and are linked with high rate of re-accumulation of cysts. As a result, there has been a push for drugs targeted at abnormal cellular signaling cascades to address deregulated proliferation, cell dedifferentiation, apoptosis and fluid secretion. Currently, the only available drug treatments that halt disease progression and improve quality of life in PLD patients are somatostatin analogues. Numerous preclinical studies suggest that targeting components of the signaling pathways that influence cyst development can ameliorate growth of hepatic cysts.
Collapse
Affiliation(s)
- May Yw Wong
- a AW Morrow Gastroenterology and Liver Centre , Royal Prince Alfred Hospital and University of Sydney , Sydney , Australia
| | - Geoffrey W McCaughan
- a AW Morrow Gastroenterology and Liver Centre , Royal Prince Alfred Hospital and University of Sydney , Sydney , Australia
| | - Simone I Strasser
- a AW Morrow Gastroenterology and Liver Centre , Royal Prince Alfred Hospital and University of Sydney , Sydney , Australia
| |
Collapse
|
6
|
Li D, Shi X, Zhao L, Liang Z, Xie S, Wang G. Overexpression of Aquaporin 1 on cysts of patients with polycystic liver disease. REVISTA ESPANOLA DE ENFERMEDADES DIGESTIVAS 2017; 108:71-8. [PMID: 26838488 DOI: 10.17235/reed.2015.3960/2015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
BACKGROUND AND OBJECTIVE Polycystic liver disease (PCLD) represents a group of genetic disorders that include autosomal dominant polycystic kidney disease (ADPKD) and isolated polycystic liver disease (iPCLD). There is currently no definitive treatment except for liver transplantation. The aim of this study was to assess the expression level of aquaporin 1 (AQP1) on the PCLD cysts with different sizes and provide the potential therapeutic target. METHODS We collected 3 normal bile ducts, and recruited 8 patients with simple liver cyst disease, 24 patients with ADPKD, and 17 patients with iPCLD. AQP1 expression in different types of cyst walls and in normal bile ducts was detected using real time quantitative PCR, western blot and immunofluorescence staining. We also compared AQP1 expression levels in cysts of different sizes. Besides, ionic concentrations, pH and osmolality of cyst fluid were analyzed. RESULTS The results showed that AQP1 expression in PCLD cysts was significantly higher than that in simple liver cysts and the normal bile ducts. In addition, a comparable increasing trend was found in cysts of smaller sizes to cysts of larger sizes. pH values, the sodium and chloride concentrations were higher in cyst fluid than that in the serum. CONCLUSIONS AQP1 was overexpressed in cystic cholangiocytes. A tendency of increased AQP1 protein expression in correlation with the cyst size was also found. These observations offered a direction into the molecular mechanisms of cyst expansion and maybe provide new treatment strategies to reduce fluid secretion into liver cysts.
Collapse
Affiliation(s)
- Dingyang Li
- Department of Hepatobiliary and Pancreatic Surgery, the First Norman Bethune Hospital Affiliated to J, China
| | - Xiaoju Shi
- Department of Hepatobiliary and Pancreatic Surgery, the First Norman Bethune Hospital Affiliated to J, China
| | - Lijing Zhao
- Prostate Diseases Prevention and Treatment Researc, the First Norman Bethune Hospital Affiliated to J, China
| | - Zuowen Liang
- Andrology Laboratory, the First Norman Bethune Hospital Affiliated to J, China
| | - Shuli Xie
- Department of Hepatobiliary and Pancreatic Surgery, the First Norman Bethune Hospital Affiliated to J, China
| | - Guangyi Wang
- Department of Hepatobiliary and Pancreatic Surgery, the First Norman Bethune Hospital Affiliated to J, China
| |
Collapse
|
7
|
Identification of MMP1 as a novel risk factor for intracranial aneurysms in ADPKD using iPSC models. Sci Rep 2016; 6:30013. [PMID: 27418197 PMCID: PMC4945931 DOI: 10.1038/srep30013] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Accepted: 06/29/2016] [Indexed: 11/08/2022] Open
Abstract
Cardiovascular complications are the leading cause of death in autosomal dominant polycystic kidney disease (ADPKD), and intracranial aneurysm (ICA) causing subarachnoid hemorrhage is among the most serious complications. The diagnostic and therapeutic strategies for ICAs in ADPKD have not been fully established. We here generated induced pluripotent stem cells (iPSCs) from seven ADPKD patients, including four with ICAs. The vascular cells differentiated from ADPKD-iPSCs showed altered Ca(2+) entry and gene expression profiles compared with those of iPSCs from non-ADPKD subjects. We found that the expression level of a metalloenzyme gene, matrix metalloproteinase (MMP) 1, was specifically elevated in iPSC-derived endothelia from ADPKD patients with ICAs. Furthermore, we confirmed the correlation between the serum MMP1 levels and the development of ICAs in 354 ADPKD patients, indicating that high serum MMP1 levels may be a novel risk factor. These results suggest that cellular disease models with ADPKD-specific iPSCs can be used to study the disease mechanisms and to identify novel disease-related molecules or risk factors.
Collapse
|
8
|
Urribarri AD, Munoz-Garrido P, Perugorria MJ, Erice O, Merino-Azpitarte M, Arbelaiz A, Lozano E, Hijona E, Jiménez-Agüero R, Fernandez-Barrena MG, Jimeno JP, Marzioni M, Marin JJG, Masyuk TV, LaRusso NF, Prieto J, Bujanda L, Banales JM. Inhibition of metalloprotease hyperactivity in cystic cholangiocytes halts the development of polycystic liver diseases. Gut 2014; 63:1658-67. [PMID: 24436140 PMCID: PMC4362729 DOI: 10.1136/gutjnl-2013-305281] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
OBJECTIVE Polycystic liver diseases (PCLDs) are genetic disorders characterised by progressive bile duct dilatation and/or cyst development. Their pathogenesis is a consequence of hyperproliferation, hypersecretion and microRNA alterations in cholangiocytes. Here we evaluate the role of matrix metalloproteases (MMPs) in the hepatic cystogenesis of PCLDs. DESIGN Metalloprotease activity was measured by microfluorimetric assays in normal and polycystic cholangiocyte cultures from humans and rats, and gene expression by real time quantitative PCR. The role of cytokines, oestrogens and growth factors present in the cystic fluid of PCLD patients was evaluated for MMP activity. The MMP inhibitor marimastat was examined for cystic expansion in vitro and in polycystic kidney (PCK) rats. RESULTS Polycystic human and rat cholangiocytes displayed increased MMP activity, which was associated with increased mRNA levels of different MMPs. Interleukin (IL)-6 and IL-8, and 17β-oestradiol, all stimulated MMP activity in human cholangiocytes. The presence of antibodies against IL-6 and/or IL-8 receptor/s inhibited baseline MMP hyperactivity of polycystic human cholangiocytes but had no effect on normal human cholangiocytes. MMP-3 was overexpressed in cystic cholangiocytes from PCLD human and PCK rat livers by immunohistochemistry. Marimastat reduced MMP hyperactivity of polycystic human and rat cholangiocytes and blocked the cystic expansion of PCK cholangiocytes cultured in three-dimensions. Chronic treatment of 8-week-old PCK rats with marimastat inhibited hepatic cystogenesis and fibrosis. CONCLUSIONS PCLDs are associated with cholangiocyte MMP hyperactivity resulting from autocrine/paracrine stimulation by IL-6 and IL-8. Inhibition of this MMP hyperactivity with marimastat decreased hepatic cystogenesis in vitro and in an animal model of PCLD, offering a potential therapeutic tool.
Collapse
Affiliation(s)
- Aura D Urribarri
- Division of Gene Therapy and Hepatology, CIMA of the University of Navarra, Pamplona, Spain
| | - Patricia Munoz-Garrido
- Department of Liver and Gastrointestinal Diseases, Biodonostia Research Institute— Donostia University Hospital, University of the Basque Country (UPV/EHU), San Sebastián, Spain
| | - María J Perugorria
- Department of Liver and Gastrointestinal Diseases, Biodonostia Research Institute— Donostia University Hospital, University of the Basque Country (UPV/EHU), San Sebastián, Spain,National Institute for the Study of Liver and Gastrointestinal Diseases (CIBERehd, Instituto de Salud Carlos III), Spain,IKERBASQUE, Basque Foundation for Science, Bilbao, Spain
| | - Oihane Erice
- Department of Liver and Gastrointestinal Diseases, Biodonostia Research Institute— Donostia University Hospital, University of the Basque Country (UPV/EHU), San Sebastián, Spain
| | - Maite Merino-Azpitarte
- Department of Liver and Gastrointestinal Diseases, Biodonostia Research Institute— Donostia University Hospital, University of the Basque Country (UPV/EHU), San Sebastián, Spain
| | - Ander Arbelaiz
- Department of Liver and Gastrointestinal Diseases, Biodonostia Research Institute— Donostia University Hospital, University of the Basque Country (UPV/EHU), San Sebastián, Spain
| | - Elisa Lozano
- Department of Physiology and Pharmacology, Experimental Hepatology and Drug Targeting (HEVEFARM), Biomedical Research Institute of Salamanca (IBSAL), University of Salamanca, Salamanca, Spain
| | - Elizabeth Hijona
- Department of Liver and Gastrointestinal Diseases, Biodonostia Research Institute— Donostia University Hospital, University of the Basque Country (UPV/EHU), San Sebastián, Spain,National Institute for the Study of Liver and Gastrointestinal Diseases (CIBERehd, Instituto de Salud Carlos III), Spain
| | - Raúl Jiménez-Agüero
- Department of Liver and Gastrointestinal Diseases, Biodonostia Research Institute— Donostia University Hospital, University of the Basque Country (UPV/EHU), San Sebastián, Spain
| | - Maite G Fernandez-Barrena
- Division of Gene Therapy and Hepatology, CIMA of the University of Navarra, Pamplona, Spain,National Institute for the Study of Liver and Gastrointestinal Diseases (CIBERehd, Instituto de Salud Carlos III), Spain
| | - Juan P Jimeno
- Division of Gene Therapy and Hepatology, CIMA of the University of Navarra, Pamplona, Spain
| | - Marco Marzioni
- Department of Gastroenterology, ‘Università Politecnica delle Marche’, Ancona, Italy
| | - Jose J G Marin
- National Institute for the Study of Liver and Gastrointestinal Diseases (CIBERehd, Instituto de Salud Carlos III), Spain,Department of Physiology and Pharmacology, Experimental Hepatology and Drug Targeting (HEVEFARM), Biomedical Research Institute of Salamanca (IBSAL), University of Salamanca, Salamanca, Spain
| | - Tatyana V Masyuk
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota, USA
| | - Nicholas F LaRusso
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota, USA
| | - Jesús Prieto
- Division of Gene Therapy and Hepatology, CIMA of the University of Navarra, Pamplona, Spain,National Institute for the Study of Liver and Gastrointestinal Diseases (CIBERehd, Instituto de Salud Carlos III), Spain
| | - Luis Bujanda
- Department of Liver and Gastrointestinal Diseases, Biodonostia Research Institute— Donostia University Hospital, University of the Basque Country (UPV/EHU), San Sebastián, Spain,National Institute for the Study of Liver and Gastrointestinal Diseases (CIBERehd, Instituto de Salud Carlos III), Spain
| | - Jesús M Banales
- Division of Gene Therapy and Hepatology, CIMA of the University of Navarra, Pamplona, Spain,Department of Liver and Gastrointestinal Diseases, Biodonostia Research Institute— Donostia University Hospital, University of the Basque Country (UPV/EHU), San Sebastián, Spain,National Institute for the Study of Liver and Gastrointestinal Diseases (CIBERehd, Instituto de Salud Carlos III), Spain,IKERBASQUE, Basque Foundation for Science, Bilbao, Spain,Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
9
|
Temmerman F, Missiaen L, Bammens B, Laleman W, Cassiman D, Verslype C, van Pelt J, Nevens F. Systematic review: the pathophysiology and management of polycystic liver disease. Aliment Pharmacol Ther 2011; 34:702-13. [PMID: 21790682 DOI: 10.1111/j.1365-2036.2011.04783.x] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
BACKGROUND Polycystic liver diseases (PCLD) represent a group of genetic disorders in which cysts occur solely in the liver, or together with renal cysts. Most of the patients with PCLD are asymptomatic, however, in some patients, expansion of liver cysts causes invalidating abdominal symptoms. AIM To provide a systemic review on the pathophysiology and management of PCLD. METHODS A PubMed search was undertaken to identify relevant literature using search terms including polycystic liver disease, pathophysiology, surgical and medical management. RESULTS The most common complication in patients with PCLD is extensive hepatomegaly, which may lead to malnutrition and can be lethal. Conservative surgical approaches are only partially effective and do not change the natural course of the disease. Liver transplantation has been successfully performed in PCLD, however, in an era of organ shortage, medical management needs to be evaluated. A better understanding of the pathophysiology and the availability of animal models have already identified promising drugs. Abnormalities in cholangiocyte proliferation/apoptosis and enhanced fluid secretion are key factors in the pathophysiology. It has been demonstrated in rodents and in humans that somatostatin analogues diminish liver volume. The role of the inhibitors of the mammalian target of rapamycin (mTOR) in the management of PCLD is still under investigation. CONCLUSIONS The exact pathophysiology of polycystic liver disease still remains unclear. In symptomatic patients, none of the currently available surgical options except liver transplantation have been shown to change the natural course of the disease. The use of somatostatin analogues has been shown to diminish liver volume.
Collapse
Affiliation(s)
- F Temmerman
- Department of Hepatology, UZ Gasthuisberg, K.U. Leuven, Leuven, Belgium
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Qian Q. Isolated polycystic liver disease. Adv Chronic Kidney Dis 2010; 17:181-9. [PMID: 20219621 DOI: 10.1053/j.ackd.2009.12.005] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2009] [Revised: 12/31/2009] [Accepted: 12/31/2009] [Indexed: 12/11/2022]
Abstract
Isolated polycystic liver disease (PCLD) is an autosomal dominant disease with genetic and clinical heterogeneity. Apart from liver cysts, it exhibits few extrahepatic manifestations, and the majority of patients with this condition are asymptomatic or subclinical. However, a small fraction of these patients develop acute liver cyst-related complications and/or massive cystic liver enlargement, causing morbidity and mortality. Currently, the management for symptomatic PCLD is centered on palliating symptoms and treating complications.
Collapse
|
11
|
Lai X, Blazer-Yost BL, Gattone VH, Muchatuta MN, Witzmann FA. Protein composition of liver cyst fluid from the BALB/c-cpk/+ mouse model of autosomal recessive polycystic kidney disease. Proteomics 2009; 9:3775-82. [PMID: 19639592 DOI: 10.1002/pmic.200800379] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Cysts arising from hepatic bile ducts are a common extra-renal pathology associated with polycystic kidney disease in humans. As an initial step in identifying active components that could contribute to disease progression, we have investigated the protein composition of hepatic cyst fluid in an orthologous animal model of autosomal recessive polycystic kidney disease, heterozygous (BALB/c-cpk/+) mice. Proteomic analysis of cyst fluid tryptic digests using LC-MS/MS identified 303 proteins, many of which are consistent with enhanced inflammatory cell processes, cellular proliferation, and basal laminar fibrosis associated with the development of hepatic bile duct cysts. Protein identifications have been submitted to the PRIDE database (http://www.ebi.ac.uk/pride), accession number 9227.
Collapse
Affiliation(s)
- Xianyin Lai
- Department of Cellular & Integrative Physiology, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | | | | | | | | |
Collapse
|
12
|
Condac E, Silasi-Mansat R, Kosanke S, Schoeb T, Towner R, Lupu F, Cummings RD, Hinsdale ME. Polycystic disease caused by deficiency in xylosyltransferase 2, an initiating enzyme of glycosaminoglycan biosynthesis. Proc Natl Acad Sci U S A 2007; 104:9416-21. [PMID: 17517600 PMCID: PMC1890509 DOI: 10.1073/pnas.0700908104] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2007] [Indexed: 01/12/2023] Open
Abstract
The basic biochemical mechanisms underlying many heritable human polycystic diseases are unknown despite evidence that most cases are caused by mutations in members of several protein families, the most prominent being the polycystin gene family, whose products are found on the primary cilia, or due to mutations in posttranslational processing and transport. Inherited polycystic kidney disease, the most prevalent polycystic disease, currently affects approximately 500,000 people in the United States. Decreases in proteoglycans (PGs) have been found in tissues and cultured cells from patients who suffer from autosomal dominant polycystic kidney disease, and this PG decrease has been hypothesized to be responsible for cystogenesis. This is possible because alterations in PG concentrations would be predicted to disrupt many homeostatic mechanisms of growth, development, and metabolism. To test this hypothesis, we have generated mice lacking xylosyltransferase 2 (XylT2), an enzyme involved in PG biosynthesis. Here we show that inactivation of XylT2 results in a substantial reduction in PGs and a phenotype characteristic of many aspects of polycystic liver and kidney disease, including biliary epithelial cysts, renal tubule dilation, organ fibrosis, and basement membrane abnormalities. Our findings demonstrate that alterations in PG concentrations can occur due to loss of XylT2, and that reduced PGs can induce cyst development.
Collapse
Affiliation(s)
| | | | - Stanley Kosanke
- Department of Pathology, University of Oklahoma, 940 Stanton L. Young Boulevard, BMSB, Room 203, Health Sciences Center, Oklahoma City, OK 73104
| | - Trenton Schoeb
- Department of Genetics, University of Alabama at Birmingham, Volker Hall, 402, 1670 University Boulevard, Birmingham, AL 35294-0019
| | - Rheal Towner
- Free Radical Biology and Aging Research Program, 825 Northeast 13th Street, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104
| | | | - Richard D. Cummings
- Department of Biochemistry, Emory University School of Medicine, 4001 Rollins Research Center, Atlanta, GA 30322; and
| | - Myron E. Hinsdale
- *Cardiovascular Biology Research Program
- Department of Cell Biology, College of Medicine, University of Oklahoma Health Sciences Center, P.O. Box 26901, Oklahoma City, OK 73104
| |
Collapse
|
13
|
|
14
|
Abstract
Autosomal dominant polycystic disease is genetically heterogeneous with mutations in two distinct genes predisposing to the combination of renal and liver cysts (AD-PKD1 and AD-PKD2) and mutations in a third gene yielding isolated liver cysts (the polycystic liver disease gene). Transcription and translation of the PKD1 gene produces polycystin-1, an integral membrane protein that may serve as an extracellular receptor. Mutations occur throughout the PKD1 gene, but more severe disease is associated with N-terminal mutations. The PKD2 gene product, polycystin-2, is an integral membrane protein with molecular characteristics of a calcium-permeant cation channel. Mutations occur throughout the PKD2 gene, and severity of disease may vary with site of mutation in PKD2 and the functional consequence on the resultant polycystin-2 protein. Polycystic liver disease is genetically linked to protein kinase C substrate 80K-H (PRKCSH). The PRKCSH gene encodes hepatocystin, a protein that moderates glycosylation and fibroblast growth factor receptor signaling. More prominent in women, hepatic cysts emerge after the onset of puberty and dramatically increase in number and size through the child-bearing years of early and middle adult life. Although liver failure or complications of advanced liver disease are rare, some patients develop massive hepatic cystic disease and become clinically symptomatic. There is no effective medical therapy. Interventional and surgical options include cyst aspiration and sclerosis, open or laparoscopic cyst fenestration, hepatic resection, and liver transplantation.
Collapse
Affiliation(s)
- Gregory T Everson
- Division of Gastroenterology & Hepatology, University of Colorado School of Medicine, Denver, CO 80262, USA.
| | | | | |
Collapse
|
15
|
Nichols MT, Gidey E, Matzakos T, Dahl R, Stiegmann G, Shah RJ, Grantham JJ, Fitz JG, Doctor RB. Secretion of cytokines and growth factors into autosomal dominant polycystic kidney disease liver cyst fluid. Hepatology 2004; 40:836-46. [PMID: 15382115 DOI: 10.1002/hep.20401] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
Abstract
The principal extrarenal manifestation of autosomal dominant polycystic kidney disease (ADPKD) involves formation of liver cysts derived from intrahepatic bile ducts. Autocrine and paracrine factors secreted into the cyst would be positioned to modulate the rate of hepatic cyst growth. The aim of this study was to identify potential growth factors present in human ADPKD liver cyst fluid. Cytokine array and enzyme-linked immunosorbent assay analysis of human ADPKD liver cyst fluid detected epithelial neutrophil attractant 78, interleukin (IL)-6 (503 +/- 121 pg/mL); and IL-8 (4,488 +/- 355 pg/mL); and elevated levels of vascular endothelial growth factor compared with non-ADPKD bile (849 +/- 144 pg/mL vs. 270 pg/mL maximum concentration). ADPKD liver cyst cell cultures also released IL-8 and vascular endothelial growth factor, suggesting that cystic epithelial cells themselves are capable of secreting these factors. Western blotting of cultured cyst cells and immunostaining of intact cysts demonstrate that cysteine-X-cysteine receptor 2, an epithelial neutrophil attractant 78 and IL-8 receptor, is expressed at the apical domain of cyst lining epithelial cells. Suggesting the cystic epithelial cells may exist in hypoxic conditions, electron microscopy of the ADPKD liver cyst epithelium revealed morphological features similar to those observed in ischemic bile ducts. These features include elongation, altered structure, and diminished abundance of apical microvilli. In conclusion, IL-8, epithelial neutrophil attractant 78, IL-6, and vascular endothelial growth factor may serve as autocrine and paracrine factors to direct errant growth of ADPKD liver cyst epithelia. Interruption of these signaling pathways may provide therapeutic targets for inhibiting liver cyst expansion.
Collapse
Affiliation(s)
- Matthew T Nichols
- Division of Gastroenterology, University of Colorado Health Sciences Center, Denver, CO, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Abstract
Autosomal dominant polycystic disease is genetically heterogeneous with mutations in two distinct genes predisposing to the combination of renal and liver cysts (AD-PKD1 and AD-PKD2) and mutations in a third gene yielding isolated liver cysts (the polycystic liver disease gene). Transcription and translation of the PKD1 gene produces polycystin-1, an integral membrane protein that may serve as an extracellular receptor. Mutations occur throughout the PKD1 gene, but more severe disease is associated with N-terminal mutations. The PKD2 gene product, polycystin-2, is an integral membrane protein with molecular characteristics of a calcium-permeant cation channel. Mutations occur throughout the PKD2 gene, and severity of disease may vary with site of mutation in PKD2 and the functional consequence on the resultant polycystin-2 protein. Polycystic liver disease is genetically linked to protein kinase C substrate 80K-H (PRKCSH). The PRKCSH gene encodes hepatocystin, a protein that moderates glycosylation and fibroblast growth factor receptor signaling. More prominent in women, hepatic cysts emerge after the onset of puberty and dramatically increase in number and size through the child-bearing years of early and middle adult life. Although liver failure or complications of advanced liver disease are rare, some patients develop massive hepatic cystic disease and become clinically symptomatic. There is no effective medical therapy. Interventional and surgical options include cyst aspiration and sclerosis, open or laparoscopic cyst fenestration, hepatic resection, and liver transplantation.
Collapse
Affiliation(s)
- Gregory T Everson
- Division of Gastroenterology & Hepatology, University of Colorado School of Medicine, Denver, CO 80262, USA.
| | | | | |
Collapse
|
17
|
Hreha G, Jefferson DM, Yu CH, Grubman SA, Alsabeh R, Geller SA, Vierling JM. Immortalized intrahepatic mouse biliary epithelial cells: immunologic characterization and immunogenicity. Hepatology 1999; 30:358-71. [PMID: 10421641 DOI: 10.1002/hep.510300216] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Nonsuppurative destructive cholangitis (NSDC), a process of T-cell-mediated destruction of biliary epithelia observed in primary biliary cirrhosis (PBC), graft-versus-host disease (GVHD), and hepatic allograft rejection (HAR), also occurs in the B10. D2-->BALB/c model of GVHD. To advance studies of immunopathogenesis in this murine model, we immortalized 4 BALB/c intrahepatic biliary epithelial cell (BEC) lines as a reliable source of target cells. Freshly isolated BEC, as well as each cell line, expressed cytokeratin-19 (CK-19), epithelial cell adhesion molecule (EPCAM) and cystic fibrosis transmembrane conductance regulator (CFTR). None expressed albumin. Immortalized cells also expressed SV40 large T antigen. Class I major histocompatibility complex (MHC) was expressed by >97% of immortalized cells, while class II MHC and intercellular adhesion molecule-1 (ICAM-1) expression ranged from 0% to 13% and 14% to 74%, respectively. Interferon gamma (IFN-gamma) induced aberrant class II MHC expression and increased expression of ICAM-1. Variable proportions of immortalized cells expressed B7-1/B7-2 molecules and FAS. IFN-gamma significantly reduced B7-1 expression in some lines and significantly increased B7-2 expression in others. Allografts of freshly isolated and immortalized BEC injected into subscapular fat pads spontaneously formed duct-like structures. Inflammation was absent in BALB/c recipients. In contrast, inflammatory lesions in B10.D2 recipients were reminiscent of NSDC. Our results indicate that BALB/c-immortalized intrahepatic biliary cells: 1) retain the phenotype of mouse BEC; 2) can be induced to express aberrant class II MHC and increased ICAM-1; 3) express costimulatory B7-1/B7-2 molecules and FAS; and 4) spontaneously form duct-like structures after in vivo injection that are immunogenic in B10.D2 mice. These cell lines should facilitate future studies of the immunopathogenesis of NSDC in the B10. D2-->BALB/c murine model.
Collapse
Affiliation(s)
- G Hreha
- Center for Liver Diseases and Transplantation, Burns and Allen Research Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | | | | | | | | | | | | |
Collapse
|
18
|
Abstract
Major advances in the understanding of the genetics and pathogenesis of autosomal dominant polycystic kidney disease have occurred within the past year. The proteins encoded by the PKD1 and PKD2 genes, polycystin 1 and polycystin 2, are membrane proteins, capable of interacting physically in vitro, and are likely components of a complex signalling pathway. The majority of PKD1 and PKD2 mutations so far identified are unique inactivating mutations dispersed over the entire genes. Immunohistochemical studies have shown that polycystin 1 and polycystin 2 are developmentally regulated and are overexpressed in polycystic kidneys. The cysts probably result from clonal expansions of single cells. The demonstration of loss of heterozygosity for PKD1 and the absence of immunoreactive polycystin 1 in approximately 20% of the cysts supports a two-hit tumor suppressor gene model of cystogenesis. Regardless of the nature of the initial pathogenic mechanism, the cysts in autosomal dominant polycystic kidney disease are accompanied by partial dedifferentiation of the epithelial cells, disregulation of epithelial cell proliferation, expression of a secretory phenotype, and disarray of cell matrix interactions which leads to interstitial inflammation and matrix accumulation. Recent observations in animal models of inherited polycystic kidney disease have implicated oxidative stress in its pathogenesis. These downstream pathogenetic events have been targeted for intervention, and an increasing number of studies have demonstrated that the course of polycystic kidney disease in rodents can be altered by environmental and pharmacological interventions. Nevertheless, these experimental observations cannot be extrapolated to human autosomal dominant polycystic kidney disease. The recent generation of mice with PKD1 or PKD2 targeted mutations will help to bridge this gap.
Collapse
Affiliation(s)
- V E Torres
- Nephrology and Internal Medicine, Mayo Clinic, Rochester, MN 55905, USA
| |
Collapse
|
19
|
Affiliation(s)
- R D Perrone
- New England Medical Center, Boston, Massachusetts, USA
| |
Collapse
|