1
|
Kang KR, Kim JS, Seo JY, Lim H, Kim TH, Yu SK, Kim HJ, Kim CS, Chun HS, Park JC, Kim DK. Nicotinamide phosphoribosyltransferase regulates the cell differentiation and mineralization in cultured odontoblasts. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY 2022; 26:37-45. [PMID: 34965994 PMCID: PMC8723980 DOI: 10.4196/kjpp.2022.26.1.37] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 11/16/2021] [Accepted: 11/23/2021] [Indexed: 11/15/2022]
Affiliation(s)
- Kyeong-Rok Kang
- The Institute of Dental Science, Chosun University, Gwangju 61452, Korea
| | - Jae-Sung Kim
- The Institute of Dental Science, Chosun University, Gwangju 61452, Korea
| | - Jeong-Yeon Seo
- The Institute of Dental Science, Chosun University, Gwangju 61452, Korea
- Department of Integrative Biological Sciences & BK21 FOUR Educational Research Group for Ageassociated Disorder Control Technology, Chosun University, Gwangju 61452, Korea
| | - HyangI Lim
- The Institute of Dental Science, Chosun University, Gwangju 61452, Korea
| | - Tae-Hyeon Kim
- The Institute of Dental Science, Chosun University, Gwangju 61452, Korea
| | - Sun-Kyoung Yu
- The Institute of Dental Science, Chosun University, Gwangju 61452, Korea
| | - Heung-Joong Kim
- The Institute of Dental Science, Chosun University, Gwangju 61452, Korea
| | - Chun Sung Kim
- The Institute of Dental Science, Chosun University, Gwangju 61452, Korea
| | - Hong Sung Chun
- Department of Integrative Biological Sciences & BK21 FOUR Educational Research Group for Ageassociated Disorder Control Technology, Chosun University, Gwangju 61452, Korea
| | - Joo-Cheol Park
- Laboratory for the Study of Regenerative Dental Medicine, Department of Oral Histology-Developmental Biology, School of Dentistry and Dental Research Institute, Seoul National University, Seoul 08826, Korea
| | - Do Kyung Kim
- The Institute of Dental Science, Chosun University, Gwangju 61452, Korea
| |
Collapse
|
2
|
Photobiomodulation therapy does not depend on the differentiation of dental pulp cells to enhance functional activity associated with angiogenesis and mineralization. Lasers Med Sci 2021; 36:1979-1988. [PMID: 34374881 DOI: 10.1007/s10103-021-03395-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 08/01/2021] [Indexed: 10/20/2022]
Abstract
The purpose of this study is to analyze the influence of InGaAlP diode laser (660 nm) with or without an odontogenic medium (OM) in the functional activity of OD-21 cells. Undifferentiated OD-21 pulp cells were cultivated with or without OM and divided into four groups (n = 5): nonirradiated control (C -), nonirradiated + OM (C +), irradiated (L -), and irradiated + OM (L +). Laser application was performed in two sessions of a 24-h interval with an irradiance of 11.3 mW/cm2, energy density of 1 J/cm2, and total cumulative energy/well of 4.6 J. Cell proliferation, VEGF-164 expression, mineralization, and expression of Alp, Runx2, and Dmp1 genes, as well as immunolocalization of RUNX2 and MEPE proteins, were evaluated. Data were analyzed by statistical tests (α = 0.05). All studied groups showed a similar increase in cell proliferation with or without OM. After 7 and 10 days, a significatively higher concentration of VEGF-164 in L - group when compared to C - group was observed. A significant increase in mineralized nodules in the L + was noted when compared to C + in the same conditions. Photobiomodulation upregulated significantly Runx2 and Dmp1 expression after 10 days in L - and after 7 days in L + , with downregulation of Dmp1 after 10 days in L + group. Immunolocalization of RUNX2 and MEPE was expressive after 7 days of culture in the cytoplasm adjacent to the nucleus with a decrease after 10 days, regardless of the presence of OM. Photobiomodulation enhances metabolism associated with angiogenesis, gene expression, and mineralization regardless of the odontogenic medium in OD-21 cells.
Collapse
|
3
|
D'Alpino PHP, Moura GEDDD, Barbosa SCDA, Marques LDA, Eberlin MN, Nascimento FD, Tersariol ILDS. Differential cytotoxic effects on odontoblastic cells induced by self-adhesive resin cements as a function of the activation protocol. Dent Mater 2017; 33:1402-1415. [DOI: 10.1016/j.dental.2017.09.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Revised: 07/19/2017] [Accepted: 09/20/2017] [Indexed: 11/15/2022]
|
4
|
Yang G, Zhou J, Teng Y, Xie J, Lin J, Guo X, Gao Y, He M, Yang X, Wang S. Mesenchymal TGF-β signaling orchestrates dental epithelial stem cell homeostasis through Wnt signaling. Stem Cells 2015; 32:2939-48. [PMID: 24964772 DOI: 10.1002/stem.1772] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2014] [Revised: 05/21/2014] [Accepted: 06/21/2014] [Indexed: 01/04/2023]
Abstract
In mouse, continuous growth of the postnatal incisor is coordinated by two populations of multipotent progenitor cells, the dental papilla mesenchymal cells and dental epithelial stem cells, residing at the proximal end of the incisor, yet the molecular mechanism underlying the cooperation between mesenchymal and epithelial cells is largely unknown. Here, transforming growth factor-β (TGF-β) type II receptor (Tgfbr2) was specifically deleted within the postnatal dental papilla mesenchyme. The Tgfbr2-deficient mice displayed malformed incisors with wavy mineralized structures at the labial side as a result of increased differentiation of dental epithelial stem cells. We found that mesenchymal Tgfbr2 disruption led to upregulated expression of Wnt5a and downregulated expression of Fgf3/10 in the mesenchyme, both of which synergistically enhanced Lrp5/6-β-catenin signaling in the cervical loop epithelium. In accord with these findings, mesenchyme-specific depletion of the Wnt transporter gene Wls abolished the aberrant mineralized structures caused by Tgfbr2 deletion. Thus, mesenchymal TGF-β signaling provides a unifying mechanism for the homeostasis of dental epithelial stem cells via a Wnt signaling-mediated mesenchymal-epithelial cell interaction.
Collapse
Affiliation(s)
- Guan Yang
- Molecular Laboratory for Gene Therapy and Tooth Regeneration, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Capital Medical University School of Stomatology, Beijing, People's Republic of China; State Key Laboratory of Proteomics, Genetic Laboratory of Development and Diseases, Institute of Biotechnology, Beijing, People's Republic of China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Scheffel DLS, Soares DG, Basso FG, de Souza Costa CA, Pashley D, Hebling J. Transdentinal cytotoxicity of glutaraldehyde on odontoblast-like cells. J Dent 2015; 43:997-1006. [PMID: 25985981 PMCID: PMC4509972 DOI: 10.1016/j.jdent.2015.05.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2014] [Revised: 05/05/2015] [Accepted: 05/06/2015] [Indexed: 11/15/2022] Open
Abstract
OBJECTIVES This study investigated the transdentinal cytotoxicity of glutahaldehyde-containing solutions/materials on odontoblast-like cells. METHODS Dentin discs were adapted to artificial pulp chambers. MDPC-23 cells were seeded on the pulpal side of the discs and the occlusal surface was treated with the following solutions: water, 2% glutaraldehyde (GA), 5% GA, 10% GA, Gluma Comfort Bond+Desensitizer (GCB+De) or Gluma Desensitizer (GDe). Cell viability and morphology were assessed by the Alamar Blue assay and SEM. The eluates were collected and applied on cells seeded in 24-well plates. After 7 or 14 days the total protein (TP) production, alkaline phosphatase activity (ALP) and deposition of mineralized nodules (MN) were evaluated. RESULTS Data were analyzed by Kruskal-Wallis and Mann-Whitney tests (p<0.05). GA solutions were not cytotoxic against MDPC-23. GCB+De (85.1%) and GDe (77.2%) reduced cell viability as well as TP production and ALP activity at both periods. After 14 days, GCB+De and GDe groups produced less MN. Affected MDPC-23 presented deformation of the cytoskeleton and reduction of cellular projections. CONCLUSIONS The treatment with 2.5%, 5% and 10% GA was not harmful to odontoblast-like cells. Conversely, when GA was combined with other components like HEMA, the final material became cytotoxic. CLINICAL SIGNIFICANCE Glutaraldehyde has been used to decrease dentin hypersensitivity. This substance is also capable of preventing resin-dentin bond degradation by cross-linking collagen and MMPs. This study showed that GA might be safe when applied on acid etched dentin. However, when combined with HEMA the product becomes cytotoxic.
Collapse
Affiliation(s)
- Débora Lopes Salles Scheffel
- Department of Orthodontics and Pediatric Dentistry, Araraquara School of Dentistry, UNESP-Univ Estadual Paulista, Rua Humaitá, 1680, Araraquara, São Paulo 14801-903, Brazil
| | - Diana Gabriela Soares
- Department of Dental Materials and Prosthodontics, Araraquara School of Dentistry, UNESP-Univ Estadual Paulista, Rua Humaitá, 1680, Araraquara, São Paulo 14801-903, Brazil
| | - Fernanda Gonçalves Basso
- Department of Physiology and Pathology, Araraquara School of Dentistry, UNESP-Univ Estadual Paulista, Rua Humaitá, 1680, Araraquara, São Paulo 14801-903, Brazil
| | - Carlos Alberto de Souza Costa
- Department of Oral Biology, College of Dental Medicine, Georgia Regents University, 1120 15th Street, CL-2112, Augusta, Georgia 30912-1129, USA
| | - David Pashley
- Department of Physiology and Pathology, Araraquara School of Dentistry, UNESP-Univ Estadual Paulista, Rua Humaitá, 1680, Araraquara, São Paulo 14801-903, Brazil
| | - Josimeri Hebling
- Department of Orthodontics and Pediatric Dentistry, Araraquara School of Dentistry, UNESP-Univ Estadual Paulista, Rua Humaitá, 1680, Araraquara, São Paulo 14801-903, Brazil.
| |
Collapse
|
6
|
Identification and analysis of a novel bmp4 enhancer in Fugu genome. Arch Oral Biol 2015; 60:540-5. [PMID: 25594624 DOI: 10.1016/j.archoralbio.2014.12.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2013] [Revised: 11/18/2014] [Accepted: 12/07/2014] [Indexed: 12/24/2022]
Abstract
Spatiotemporal expression of bone morphogenetic protein 4 (Bmp4) in epithelial and mesenchymal cells is critical for the development of many organs including teeth. Since Bmp4 has a complex and widespread regulatory area in mammals, the tissue-specific enhancers that are responsible for mesenchymal expression of Bmp4 are difficult to identify in mammals. TakiFugu rubripes (Fugu, pufferfish) has a highly compact genome size and is widely used in comparative genomics studies of gene regulatory mechanisms. In this study, we used the Fugu genome to evaluate the 15kb promoter region upstream of the Fugu bmp4 gene. By DNA segmental cloning and luciferase assay with two dental odontoblast-like cell lines, a dental ameloblast-like cell line, and a kidney fibroblast cell line, we identified a 485bp cis-regulatory enhancer between -4213 and -3728bp of the Fugu bmp4 gene. This enhancer showed strong transcriptional activity in all three dental cell lines and, to a lesser extent, also in kidney fibroblast cells. Though not located in an evolutionary conserved region, the enhancer activity for the DNA segment is intense. This is the first time a bmp4 enhancer sequence with activity in both mesenchymal and epithelial cells has been identified, which will help to decode the mechanism of tooth development in vertebrates.
Collapse
|
7
|
Yamashita H, Ochiai H, Saito A, Shintani S, Azuma T. Phosphoinositide 3-Kinase (PI3K) Activation is Differentially Regulated during Osteogenesis induced by TGF-β1 and BMP-2/BMP-7. J HARD TISSUE BIOL 2014. [DOI: 10.2485/jhtb.23.9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
8
|
Lima AF, Ribeiro APD, Soares DGS, Sacono NT, Hebling J, de Souza Costa CA. Toxic effects of daily applications of 10% carbamide peroxide on odontoblast-like MDPC-23 cells. Acta Odontol Scand 2013; 71:1319-25. [PMID: 23351219 DOI: 10.3109/00016357.2012.762992] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
BACKGROUND bleaching has been widely studied, mainly due to the possible undesirable effects that can be caused by this esthetic procedure. The cytotoxicity of the bleaching agents and its components to pulp cells has been demonstrated in several researches. The aim of this study was to evaluate the toxic effects of successive applications of 10% carbamide peroxide (CP) gel on odontoblast-like cells. MATERIALS AND METHODS Enamel-dentin discs obtained from bovine incisors were adapted to artificial pulp chambers (APCs). The groups were formed as follows: G1: Without treatment (control group); G2: 10% carbamide peroxide, CP (five applications/one per day); G3: 10% CP (one unique application); and G4: 35% hydrogen peroxide, HP (three applications of 15 min each). After treatment, cell metabolism (MTT), alkaline phosphatase (ALP) activity and plasma membrane damage (flow cytometry) were analyzed. RESULTS Reductions in cell metabolism and alkaline phosphatase activity along with severe damage of the cytoplasmic membrane were noted in G2. In G3, no damage was observed, compared to the control group. Intermediary values of toxicity were obtained after 35% HP application. CONCLUSION It can be concluded that one application of 10% CP did not cause toxic effects in odontoblast-like cells, but the successive application of this product promoted severe cytotoxic effects. The daily application of the bleaching agents, such as used in the at-home bleaching technique, can increase the damages caused by this treatment to the dental pulp cells.
Collapse
Affiliation(s)
- Adriano Fonseca Lima
- Department of Restorative Dentistry, Piracicaba Dental School, University of Campinas - UNICAMP, Piracicaba, SP, Brazil
| | | | | | | | | | | |
Collapse
|
9
|
Lima AF, Basso FG, Ribeiro APD, Bagnato VS, Hebling J, Marchi GM, de Souza Costa CA. Effects of Laser Irradiation on Pulp Cells Exposed to Bleaching Agents. Photochem Photobiol 2013; 90:201-6. [PMID: 23931553 DOI: 10.1111/php.12155] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2013] [Accepted: 07/25/2013] [Indexed: 11/27/2022]
Abstract
The aim of this study was to evaluate the effect of low-level laser therapy (LLLT) on odontoblast-like cells exposed to a bleaching agent. Mouse dental papilla cell-23 cells were seeded in wells of 24-well plates. Eight groups were established according to the exposure to the bleaching agent and LLLT (0, 4, 10 and 15 J cm(-2) ). Enamel-dentin disks were adapted to artificial pulp chambers, which were individually placed in wells containing Dulbecco's modified Eagle's medium (DMEM). A bleaching agent (35% hydrogen peroxide [BA35%HP]) was applied on enamel (15 min) to obtain the extracts (DMEM + BA35%HP components diffused through enamel/dentin disks). The extracts were applied (1 h) to the cells, and then subjected to LLLT. Cell viability (Methyl tetrazolium assay), alkaline phosphatase (ALP) activity, as well as gene expression of ALP, fibronectin (FN) and type I collagen, were evaluated. The bleaching procedures reduced the cell viability, ALP activity and gene expression of dentin proteins. Laser irradiation did not modulate the cell response; except for FN, as LLLT decreased the gene expression of this protein by the cells exposed to the BA35%HP. It can be concluded that BA35%HP decreased the activities of odontoblasts that were not recovered by the irradiation of the damaged cells with low-level laser parameters tested.
Collapse
Affiliation(s)
- Adriano F Lima
- Department of Restorative Dentistry, Piracicaba Dental School, University of Campinas-UNICAMP, Piracicaba, Brazil.,Department of Restorative Dentistry, Nove de Julho University, Sao Paulo, Brazil
| | - Fernanda G Basso
- Department of Pathology, Piracicaba Dental School, University of Campinas-UNICAMP, Piracicaba, Brazil
| | - Ana P D Ribeiro
- Department of Operative Dentistry, University of Brasília-UnB, Brasilia, Federal District, Brazil
| | - Vanderlei S Bagnato
- Physics Institute of São Carlos, USP-University of São Paulo, São Carlos, Brazil
| | - Josimeri Hebling
- Department of Orthodontics and Pediatric Dentistry, Araraquara School of Dentistry, Univ. Estadual Paulista (UNESP), Araraquara, Brazil
| | - Giselle M Marchi
- Department of Restorative Dentistry, Piracicaba Dental School, University of Campinas-UNICAMP, Piracicaba, Brazil
| | - Carlos A de Souza Costa
- Department of Physiology and Pathology, Araraquara School of Dentistry, Univ. Estadual Paulista (UNESP), Araraquara, Brazil
| |
Collapse
|
10
|
Utreras E, Prochazkova M, Terse A, Gross J, Keller J, Iadarola MJ, Kulkarni AB. TGF-β1 sensitizes TRPV1 through Cdk5 signaling in odontoblast-like cells. Mol Pain 2013; 9:24. [PMID: 23668392 PMCID: PMC3680294 DOI: 10.1186/1744-8069-9-24] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2012] [Accepted: 05/09/2013] [Indexed: 11/10/2022] Open
Abstract
Background Odontoblasts are specialized cells that form dentin and they are believed to be sensors for tooth pain. Transforming growth factor-β1 (TGF-β1), a pro-inflammatory cytokine expressed early in odontoblasts, plays an important role in the immune response during tooth inflammation and infection. TGF-β1 is also known to participate in pain signaling by regulating cyclin-dependent kinase 5 (Cdk5) in nociceptive neurons of the trigeminal and dorsal root ganglia. However, the precise role of TGF-β1 in tooth pain signaling is not well characterized. The aim of our present study was to determine whether or not in odontoblasts Cdk5 is functionally active, if it is regulated by TGF-β1, and if it affects the downstream pain receptor, transient receptor potential vanilloid-1 (TRPV1). Results We first determined that Cdk5 and p35 are indeed expressed in an odontoblast-enriched primary preparation from murine teeth. For the subsequent analysis, we used an odontoblast-like cell line (MDPC-23) and found that Cdk5 is functionally active in these cells and its kinase activity is upregulated during cell differentiation. We found that TGF-β1 treatment potentiated Cdk5 kinase activity in undifferentiated MDPC-23 cells. SB431542, a specific inhibitor of TGF-β1 receptor 1 (Tgfbr1), when co-administered with TGF-β1, blocked the induction of Cdk5 activity. TGF-β1 treatment also activated the ERK1/2 signaling pathway, causing an increase in early growth response-1 (Egr-1), a transcription factor that induces p35 expression. In MDPC-23 cells transfected with TRPV1, Cdk5-mediated phosphorylation of TRPV1 at threonine-407 was significantly increased after TGF-β1 treatment. In contrast, SB431542 co-treatment blocked TRPV1 phosphorylation. Moreover, TGF-β1 treatment enhanced both proton- and capsaicin-induced Ca2+ influx in TRPV1-expressing MDPC-23 cells, while co-treatment with either SB431542 or roscovitine blocked this effect. Conclusions Cdk5 and p35 are expressed in a murine odontoblast-enriched primary preparation of cells from teeth. Cdk5 is also functionally active in odontoblast-like MDPC-23 cells. TGF-β1 sensitizes TRPV1 through Cdk5 signaling in MDPC-23 cells, suggesting the direct involvement of odontoblasts and Cdk5 in dental nociceptive pain transduction.
Collapse
Affiliation(s)
- Elias Utreras
- Functional Genomics Section, Laboratory of Cell and Developmental Biology, National Institute of Dental and Craniofacial Research, National Institutes of Health, 30 Convent Drive, Building 30, Room 130, Bethesda, MD 20892, USA
| | | | | | | | | | | | | |
Collapse
|
11
|
Effect of low-level laser therapy on odontoblast-like cells exposed to bleaching agent. Lasers Med Sci 2013; 29:1533-8. [PMID: 23525831 DOI: 10.1007/s10103-013-1309-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2012] [Accepted: 03/12/2013] [Indexed: 10/27/2022]
Abstract
The aim of the present study was to evaluate the effect of low-level laser therapy (LLLT) on odontoblast-like MDPC-23 cells exposed to carbamide peroxide (CP 0.01%-2.21 μg/mL of H2O2). The cells were seeded in sterile 24-well plates for 72 h. Eight groups were established according to the exposure or not to the bleaching agents and the laser energy doses tested (0, 4, 10, and 15 J/cm(2)). After exposing the cells to 0.01% CP for 1 h, this bleaching solution was replaced by fresh culture medium. The cells were then irradiated (three sections) with a near-infrared diode laser (InGaAsP-780 ± 3 nm, 40 mW), with intervals of 24 h. The 0.01% CP solution caused statistically significant reductions in cell metabolism and alkaline phosphate (ALP) activity when compared with those of the groups not exposed to the bleaching agent. The LLLT did not modulate cell metabolism; however, the dose of 4 J/cm(2) increased the ALP activity. It was concluded that 0.01% CP reduces the MDPC-23 cell metabolism and ALP activity. The LLLT in the parameters tested did not influence the cell metabolism of the cultured cells; nevertheless, the laser dose of 4 J/cm(2) increases the ALP activity in groups both with and without exposure to the bleaching agent.
Collapse
|
12
|
Bai Y, Bai Y, Matsuzaka K, Hashimoto S, Kokubu E, Wang X, Inoue T. Formation of bone-like tissue by dental follicle cells co-cultured with dental papilla cells. Cell Tissue Res 2010; 342:221-31. [DOI: 10.1007/s00441-010-1046-9] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2010] [Accepted: 09/01/2010] [Indexed: 01/14/2023]
|
13
|
Mendoza-Fandino GA, Gee JM, Ben-Dor S, Gonzalez-Quevedo C, Lee K, Kobayashi Y, Hartiala J, Myers RM, Leal SM, Allayee H, Patel PI. A novel g.-1258G>A mutation in a conserved putative regulatory element of PAX9 is associated with autosomal dominant molar hypodontia. Clin Genet 2010; 80:265-72. [PMID: 21443745 DOI: 10.1111/j.1399-0004.2010.01529.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Mutations in the transcription factor PAX9 which plays a critical role in the switching of odontogenic potential from the epithelium to the mesenchyme during tooth development cause autosomal dominant non-syndromic hypodontia primarily affecting molars. Linkage analysis on a family segregating autosomal dominant molar hypodontia with markers flanking and within PAX9 yielded a maximum multipoint LOD score of 3.6. No sequence variants were detected in the coding or 5'- and 3'-untranslated regions (UTRs) of PAX9. However, we identified a novel g.-1258G>A sequence variant in all affected individuals of the family but not in the unaffected family members or in 3088 control chromosomes. This mutation is within a putative 5'-regulatory sequence upstream of PAX9 highly conserved in primates, somewhat conserved in ungulates and carnivores but not conserved in rodents. Bioinformatics analysis of the sequence determined that there was no abolition or creation of a putative binding site for known transcription factors. Based on our previous findings that haploinsufficiency for PAX9 leads to hypodontia, we postulate that the g.-1258G>A variant reduces the expression of PAX9 which underlies the hypodontia phenotype in this family.
Collapse
Affiliation(s)
- G A Mendoza-Fandino
- Institute for Genetic Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Lima AF, Lessa FCR, Mancini MNG, Hebling J, Costa CADS, Marchi GM. Transdentinal protective role of sodium ascorbate against the cytopathic effects of H2O2 released from bleaching agents. ACTA ACUST UNITED AC 2010; 109:e70-6. [PMID: 20303050 DOI: 10.1016/j.tripleo.2009.12.020] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2009] [Revised: 12/02/2009] [Accepted: 12/09/2009] [Indexed: 10/19/2022]
Abstract
OBJECTIVES The objectives of this study were to evaluate the transdentinal cytotoxicity of 10% and 16% carbamide peroxide gel (CP), as well as the ability of the antioxidant, 10% sodium ascorbate (SA), to protect the odontoblasts in culture. STUDY DESIGN Human dentin discs of 0.5-mm thickness were obtained and were placed into artificial pulp chambers. MDPC-23 odontoblastlike cells were seeded on pulp surface of the discs and the following groups were established: G1-No Treatment (control), G2-10% SA/6hs, G3-10%/CP6hs, G4-10%SA/6hs+10%CP/6hs, G5-16%CP/6hs, and G6-10%SA/6hs+16%CP/6hs. The cell viability was measured by the MTT assay. RESULTS In groups where 16% CP was used, decreased cell viability was observed. Conversely, the application of 10% SA on the dentin discs, before the use of the CP, reduced the cytotoxic effects of these products on cells. CONCLUSIONS The 16% CP cause a significant decrease in MDPC-23 cell viability and 10% SA was able to partially prevent the toxic effects of CP.
Collapse
Affiliation(s)
- Adriano Fonseca Lima
- Department of Restorative Dentistry, Piracicaba School of Dentistry, State University of Campinas-UNICAMP, Piracicaba, SP, Brazil
| | | | | | | | | | | |
Collapse
|
15
|
Sun H, Kawashima N, Xu J, Takahashi S, Suda H. Expression of Notch signalling-related genes in normal and differentiating rat dental pulp cells. AUST ENDOD J 2010; 36:54-8. [DOI: 10.1111/j.1747-4477.2009.00188.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
16
|
de Lima AF, Lessa FCR, Gasparoto Mancini MN, Hebling J, de Souza Costa CA, Marchi GM. Cytotoxic effects of different concentrations of a carbamide peroxide bleaching gel on odontoblast-like cells MDPC-23. J Biomed Mater Res B Appl Biomater 2009; 90:907-12. [PMID: 19353567 DOI: 10.1002/jbm.b.31362] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
This study evaluated the cytotoxic effects of a carbamide peroxide (CP) bleaching gel at different concentrations on odontoblast-like cells. Immortalized cells of the MDPC-23 cell line (30,000 cells/cm(2)) were incubated for 48 h. The bleaching gel was diluted in DMEM culture medium originating extracts with different CP concentrations. The amount (microg/mL) of hydrogen peroxide (H(2)O(2)) released from each extract was measured by the leukocrystal violet/horseradish peroxidase enzyme assay. Five groups (n = 10) were formed according to the CP concentration in the extracts: G1-DMEM (control); G2-0.0001% CP (0.025 microg/mL H(2)O(2)); G3-0.001% CP (0.43 microg/mL H(2)O(2)); G4-0.01% CP (2.21 microg/mL H(2)O(2)); and G5-0.1% CP (29.74 microg/mL H(2)O(2)). MDPC-23 cells were exposed to the bleaching gel extracts for 60 min and cell metabolism was evaluated by the MTT assay. Data were analyzed statistically by one-way ANOVA and Tukey's test (alpha = 0.05). Cell morphology was examined by scanning electron microscopy. The percentages of viable cells were as follows: G1, 100%; G2, 89.41%; G3, 82.4%; G4, 61.5%; and G5, 23.0%. G2 and G3 did not differ significantly (p > 0.05) from G1. The most severe cytotoxic effects were observed in G3 and G4. In conclusion, even at low concentrations, the CP gel extracts presented cytotoxic effects. This cytotoxicity was dose-dependent, and the 0.1% CP concentration caused the most intense cytopathic effects to the MDPC-23 cells.
Collapse
Affiliation(s)
- Adriano Fonseca de Lima
- Department of Restorative Denstistry, Piracicaba School of Dentistry, State University of Campinas-UNICAMP, Piracicaba, São Paulo, Brazil
| | | | | | | | | | | |
Collapse
|
17
|
Temporal induction of secretory leukocyte protease inhibitor (SLPI) in odontoblasts by lipopolysaccharide and wound infection. J Endod 2009; 35:997-1002. [PMID: 19567322 DOI: 10.1016/j.joen.2009.04.008] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2009] [Revised: 04/08/2009] [Accepted: 04/10/2009] [Indexed: 11/22/2022]
Abstract
INTRODUCTION The secretory leukocyte protease inhibitor (SLPI) is a bacterial lipopolysaccharide (LPS)-induced product of macrophages that antagonizes the LPS-induced activation of a number of proinflammatory signaling factors. From our previous experiments, it was found that SLPI was expressed slightly in odontoblast-like cells (MDPC-23). Therefore, these experiments were designed to determine the function of SLPI in MDPC-23 and odontoblasts during the inflammatory response caused by infections and wounds. METHODS MDPC-23 cells were exposed to 100 ng/mL Escherichia coli LPS, and artificial wounds were induced in the right first molar of the maxillary of rats. In addition, a morphological change in the MDPC-23 cells was observed after LPS treatment. MDPC-23 cells were transfected transiently with the nuclear factor kappa-B (NF-kappaB) promoter binding vector. RESULTS The level of SLPI expression increased strongly 30 minutes after the LPS treatment. Scanning electron microscopy revealed many extensions of the cytoplasmic processes after LPS stimulation. SLPI was expressed along the dentinal tubules and odontoblasts layer in rat teeth after an artificial wound. SLPI also inhibited the LPS-induced activation of NF-kappaB in MDPC-23. CONCLUSIONS We report for the first time that SLPI is expressed temporally in infected odontoblasts and may participate in the anti-inflammatory response through NF-kappaB signaling in odontoblast-like cells.
Collapse
|
18
|
Lee DS, Park JT, Kim HM, Ko JS, Son HH, Gronostajski RM, Cho MI, Choung PH, Park JC. Nuclear factor I-C is essential for odontogenic cell proliferation and odontoblast differentiation during tooth root development. J Biol Chem 2009; 284:17293-17303. [PMID: 19386589 DOI: 10.1074/jbc.m109.009084] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Our previous studies have demonstrated that nuclear factor I-C (NFI-C) null mice developed short molar roots that contain aberrant odontoblasts and abnormal dentin formation. Based on these findings, we performed studies to elucidate the function of NFI-C in odontoblasts. Initial studies demonstrated that aberrant odontoblasts become dissociated and trapped in an osteodentin-like mineralized tissue. Abnormal odontoblasts exhibit strong bone sialoprotein expression but a decreased level of dentin sialophosphoprotein expression when compared with wild type odontoblasts. Loss of Nfic results in an increase in p-Smad2/3 expression in aberrant odontoblasts and pulp cells in the subodontoblastic layer in vivo and primary pulp cells from Nfic-deficient mice in vitro. Cell proliferation analysis of both cervical loop and ectomesenchymal cells of the Nfic-deficient mice revealed significantly decreased proliferative activity compared with wild type mice. In addition, Nfic-deficient primary pulp cells showed increased expression of p21 and p16 but decreased expression of cyclin D1 and cyclin B1, strongly suggesting cell growth arrest caused by a lack of Nfic activity. Analysis of the pulp and abnormal dentin in Nfic-deficient mice revealed an increase in apoptotic activity. Further, Nfic-deficient primary pulp cells exhibited an increase in caspase-8 and -3 activation, whereas the cleaved form of Bid was hardly detected. These results indicate that the loss of Nfic leads to the suppression of odontogenic cell proliferation and differentiation and induces apoptosis of aberrant odontoblasts during root formation, thereby contributing to the formation of short roots.
Collapse
Affiliation(s)
- Dong-Seol Lee
- From the Department of Oral Histology-Developmental Biology, Dental Research Institute, Seoul 110-749, Korea
| | - Jong-Tae Park
- From the Department of Oral Histology-Developmental Biology, Dental Research Institute, Seoul 110-749, Korea
| | - Hyun-Man Kim
- From the Department of Oral Histology-Developmental Biology, Dental Research Institute, Seoul 110-749, Korea
| | - Jea Seung Ko
- From the Department of Oral Histology-Developmental Biology, Dental Research Institute, Seoul 110-749, Korea
| | - Ho-Hyun Son
- Conservative Dentistry, Seoul 110-749, Korea
| | - Richard M Gronostajski
- Department of Biochemistry and the Program in Neuroscience, School of Medicine and Biomedical Science, Buffalo, New York 14214-3092
| | - Moon-Il Cho
- Department of Oral Biology, School of Dental Medicine, State University of New York at Buffalo, Buffalo, New York 14214-3092
| | - Pill-Hoon Choung
- Oral & Maxillofacial Surgery, Seoul 110-749, Korea; Tooth Bioengineering National Research Lab, School of Dentistry, Seoul National University, Seoul 110-749, Korea
| | - Joo-Cheol Park
- From the Department of Oral Histology-Developmental Biology, Dental Research Institute, Seoul 110-749, Korea.
| |
Collapse
|
19
|
Lee TY, Lee DS, Kim HM, Ko JS, Gronostajski RM, Cho MI, Son HH, Park JC. Disruption of Nfic causes dissociation of odontoblasts by interfering with the formation of intercellular junctions and aberrant odontoblast differentiation. J Histochem Cytochem 2009; 57:469-76. [PMID: 19153194 DOI: 10.1369/jhc.2009.952622] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
We reported previously that Nfic-deficient mice exhibit short and abnormal molar roots and severely deformed incisors. The objective of this study is to address the mechanisms responsible for these changes using morphological, IHC, and RT-PCR analysis. Nfic-deficient mice exhibited aberrant odontoblasts and abnormal dentin formation in molar roots and the labial crown analog of incisors. The most striking changes observed in these aberrant odontoblasts were the loss of intercellular junctions and the decreased expression of ZO-1 and occludin. As a result, they became dissociated, had a round shape, and lost their cellular polarity and arrangement as a sheet of cells. Furthermore, the dissociated odontoblasts became trapped in dentin-like mineralized tissue, resembling osteodentin in the overall morphology. These findings suggest that loss of the Nfic gene interferes with the formation of intercellular junctions that causes aberrant odontoblast differentiation and abnormal dentin formation. Collectively, these changes in odontoblasts contributed to development of molars with short and abnormal roots in Nfic-deficient mice.
Collapse
Affiliation(s)
- Tae-Yeon Lee
- Department of Conservative Dentistry and Dental Research Institute, College of Dentistry, Seoul National University, 28 Yeon-Gun Dong, Jong-Ro Gu, Seoul 110-749, Korea
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Transdentinal diffusion and cytotoxicity of self-etching adhesive systems. Cell Biol Toxicol 2008; 25:533-43. [DOI: 10.1007/s10565-008-9110-x] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2008] [Accepted: 10/27/2008] [Indexed: 12/30/2022]
|
21
|
Yasuda Y, Inuyama H, Maeda H, Akamine A, Nör JE, Saito T. Cytotoxicity of one-step dentin-bonding agents toward dental pulp and odontoblast-like cells. J Oral Rehabil 2008; 35:940-6. [PMID: 18976265 DOI: 10.1111/j.1365-2842.2008.01885.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The purpose of this study was to compare the cytotoxicity of five one-step dentin-bonding agents on human dental pulp and odontoblast-like cells (MDPC-23). Photopolymerized and unpolymerized samples of these dentin-bonding agents were prepared and incubated with dental pulp or MDPC-23 cells. After 24 or 72 h of incubation, the number of unstained cells with trypan blue was counted. The staining of cells with trypan blue stands for a cytotoxicity. The pulp cell and MDPC-23 cytotoxicity of polymerized sample treatment increased in the order of AQ Bond Plus (AQ)<Clearfil Tri-S Bond (TS)=G-bond (GB)<Absolute (AB)<Adper Prompt (AP) for 24 and 72 h. The pulp cell cytotoxicity of unpolymerized sample treatment for 24 h increased in the order of AQ<GB = AB<TS<AP. The MDPC-23 cytotoxicity of unpolymerized sample treatment for 24 h increased in the order of AQ<GB<TS = AB<AP. Whether polymerized or unpolymerized, AQ was the least cytotoxic agent, while AP was the strongest. All polymerized dentin-bonding agents exhibited lower cytotoxicity by 2-65% than their unpolymerized counterparts. The appearance of the cytotoxicity of dentin-bonding agents was time-dependent, and cell viability was lower at 72 h by 2-46% than at 24 h. The cytotoxicity to MDPC-23 cells was about 5-24% higher than that to pulp cells. These results indicate that one-step dentin-bonding agents differ markedly in their cytotoxicity. Differential cytotoxic effects of one-step dentin-bonding agents should be considered during clinical application of operative restoration.
Collapse
Affiliation(s)
- Y Yasuda
- Division of Clinical Cariology and Endodontology, Department of Oral Rehabilitation, School of Dentistry, Health Sciences University of Hokkaido, Hokkaido, Japan.
| | | | | | | | | | | |
Collapse
|
22
|
Hill E, Shukla R, Park SS, Baker JR. Synthetic PAMAM-RGD conjugates target and bind to odontoblast-like MDPC 23 cells and the predentin in tooth organ cultures. Bioconjug Chem 2007; 18:1756-62. [PMID: 17970585 DOI: 10.1021/bc0700234] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Screening techniques now allow for the identification of small peptides that bind specifically to molecules like cells. However, despite the enthusiasm for this approach, single peptides often lack the binding affinity to target in vivo and regulate cell function. We took peptides containing the Arg-Gly Asp(RGD) motif that bind to the alpha Vbeta 3 integrin and have shown potential as therapeutics. To improve their binding affinity, we synthesized polyamidoamine (PAMAM) dendrimer-RGD conjugates that that contain 12-13 copies of the peptide. When cultured with human dermal microvessel endothelial cells (HDMEC), human vascular endothelial cells (HUVEC), or odontoblast-like MDPC-23 cells, the PAMAM dendrimer conjugate targets this receptor in a manner that is both time- and dose-dependent. Finally, this conjugate selectively targets RGD binding sites in the predentin of human tooth organ cultures. Taken together, these studies provide proof of principle that synthetic PAMAM-RGD conjugates could prove useful as carriers for the tissue-specific delivery of integrin-targeted therapeutics or imaging agents and could be used to engineer tissue regeneration.
Collapse
Affiliation(s)
- Elliott Hill
- Department of Biologic and Materials Sciences, University of Michigan, Ann Arbor, MI 48109, USA.
| | | | | | | |
Collapse
|
23
|
Nomiyama K, Kitamura C, Tsujisawa T, Nagayoshi M, Morotomi T, Terashita M, Nishihara T. Effects of Lipopolysaccharide on Newly Established Rat Dental Pulp–derived Cell Line with Odontoblastic Properties. J Endod 2007; 33:1187-91. [PMID: 17889687 DOI: 10.1016/j.joen.2007.05.015] [Citation(s) in RCA: 53] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2007] [Revised: 05/18/2007] [Accepted: 05/24/2007] [Indexed: 01/09/2023]
Abstract
To clarify mechanisms of pulp wound healing and regeneration, it is important to establish continuous odontoblast-lineage cell lines. In this study, we established the proliferating pulp progenitor cell lines from dental papilla cells of rat incisor. These cell lines showed high levels of alkaline phosphatase (ALP) activity, expression of Runx2 and dentin sialophosphoprotein (DSPP), and extracellular formation of mineralized nodules. By using the cell line with high expression level of DSPP and the prominent mineral deposition, we examined whether bacterial lipopolysaccharide (LPS) had effects on its odontoblastic properties and found that ALP activity, expression of DSPP and Runx2, and the formation of mineralized nodules were suppressed in LPS dose-dependent manner. These results indicate that our established pulp progenitor cell line exhibits odontoblastic properties, which were suppressed by LPS, suggesting that gram-negative bacterial infection might downregulate the odontoblast function.
Collapse
Affiliation(s)
- Kimiko Nomiyama
- Department of Health Promotion, Division of Infections and Molecular Biology, Kyushu Dental College, Fukuoka, Japan
| | | | | | | | | | | | | |
Collapse
|
24
|
Pang JL, Wu BL, He WX, Zhang YQ, Zhao HP, Xie ZH. Effect of antisense oligonucleotide against mouse dentine matrix protein 1 on mineralization ability and calcium ions metabolism in odontoblast-like cell line MDPC-23. Int Endod J 2006; 39:527-37. [PMID: 16776757 DOI: 10.1111/j.1365-2591.2006.01104.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
AIM To study the mineralization ability and the dynamic changes of intracellular and extracellular concentrations of calcium ions in the odontoblast-like cell line MDPC-23 affected by antisense oligonucleotide (AS-ODN) against mouse dentine matrix protein 1 (DMP1). METHODOLOGY The expression of DMP1 in MDPC-23 cells was detected by an immunohistochemical method and its blocking outcome by the Western blot method. The alkaline phosphatase (ALP) activity, size and number of mineralized nodules, and the intracellular free ([Ca2+]if), total ([Ca2+]it) and the extracellular ([Ca2+]e) calcium ion concentrations in MDPC-23 cells in the experimental group affected with AS-ODN were compared with those in the control group (paired-samples t-test). RESULTS Dentine matrix protein 1 was stably expressed in a stable way in MDPC-23 cells; the expression was only just detectable at 12 h and became negative after 24 h affected by AS-ODN. Compared with the control groups, ALP activity of MDPC-23 cells in the AS-ODN group was decreased (P < 0.05), and both the number and size of mineralized nodules were smaller than those in the control group. [Ca2+]if in the AS-ODN group increased and then decreased after 24 h. [Ca2+]it dropped substantially to the lowest point at 24 h (P < 0.01). [Ca2+]e increased before treatment for 24 h and then dropped, however, it was still higher than that of the control group. CONCLUSIONS Antisense oligonucleotide against DMP1 could decrease mineralization ability and affect the intracellular and extracellular concentrations of calcium ions in MDPC-23 cells. This would indicate that DMP1 regulates the metabolism and transportation of calcium ions in odontoblasts, and thus boosts dentine mineralization.
Collapse
Affiliation(s)
- J L Pang
- Department of Operative Dentistry and Endodontics, Qindu Stomatological Hospital, The Fourth Military Medical University, Xi'an City, China
| | | | | | | | | | | |
Collapse
|
25
|
Mesgouez C, Oboeuf M, Mauro N, Colon P, MacDougall M, Machtou P, Sautier JM, Berdal A. Ultrastructural and immunocytochemical characterization of immortalized odontoblast MO6-G3. Int Endod J 2006; 39:453-63. [PMID: 16674740 DOI: 10.1111/j.1365-2591.2006.01089.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
AIM To investigate an immortalized murine odontoblast cell line as a potential alternative for experimental studies on dentinogenesis. METHODOLOGY The MO6-G3 cell line was investigated morphologically over 3, 7, 11 and 42 days of culture, using histochemical localization of dentine sialoprotein (DSP), alkaline phosphatase (AP), type I collagen and actin filaments, histoenzymatic staining and biochemical investigation of AP and finally, transmission and scanning electron microscopy. RESULTS Scanning electron micrographs showed elongated cells. Accordingly, a polarized organization of odontoblasts was observed by transmission electron microscopy, identifying distinct subcellular compartments as described in vivo. The secretion apparatus, which includes cisternae of rough endoplasmic reticulum, Golgi apparatus saccules and secretion vesicles and granules, was longitudinally organized in the supranuclear compartment ending distally in the secretory pole. A cellular process was observed. The investigation of the cytoskeleton network revealed that actin microfilaments were organized in parallel stress fibre oriented depending on the longitudinal axis of the cytoplasm. Immunofluorescent labelling showed a continuous expression of type I collagen, DSP and AP. A unipolar distribution characterized intracellular DSP immunoreactivity. Histoenzymology revealed AP active sites increasing from 3 to 11 days albeit with a moderate level of activity comparatively to the in vivo situation in dental cells. CONCLUSION This cell line MO6-G3 not only showed the criteria of odontoblast phenotype as previously reported but also the characteristic morphodifferentiation pattern of polarized odontoblasts at the cellular level but with an apparent random distribution.
Collapse
Affiliation(s)
- C Mesgouez
- Département d'Odontologie Conservatrice-Endodontie, UFR d'Odontologie, Université Paris 7-Denis Diderot, Paris, France.
| | | | | | | | | | | | | | | |
Collapse
|
26
|
He WX, Niu ZY, Zhao SL, Jin WL, Gao J, Smith AJ. TGF-β activated Smad signalling leads to a Smad3-mediated down-regulation of DSPP in an odontoblast cell line. Arch Oral Biol 2004; 49:911-8. [PMID: 15353247 DOI: 10.1016/j.archoralbio.2004.05.005] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/11/2004] [Indexed: 11/15/2022]
Abstract
OBJECTIVE Transforming growth factor-beta (TGF-beta) regulates odontoblast differentiation and stimulates dentine extracellular matrix synthesis. However, until recently, the molecular mechanisms of action of TGF-beta have been unknown. Smad proteins have recently been identified as intracellular signalling mediators of TGF-beta. In this study, we characterise the role of Smad proteins as mediators of TGF-beta in a mouse odontoblast cell line MDPC-23. METHODS Transcription of Smads was detected by RT-PCR. The change of intracellular location of Smad proteins treated by TGF-beta1 was evaluated immunocytochemically. Smad function and its role in transcription of dentin sialophosphoprotein (DSPP) were investigated in cotransfection experiments using promoter-luciferase reporter gene constructs. RESULTS MDPC-23 cells expressed Smad2, Smad3 and Smad4 mRNA. Endogenous Smad2, Smad3 and Smad4 rapidly translocated from the cytoplasm into the nucleus in response to TGF-beta1. The activity of the TGF-beta-responsive p3TP-Lux reporter construct was stimulated by 12.7-fold with TGF-beta1 treatment. Over-expression of wild-type Smad3 promoted TGF-beta1-induced luciferase activity, whereas dominant negative Smad3 inhibited it. TGF-beta1 also inhibited the activity of DSPP promoter luciferase reporter construct containing the sequence between -791 bp and +54 bp of the mouse DSPP gene. Over-expression of wild-type Smad3 potentiate the inhibitory effect of TGF-beta1 on transcriptional regulation of DSPP, while dominant negative Smad3 decreased the effect. In contrast to Smad3, wild-type Smad2 or its dominant negative mutant had little effect on TGF-beta1 regulation of the promoter activity of DSPP. CONCLUSIONS Smad2, Smad3 and Smad4 are present and activated by TGF-beta1 in MDPC-23 cells. The Smad pathway is functional in these cells and Smad3 appears to be involved in down-regulation of DSPP by TGF-beta1. These findings raise the possibility that Smad signalling plays a role in dentinogenesis.
Collapse
Affiliation(s)
- Wen-Xi He
- Department of Operative Dentistry, Qin Du Stomatological Hospital, Xi'an, 710032, PR China.
| | | | | | | | | | | |
Collapse
|
27
|
Ritchie HH, Park H, Liu J, Bervoets TJM, Bronckers ALJJ. Effects of dexamethasone, vitamin A and vitamin D3 on DSP-PP mRNA expression in rat tooth organ culture. ACTA ACUST UNITED AC 2004; 1679:263-71. [PMID: 15358518 DOI: 10.1016/j.bbaexp.2004.07.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2004] [Revised: 06/28/2004] [Accepted: 07/21/2004] [Indexed: 10/26/2022]
Abstract
Vitamin A, 1,25-dihydroxyvitamin D3 and dexamethasone are well-characterized hydrophobic molecules whose biological actions are mediated via different members of the nuclear hormone receptor family. We report here their actions on tooth formation at the molecular level. We have tested the effects of these compounds on osteopontin (OPN), dentin sialoprotein (DSP-PP), and collagen type I expression in pre-mineralization and mineralization stage rat tooth organ cultures which mirror in vivo developmental patterns. These proteins are all believed to participate in the mineralization of dentin. 1,25-Dihydroxyvitamin D3 up-regulated OPN, but had no effect on DSP-PP mRNA expression. Vitamin A up-regulated DSP-PP expression as did dexamethasone. Dexamethasone also up-regulated collagen type I expression. Our results suggest that 1,25-dihydroxyvitamin D3 does not modulate dentin mineralization by directly affecting DSP-PP expression. Vitamin A likely contributes to dentin mineralization by up-regulating DSP-PP expression. Finally, the up-regulation of DSP-PP expression in tooth germ cultures treated with dexamethasone suggests that its application to patient's dental pulp might promote increased extracellular matrix synthesis and mineralization in the pulp and may explain the narrowing of the dental pulp cavity in patients undergoing long-term dexamethasone administration.
Collapse
Affiliation(s)
- H H Ritchie
- Department of Cariology, Restorative Sciences and Endodontics, University of Michigan, Ann Arbor, Michigan 48109-1078, USA.
| | | | | | | | | |
Collapse
|
28
|
Milan AM, Waddington RJ, Smith PM, Embery G. Odontoblast transport of sulphate--the in vitro influence of fluoride. Arch Oral Biol 2003; 48:377-87. [PMID: 12711382 DOI: 10.1016/s0003-9969(03)00016-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The present study reports the development of a culture system for the analysis of 35S-sulphate release from odontoblasts in vitro. Pulpless longitudinally split rat incisors were cultured in supplemented minimum essential medium (alphaMEM) with 20 microCi 35S-sulphate per ml, 20 microCi 3H-mannitol per ml for 1h. Teeth were then transferred to fresh unlabelled media and aliquots of media were removed and the level of 35S-sulphate 3H-mannitol determined. Results indicated a two phase release of 35S-sulphate into the media, and comparison with pulp tissue indicated a specific release pattern. Transport of sulphate is essential for correct synthesis and glycosylation of macromolecules such as proteoglycans (PG). Previous studies have shown that post-translational modifications of these proteins can be influenced by excess fluoride, resulting in decreased sulphation and elongation of glycosaminoglycan (GAG) chains. Therefore the influence of fluoride on sulphate transport, using the optimised culture system was also investigated. Inclusion of 6mM fluoride during pulse labelling caused a significant decrease of 35S-sulphate (P<0.0001) during the initial release phase. Inclusion of 3 and 6mM fluoride only in the post-labelling incubation media resulted in a significant decrease in the release of 35S-sulphate (P<0.0001), during the total time course. The influence of fluoride was not dose dependent. Inclusion of a specific chloride channel blocker SITS, into the culture system indicated that 35S-sulphate transport may in part be via this route. Fluoride would therefore appear to influence the transport of 35S-sulphate across the odontoblast membrane, potentially via a chloride channel.
Collapse
Affiliation(s)
- A M Milan
- Department of Clinical Dental Sciences, The University of Liverpool, Edwards Building, Daulby Street, Liverpool L69 3GN, UK.
| | | | | | | |
Collapse
|
29
|
Abstract
Two highly expressed noncollagenous proteins associated with dentin mineralization, dentin sialoprotein (DSP) and phosphophoryn (PP), are encoded by a single DSP-PP transcript. To better understand how DSP-PP transcripts are regulated, we have determined the DSP-PP transcription start site, sequenced its 5' flanking region, and analyzed the transcriptional activity of the gene promoter out to -1615 bp. Comparison of the rat cDNA sequence with the mouse, rat and human genes clearly indicates high sequence conservation within the DSP-PP 5' flanking region, implicating the possible presence of highly conserved gene regulatory cis elements. Among a number of conserved transcription sites identified in the 5' flanking region, we demonstrate that the conserved Y box sequence (ATTGG) can specifically bind nuclear extracts from mouse MDPC23 cells. This sequence (located within the -57 bp/-52 bp 5' flanking region) therefore likely represents one DSP-PP transcriptional regulatory sequence.
Collapse
Affiliation(s)
- H H Ritchie
- Department of Cariology, Restorative Sciences, and Endodontics, University of Michigan School of Dentistry, 1011 North University, Ann Arbor, MI 48109-1078, USA.
| | | | | | | | | |
Collapse
|
30
|
Ruch JV. An address to young research workers: Inconsequences and blindness to the facts and unpublished observations. Connect Tissue Res 2003; 43:80-6. [PMID: 12489140 DOI: 10.1080/03008200290001195] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The critical remembrance of my research activity displays aspects of inconsequence and mental rigidity. Particular probative examples are called to mind. Unpublished observations concerning immortalized dental cells are summarized. As a consequence, if I could start again, I would improve several aspects of my behavior and attitude of mind.
Collapse
Affiliation(s)
- J V Ruch
- Institut de Biologie Médicale, INSERM U424, Faculté de Médecine, F-67085 Strasbourg, France.
| |
Collapse
|
31
|
Lundquist P, Ritchie HH, Moore K, Lundgren T, Linde A. Phosphate and calcium uptake by rat odontoblast-like MRPC-1 cells concomitant with mineralization. J Bone Miner Res 2002; 17:1801-13. [PMID: 12369784 DOI: 10.1359/jbmr.2002.17.10.1801] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
It has been suggested that odontoblasts are instrumental in translocating Ca2+ and inorganic phosphate (Pi) ions during the mineralization of dentin. The aim of this study was to characterize cellular Pi and Ca2+ uptake in the novel rat odontoblast-like cell line mineralizing rat pulpal cell line (MRPC) 1 during mineralization to see if changes in the ion transport activity would occur as the cultures develop and begin forming a mineralized matrix. MRPC-1 cells were cultured in chemically defined medium containing ascorbate and Pi, and cultures were specifically analyzed for cellular P, and Ca2+ uptake activities and expression of type II high-capacity Na+-Pi cotransporters. The odontoblast-like phenotype of the cell line was ascertained by monitoring the expression of collagen type I and dentin phosphopoprotein (DPP). Mineralized nodule formation started at day 9 after confluency and then rapidly increased. Ca2+ uptake by the cells showed a maximum during the end of the proliferative phase (days 5-7). Pi uptake declined to a basal level during proliferation and then was up-regulated simultaneously with the onset of mineralization to a level fourfold of the basal uptake, suggesting an initiating and regulatory role for cellular Pi uptake in mineral formation. This up-regulation coincided with a conspicuously increased glycosylation of NaPi-2a, indicating an activation of this Na+-Pi cotransporter. The study showed that MRPC-1 cells express an odontoblast-like phenotype already at the onset of culture, but that to mineralize the collagenous extracellular matrix (ECM) that formed, a further differentiation involving their ion transporters is necessary.
Collapse
Affiliation(s)
- P Lundquist
- Department of Oral Biochemistry, Faculty of Odontology, Göteborg University, Sweden
| | | | | | | | | |
Collapse
|
32
|
Thonemann B, Schmalz G. Immortalization of bovine dental papilla cells with simian virus 40 large t antigen. Arch Oral Biol 2000; 45:857-69. [PMID: 10973559 DOI: 10.1016/s0003-9969(00)00056-x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Primary cultures of dental papilla-derived cells have a limited lifespan in vitro and can be maintained only up to passage 7-9 before showing senescence, but in vitro investigations often require a large number of cells showing phenotypic characteristics of the original tissue. To overcome this shortcoming, second-passage cells established from calf molar tooth germs by enzymatic pretreatment of the dental papilla were transfected by electroporation with pSV3neo, coding for the oncogene simian virus 40 large t antigen and a neomycin-resistance gene. Under selection by G418 (neomycin), four cell clones were isolated by single cell dilution at passage 15. Integration of simian virus 40 large t antigen and expression of the gene products were determined in cell clones by polymerase chain reaction (PCR) and immunohistochemistry. Four transfected cell lines (clones B, C, D and no. 12) were maintained in culture for over 1.5 years. For cell characterization, gene expression of procollagen alpha1 (I) and osteocalcin was evaluated by reverse transcriptase (RT)-PCR with cDNA obtained from the established cell lines at passage 20. Expression of collagen type I, osteocalcin and dentine phosphoprotein was evaluated immunohistochemically at passage 20 and after 1.5 years of continuous cell culture. Gene expression and the expression of mineralized tissue-specific proteins was demonstrated with RT-PCR and immunohistochemistry within all four immortalized cell lines. Expression of dentine phosphoprotein was observed in three simian virus 40 large t antigen-transfected cell lines, suggesting the immortalization of odontoblast-like cells in vitro. Thus, transfection of bovine dental papilla-derived cells resulted in immortal cell lines exhibiting phenotypic characteristics of the original tissue.
Collapse
Affiliation(s)
- B Thonemann
- Department of Operative Dentistry and Periodontology, University of Regensburg, 93042 Regensburg, Germany.
| | | |
Collapse
|
33
|
Costa CA, Vaerten MA, Edwards CA, Hanks CT. Cytotoxic effects of current dental adhesive systems on immortalized odontoblast cell line MDPC-23. Dent Mater 1999; 15:434-41. [PMID: 10863445 DOI: 10.1016/s0109-5641(99)00071-8] [Citation(s) in RCA: 96] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
OBJECTIVES Evaluate the cytotoxic effect of the three dental adhesive systems. METHODS The immortalized mouse odontoblast cell line (MDPC-23) was plated (30,000 cell/cm2) in 24 well dishes, allowed to grow for 72 h, and counted under inverted light microscopy. Uncured fresh adhesives were added to culture medium to simulate effects of unset adhesive. Three adhesives systems were applied for 120 min to cells in six wells for each group: Group 1) Single Bond (3M), Group 2) Prime & Bond 2.1 (Dentsply), and Group 3) Syntac Sprint (Vivadent). In the control group, PBS was added to fresh medium. The cell number was counted again and the cell morphology was assessed under SEM. In addition, the adhesive systems were applied to circles of filter paper, light-cured for 20 s, and placed in the bottom of 24 wells (six wells for each experimental materials and control group). MDPC-23 cells were plated (30,000 cell/cm2) in the wells and allowed to incubate for 72 h. The zone of inhibition around the filter papers was measured under inverted light microscopy; cell morphology was evaluated under SEM; and the MTT assay was performed for mitochondrial respiration. RESULTS The fresh adhesives exhibited more toxic (cytopathic effects) to MDPC-23 cells than polymerized adhesives on filter papers, and as compared to the control group. The cytopathic effect of the adhesive systems occurred in the inhibition zone around the filter papers, which was confirmed by the MTT assay and statistical analysis (ANOVA) combined with Fisher's PLSD test. In the control group, MDPC-23 cells were dense on the plastic substrate and were in contact with the filter paper. In the experimental groups, when acid in the adhesive systems was removed by changing the culture medium, or when the adhesives were light-cured, some cells grew in the wells in spite of the persistent cytotoxic effect. SIGNIFICANCE All dentin adhesive systems were cytotoxic odontoblast-like cells. Both acidity and non-acidic components of these systems were responsible for the high cytopathic effect of those dental materials.
Collapse
Affiliation(s)
- C A Costa
- São Paulo State University/UNESP, Department of Physiology and Pathology, Araraquara, Brazil.
| | | | | | | |
Collapse
|
34
|
Hanks CT, Sun ZL, Fang DN, Edwards CA, Wataha JC, Ritchie HH, Butler WT. Cloned 3T6 cell line from CD-1 mouse fetal molar dental papillae. Connect Tissue Res 1998; 37:233-49. [PMID: 9862224 DOI: 10.3109/03008209809002442] [Citation(s) in RCA: 127] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Only primary pulpal cell cultures and one virally transformed mouse cell culture have been formally reported in the literature to synthesize proteins such as phosphophoryn which are unique to dentin matrix. In the present study, a mixed culture was derived from dental papilla cells of 18-19 fetal day CD-1 mouse mandibular first molars, maintained on a 3T6 plating regimen, and subsequently cloned after 28 passages. This cloned cell line (MDPC-23) exhibited several unique features, some of which were characteristic of odontoblasts in vivo. The features of this cell line included (1) epithelioid morphology of all cells with multiple cell membrane processes, (2) high alkaline phosphatase activity in all cells, (3) formation of multilayered nodules and multilayered cultures when maintained in ascorbic acid and beta-glycerophosphate, and (4) expression of two markers for odontoblast differentiation, i.e. dentin phosphoprotein and dentin sialoprotein.
Collapse
Affiliation(s)
- C T Hanks
- Department of Oral Medicine, Pathology and Surgery, University of Michigan School of Dentistry, Ann Arbor 48109-1078, USA
| | | | | | | | | | | | | |
Collapse
|