1
|
Li S, Leeming MG, O'Hair RAJ. What are the Potential Sites of DNA Attack by N-Acetyl-p-benzoquinone Imine (NAPQI)? Aust J Chem 2020. [DOI: 10.1071/ch19361] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Metabolic bioactivation of small molecules can produce electrophilic metabolites that can covalently modify proteins and DNA. Paracetamol (APAP) is a commonly used over-the-counter analgesic, and its hepatotoxic side effects have been postulated to be due to the formation of the electrophilic metabolite N-acetylbenzoquinone imine (NAPQI). It has been established that NAPQI reacts to form covalent bonds to the side-chain functional groups of cysteine, methionine, tyrosine, and tryptophan residues. While there have been scattered reports that APAP can form adducts with DNA the nature of these adducts have not yet been fully characterised. Here the four deoxynucleosides, deoxyguanosine (dG), deoxyadenosine (dA), deoxycytidine (dC), and deoxythymidine (dT) were reacted with NAPQI and the formation of adducts was profiled using liquid chromatography–mass spectrometry with positive-ion mode electrospray ionisation and collision-induced dissociation. Covalent adducts were detected for dG, dA, and dC and tandem mass spectrometry (MS/MS) spectra revealed common neutral losses of deoxyribose (116 amu) arising from cleavage of the glyosidic bond with formation of the modified nucleobase. Of the four deoxynucleosides, dC proved to be the most reactive, followed by dG and dA. A pH dependence was found, with greater reactivity being observed at pH 5.5. The results of density functional theory calculations aimed at understanding the relative reactivities of the four deoxynucleosides towards NAPQI are described.
Collapse
|
2
|
Nephroprotective Effect of Herbal Extract Eurycoma longifolia on Paracetamol-Induced Nephrotoxicity in Rats. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2019; 2019:4916519. [PMID: 31214269 PMCID: PMC6535855 DOI: 10.1155/2019/4916519] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 02/26/2019] [Accepted: 03/31/2019] [Indexed: 11/18/2022]
Abstract
Paracetamol (PCM) is a well-known drug widely used for its analgesic and antipyretic properties. PCM is generally considered as safe but overdose of PCM can cause nephrotoxicity. Traditionally, herbs have been used for the treatment of drug or toxin-induced renal disorders and numerous medicinal plants were tested for nephroprotection effect in PCM-induced nephrotoxicity model. The aim of the present study was to evaluate the protective effect of the herbal extract Eurycoma longifolia (EL) against PCM-induced nephrotoxicity rat model. Forty Wistar rats were randomly divided into five groups of eight rats each: control (vehicle 10 ml/kg), PCM alone (200 mg/kg PCM), EL 100 (EL 100 mg/kg+200 mg/kg PCM), EL 200 (EL 200 mg/kg+200 mg/kg PCM), and EL 400 (EL 400 mg/kg+200 mg/kg PCM). All animals from control group received vehicle daily and animals from groups PCM alone, EL 100, EL 200, and EL 400 received repeated dose of PCM and the assigned treatment of EL daily for a period of 14 days. On the 15th day, serum creatinine, blood urea nitrogen, protein, and albumin were measured in blood and creatinine clearance was measured in urine collected over 24 hours. Kidney sections of all experimental groups underwent histopathological analysis. There was a significant (p<0.05) increase in serum creatinine and blood urea levels in the PCM alone group compared to the treatment groups due to nephrotoxicity. In the treatment groups, there was a dose-dependent protection against PCM-induced changes observed in serum total protein, albumin, urea, and creatinine. Significant (p<0.05) drop was seen in serum creatinine and blood urea content in EL 200 and EL 400 groups. Creatinine clearance significantly increased for EL 200 (p<0.01) and EL 400 (p < 0.001) groups. Serum total protein and serum albumin content were significantly increased (p<0.05) in EL 200 and EL 400 groups compared to PCM alone group. Histopathological examination (H&E staining) of the rat kidneys revealed severe degeneration in the PCM alone group, while there was evidence of significant dose-dependent protection in the treatment groups against PCM-induced changes. The serum and urine biochemical results and histopathology analysis of the kidney indicate the nephroprotective potential of EL extract against PCM-induced nephrotoxicity.
Collapse
|
3
|
Pu S, Ren L, Liu Q, Kuang J, Shen J, Cheng S, Zhang Y, Jiang W, Zhang Z, Jiang C, He J. Loss of 5-lipoxygenase activity protects mice against paracetamol-induced liver toxicity. Br J Pharmacol 2015; 173:66-76. [PMID: 26398229 DOI: 10.1111/bph.13336] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Revised: 08/12/2015] [Accepted: 09/17/2015] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND AND PURPOSE Paracetamol (acetaminophen) is the most widely used over-the-counter analgesic and overdosing with paracetamol is the leading cause of hospital admission for acute liver failure. 5-Lipoxygenase (5-LO) catalyses arachidonic acid to form LTs, which lead to inflammation and oxidative stress. In this study, we examined whether deletion or pharmacological inhibition of 5-LO could protect mice against paracetamol-induced hepatic toxicity. EXPERIMENTAL APPROACH Both genetic deletion and pharmacological inhibition of 5-LO in C57BL/6J mice were used to study the role of this enzyme in paracetamol induced liver toxicity. Serum and tissue biochemistry, H&E staining, and real-time PCR were used to assess liver toxicity. KEY RESULTS Deletion or pharmacological inhibition of 5-LO in mice markedly ameliorated paracetamol-induced hepatic injury, as shown by decreased serum alanine transaminase and aspartate aminotransferase levels and hepatic centrilobular necrosis. The hepatoprotective effect of 5-LO inhibition was associated with induction of the antitoxic phase II conjugating enzyme, sulfotransferase2a1, suppression of the pro-toxic phase I CYP3A11 and reduction of the hepatic transporter MRP3. In 5-LO(-/-) mice, levels of GSH were increased, and oxidative stress decreased. In addition, PPAR α, a nuclear receptor that confers resistance to paracetamol toxicity, was activated in 5-LO(-/-) mice. CONCLUSIONS AND IMPLICATIONS The activity of 5-LO may play a critical role in paracetamol-induced hepatic toxicity by regulating paracetamol metabolism and oxidative stress.
Collapse
Affiliation(s)
- Shiyun Pu
- Department of Pharmacy, Collaborative Innovation Center of Biotherapy, West China Hospital of Sichuan University, Chengdu, China
| | - Lin Ren
- Department of Pharmacy, Collaborative Innovation Center of Biotherapy, West China Hospital of Sichuan University, Chengdu, China
| | - Qinhui Liu
- Laboratory of Clinical Pharmacy and Adverse Drug Reaction, Collaborative Innovation Center of Biotherapy, West China Hospital of Sichuan University, Chengdu, China
| | - Jiangying Kuang
- Department of Pharmacy, Collaborative Innovation Center of Biotherapy, West China Hospital of Sichuan University, Chengdu, China
| | - Jing Shen
- Department of Pharmacy, Collaborative Innovation Center of Biotherapy, West China Hospital of Sichuan University, Chengdu, China
| | - Shihai Cheng
- Department of Pharmacy, Collaborative Innovation Center of Biotherapy, West China Hospital of Sichuan University, Chengdu, China
| | - Yuwei Zhang
- Division of Endocrinology and Metabolism, Collaborative Innovation Center of Biotherapy, West China Hospital of Sichuan University, Chengdu, China
| | - Wei Jiang
- Molecular Medicine Research Center, State Key Laboratory of Biotherapy and Cancer Center, Collaborative Innovation Center of Biotherapy, West China Hospital of Sichuan University, Chengdu, China
| | - Zhiyong Zhang
- Department of Pharmacy, Collaborative Innovation Center of Biotherapy, West China Hospital of Sichuan University, Chengdu, China
| | - Changtao Jiang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Jinhan He
- Department of Pharmacy, Collaborative Innovation Center of Biotherapy, West China Hospital of Sichuan University, Chengdu, China.,Laboratory of Clinical Pharmacy and Adverse Drug Reaction, Collaborative Innovation Center of Biotherapy, West China Hospital of Sichuan University, Chengdu, China
| |
Collapse
|
4
|
Leeming MG, Gamon LF, Wille U, Donald WA, O'Hair RAJ. What Are the Potential Sites of Protein Arylation by N-Acetyl-p-benzoquinone Imine (NAPQI)? Chem Res Toxicol 2015; 28:2224-33. [PMID: 26523953 DOI: 10.1021/acs.chemrestox.5b00373] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Acetaminophen (paracetamol, APAP) is a safe and widely used analgesic medication when taken at therapeutic doses. However, APAP can cause potentially fatal hepatotoxicity when taken in overdose or in patients with metabolic irregularities. The production of the electrophilic and putatively toxic compound N-acetyl-p-benzoquinone imine (NAPQI), which cannot be efficiently detoxicated at high doses, is implicated in APAP toxicity. Numerous studies have identified that excess NAPQI can form covalent linkages to the thiol side chains of cysteine residues in proteins; however, the reactivity of NAPQI toward other amino acid side chains is largely unexplored. Here, we report a survey of the reactivity of NAPQI toward 11 N-acetyl amino acid methyl esters and four peptides. (1)H NMR analysis reveals that NAPQI forms covalent bonds to the side-chain functional groups of cysteine, methionine, tyrosine, and tryptophan residues. Analogous reaction products were observed when NAPQI was reacted with synthetic model peptides GAIL-X-GAILR for X = Cys, Met, Tyr, and Trp. Tandem mass spectrometry peptide sequencing showed that the NAPQI modification sites are located on the "X" residue in each case. However, when APAP and the GAIL-X-GAILR peptide were incubated with rat liver microsomes that contain many metabolic enzymes, NAPQI formed by oxidative metabolism reacted with GAIL-C-GAILR exclusively. For the peptides where X = Met, Tyr, and Trp, competing reactions between NAPQI and alternative nucleophiles precluded arylation of the target peptide by NAPQI. Although Cys residues are favorably targeted under these conditions, these data suggest that NAPQI can, in principle, also damage proteins at Met, Tyr, and Trp residues.
Collapse
Affiliation(s)
- Michael G Leeming
- School of Chemistry and ARC Centre of Excellence for Free Radical Chemistry and Biotechnology, Bio21 Institute of Molecular Science and Biotechnology, University of Melbourne , Parkville, Victoria 3010, Australia
| | - Luke F Gamon
- School of Chemistry and ARC Centre of Excellence for Free Radical Chemistry and Biotechnology, Bio21 Institute of Molecular Science and Biotechnology, University of Melbourne , Parkville, Victoria 3010, Australia
| | - Uta Wille
- School of Chemistry and ARC Centre of Excellence for Free Radical Chemistry and Biotechnology, Bio21 Institute of Molecular Science and Biotechnology, University of Melbourne , Parkville, Victoria 3010, Australia
| | - William A Donald
- School of Chemistry, University of New South Wales , Sydney, NSW 2052, Australia
| | - Richard A J O'Hair
- School of Chemistry and ARC Centre of Excellence for Free Radical Chemistry and Biotechnology, Bio21 Institute of Molecular Science and Biotechnology, University of Melbourne , Parkville, Victoria 3010, Australia
| |
Collapse
|
5
|
Palani S, Raja S, Naresh R, Senthil Kumar B. Evaluation of nephroprotective, diuretic, and antioxidant activities ofplectranthus amboinicuson acetaminophen-induced nephrotoxic rats. Toxicol Mech Methods 2010; 20:213-21. [DOI: 10.3109/15376511003736787] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
6
|
Lin CY, Boland BC, Lee YJ, Salemi MR, Morin D, Miller LA, Plopper CG, Buckpitt AR. Identification of proteins adducted by reactive metabolites of naphthalene and 1-nitronaphthalene in dissected airways of rhesus macaques. Proteomics 2006; 6:972-82. [PMID: 16453347 DOI: 10.1002/pmic.200500170] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Naphthalene and 1-nitronaphthalene are ambient air pollutants, which undergo P450-dependent bioactivation in the lung. Reactive metabolites of naphthalene and 1-nitronaphthalene covalently bind to proteins, and the formation of covalent adducts correlates with airway epithelial cell injury in rodent models. These studies were designed to identify protein adducts generated from these reactive metabolites within distal respiratory airways. Distal bronchioles and parenchyma from rhesus monkeys were incubated with [(14)C]naphthalene or [(14)C]1-nitronaphthalene. Proteins were separated by 2-DE, blotted to PVDF membranes, and adducted proteins imaged by storage phosphor analysis. MS of in-gel tryptic digests identified numerous adducted proteins including: eight cytoskeletal proteins, two chaperone proteins, seven metabolic enzymes, one redox protein, two proteins involved in ion balance and cell signaling, and two extracellular proteins. While many proteins are adducted by both naphthalene and 1-nitronaphthalene, some are unique to the individual toxicant and airway subcompartment. Although the role which adduction of these proteins plays in cytotoxicity was not evaluated, these studies provide candidate proteins for future work designed to determine the importance of protein adducts in the mechanisms of toxicity and for developing biomarkers useful in determining the relevance of findings in animal models to exposed human populations.
Collapse
Affiliation(s)
- Ching Yu Lin
- Department of Molecular Biosciences, School of Veterinary Medicine, University of California, Davis, CA 95616, USA.
| | | | | | | | | | | | | | | |
Collapse
|
7
|
Abstract
The history of the development of the analgestic drug acetaminophen is reviewed with an emphasis on the characteristics of its overdose toxicity. The P450-catalyzed oxidation of acetaminophen generates a reactive electrophile that binds covalently to proteins. Involvement of specific P450 enzymes in acetaminophen toxicity can be probed by experiments with knock-out mice. The identification of specific target proteins may help to clarify the mechanism of acetaminophen hepatoxocity.
Collapse
Affiliation(s)
- P David Josephy
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario, Canada.
| |
Collapse
|
8
|
Clement YN, Williams AF. Protection against paracetamol-induced hepatic injury by prazosin pre-treatment in CD-1 mice. Mutat Res 2005; 579:182-8. [PMID: 16054166 DOI: 10.1016/j.mrfmmm.2005.03.028] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2004] [Revised: 03/02/2005] [Accepted: 03/03/2005] [Indexed: 05/03/2023]
Abstract
A synergistic depletion of glutathione has been suggested to be one critical factor in the hepatic injury in mice induced by non-toxic doses of paracetamol (APAP) when co-administered with alpha-adrenergic agonists. Prazosin (an alpha-adrenergic antagonist) could confer hepatoprotection following a toxic APAP dose (530 mg/kg) by increasing glutathione levels and enhancing bioinactivation by glucuronidation and glutathione conjugation. The effect of prazosin pre-treatment on APAP-induced gluthathione depletion and bioinactivation in vivo was assessed. Prazosin (15 mg/kg) pre-treatment provided protection against APAP-induced hepatic injury as evidenced by a significant decrease in serum transaminase (ALT) levels after 5h (p<0.05). Interestingly, prazosin pre-treatment did not prevent the dramatic depletion of glutathione by high dose APAP and it had no effect on the quantity of the glutathione conjugate formed. However, prazosin pre-treatment caused a significant increase in recovery of the administered dose (530 mg/kg) as the glucuronide metabolite (p<0.05). UDP-glucuronosyltransferase (UGT) is involved in the bioinactivation of APAP by glucuronidation and we showed that prazosin had no effect on microsomal UGT kinetics. Thus, prazosin had no effect on either APAP-mediated glutathione depletion or the extent of APAP-glutathione conjugate formation and may be affecting other mechanisms to reduce oxidative stress caused by a toxic dose of APAP.
Collapse
Affiliation(s)
- Yuri N Clement
- Pharmacology Unit, Faculty of Medical Sciences, The University of the West Indies, Trinidad and Tobago.
| | | |
Collapse
|
9
|
Yang XX, Hu ZP, Chan SY, Zhou SF. Monitoring drug-protein interaction. Clin Chim Acta 2005; 365:9-29. [PMID: 16199025 DOI: 10.1016/j.cca.2005.08.021] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2005] [Revised: 08/16/2005] [Accepted: 08/23/2005] [Indexed: 11/25/2022]
Abstract
A variety of therapeutic drugs can undergo biotransformation via Phase I and Phase II enzymes to reactive metabolites that have intrinsic chemical reactivity toward proteins and cause potential organ toxicity. A drug-protein adduct is a protein complex that forms when electrophilic drugs or their reactive metabolite(s) covalently bind to a protein molecule. Formation of such drug-protein adducts eliciting cellular damages and immune responses has been a major hypothesis for the mechanism of toxicity caused by numerous drugs. The monitoring of protein-drug adducts is important in the kinetic and mechanistic studies of drug-protein adducts and establishment of dose-toxicity relationships. The determination of drug-protein adducts can also provide supportive evidence for diagnosis of drug-induced diseases associated with protein-drug adduct formation in patients. The plasma is the most commonly used matrix for monitoring drug-protein adducts due to its convenience and safety. Measurement of circulating antibodies against drug-protein adducts may be used as a useful surrogate marker in the monitoring of drug-protein adducts. The determination of plasma protein adducts and/or relevant antibodies following administration of several drugs including acetaminophen, dapsone, diclofenac and halothane has been conducted in clinical settings for characterizing drug toxicity associated with drug-protein adduct formation. The monitoring of drug-protein adducts often involves multi-step laboratory procedure including sample collection and preliminary preparation, separation to isolate or extract the target compound from a mixture, identification and determination. However, the monitoring of drug-protein adducts is often difficult because of short half-lives of the protein adducts, sampling problem and lack of sensitive analytical techniques for the protein adducts. Currently, chromatographic (e.g. high performance liquid chromatography) and immunological methods (e.g. enzyme-linked immunosorbent assay) are two major techniques used to determine protein adducts of drugs in patients. The present review highlights the importance for clinical monitoring of drug-protein adducts, with an emphasis on methodology and with a further discussion of the application of these techniques to individual drugs and their target proteins.
Collapse
Affiliation(s)
- Xiao-Xia Yang
- Department of Pharmacy, Faculty of Science, National University of Singapore, Science Drive 4, Singapore 117543, Singapore
| | | | | | | |
Collapse
|
10
|
Zhou S, Chan E, Duan W, Huang M, Chen YZ. Drug bioactivation, covalent binding to target proteins and toxicity relevance. Drug Metab Rev 2005; 37:41-213. [PMID: 15747500 DOI: 10.1081/dmr-200028812] [Citation(s) in RCA: 179] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
A number of therapeutic drugs with different structures and mechanisms of action have been reported to undergo metabolic activation by Phase I or Phase II drug-metabolizing enzymes. The bioactivation gives rise to reactive metabolites/intermediates, which readily confer covalent binding to various target proteins by nucleophilic substitution and/or Schiff's base mechanism. These drugs include analgesics (e.g., acetaminophen), antibacterial agents (e.g., sulfonamides and macrolide antibiotics), anticancer drugs (e.g., irinotecan), antiepileptic drugs (e.g., carbamazepine), anti-HIV agents (e.g., ritonavir), antipsychotics (e.g., clozapine), cardiovascular drugs (e.g., procainamide and hydralazine), immunosupressants (e.g., cyclosporine A), inhalational anesthetics (e.g., halothane), nonsteroidal anti-inflammatory drugs (NSAIDSs) (e.g., diclofenac), and steroids and their receptor modulators (e.g., estrogens and tamoxifen). Some herbal and dietary constituents are also bioactivated to reactive metabolites capable of binding covalently and inactivating cytochrome P450s (CYPs). A number of important target proteins of drugs have been identified by mass spectrometric techniques and proteomic approaches. The covalent binding and formation of drug-protein adducts are generally considered to be related to drug toxicity, and selective protein covalent binding by drug metabolites may lead to selective organ toxicity. However, the mechanisms involved in the protein adduct-induced toxicity are largely undefined, although it has been suggested that drug-protein adducts may cause toxicity either through impairing physiological functions of the modified proteins or through immune-mediated mechanisms. In addition, mechanism-based inhibition of CYPs may result in toxic drug-drug interactions. The clinical consequences of drug bioactivation and covalent binding to proteins are unpredictable, depending on many factors that are associated with the administered drugs and patients. Further studies using proteomic and genomic approaches with high throughput capacity are needed to identify the protein targets of reactive drug metabolites, and to elucidate the structure-activity relationships of drug's covalent binding to proteins and their clinical outcomes.
Collapse
Affiliation(s)
- Shufeng Zhou
- Department of Pharmacy, Faculty of Science, National University of Singapore, Singapore.
| | | | | | | | | |
Collapse
|
11
|
Vertzoni MV, Archontaki HA, Galanopoulou P. Development and optimization of a reversed-phase high-performance liquid chromatographic method for the determination of acetaminophen and its major metabolites in rabbit plasma and urine after a toxic dose. J Pharm Biomed Anal 2003; 32:487-93. [PMID: 14565553 DOI: 10.1016/s0731-7085(03)00246-2] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
A reversed-phase high-performance liquid chromatographic method with detection at 242 nm was developed, optimized and validated for the determination of acetaminophen (A) and its major metabolites glucuronide (AG) and sulfate (AS) conjugates in rabbit plasma and urine after a toxic dose. m-Aminophenol was used as internal standard (IS). A Hypersil BDS RP-C18 column (250 x 4.6 mm), 5 microm particle size, was equilibrated with a mobile phase composed of aqueous buffer solution of KH2PO4 0.05 M containing 1% CH3COOH (pH 6.5) and methanol (95:5, v/v). Its flow rate was 1.5 ml/min. Calibration curves of A, AG and AS were linear in the concentration ranges of 0.5-250, 1-200, 0.5-100 microg/ml in plasma and 1-200, 0.5-150, 0.5-100 microg/ml in urine matrix, respectively. Limits of detection and quantitation were calculated in all cases and extensive recovery studies were also performed. Intra-day relative standard deviation (R.S.D.) for A, AG and AS in plasma was less than 5, 4, 2% and in urine less than 4, 7, 4%, respectively, while the corresponding inter-day values were 7, 6, 4% and 5, 8, 6%, respectively.
Collapse
Affiliation(s)
- M V Vertzoni
- Department of Chemistry, University of Athens, Panepistimiopolis, Greece
| | | | | |
Collapse
|
12
|
Zhou S. Separation and detection methods for covalent drug–protein adducts. J Chromatogr B Analyt Technol Biomed Life Sci 2003; 797:63-90. [PMID: 14630144 DOI: 10.1016/s1570-0232(03)00399-4] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Covalent binding of reactive metabolites of drugs to proteins has been a predominant hypothesis for the mechanism of toxicity caused by numerous drugs. The development of efficient and sensitive analytical methods for the separation, identification, quantification of drug-protein adducts have important clinical and toxicological implications. In the last few decades, continuous progress in analytical methodology has been achieved with substantial increase in the number of new, more specific and more sensitive methods for drug-protein adducts. The methods used for drug-protein adduct studies include those for separation and for subsequent detection and identification. Various chromatographic (e.g., affinity chromatography, ion-exchange chromatography, and high-performance liquid chromatography) and electrophoretic techniques [e.g., sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE), two-dimensional SDS-PAGE, and capillary electrophoresis], used alone or in combination, offer an opportunity to purify proteins adducted by reactive drug metabolites. Conventionally, mass spectrometric (MS), nuclear magnetic resonance, and immunological and radioisotope methods are used to detect and identify protein targets for reactive drug metabolites. However, these methods are labor-intensive, and have provided very limited sequence information on the target proteins adducted, and thus the identities of the protein targets are usually unknown. Moreover, the antibody-based methods are limited by the availability, quality, and specificity of antibodies to protein adducts, which greatly hindered the identification of specific protein targets of drugs and their clinical applications. Recently, the use of powerful MS technologies (e.g., matrix-assisted laser desorption/ionization time-of-flight) together with analytical proteomics have enabled one to separate, identify unknown protein adducts, and establish the sequence context of specific adducts by offering the opportunity to search for adducts in proteomes containing a large number of proteins with protein adducts and unmodified proteins. The present review highlights the separation and detection technologies for drug-protein adducts, with an emphasis on methodology, advantages and limitations to these techniques. Furthermore, a brief discussion of the application of these techniques to individual drugs and their target proteins will be outlined.
Collapse
Affiliation(s)
- Shufeng Zhou
- Department of Pharmacy, Faculty of Science, National University of Singapore, Science Drive 4, Singapore 117543, Singapore.
| |
Collapse
|
13
|
Allameh A, Alikhani N. Acetaminophen-glutathione conjugate formation in a coupled cytochrome P-450-glutathione S-transferase assay system mediated by subcellular preparations from adult and weanling rat tissues. Toxicol In Vitro 2002; 16:637-41. [PMID: 12423644 DOI: 10.1016/s0887-2333(02)00087-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Previous studies from this laboratory indicated that glutathione (GSH) conjugate formation with acetaminophen (APAP) is remarkably induced in liver of weanling rats in response to a single overdose of the drug administered intraperitoneally (ip). Increased APAP-GSH conjugation has been attributed to inducible glutathione S-transferases (GSTs) in dividing hepatocytes. In order to verify this finding, an in vitro reconstitution assay containing liver microsomes (source of cytochrome P-450) and cytosolic fractions (source of GST) from livers and kidneys of adult and weanling rats has been established. In vitro incubation of the reaction mixture was followed by solvent extraction, enzymatic digestion and HPLC analysis of the conjugate. Under controlled conditions, in vitro, the rate of APAP-GSH conjugation reflected the GST activity of cytosolic sample added to incubation system. The activity of cytosolic GST in catalyzing this reaction was measured using cytosols prepared from various tissue sources, particularly from animals pretreated with dietary butylated hydroxylanisole (BHA). The extent of APAP-GSH conjugate formation mediated by cytosols varied in this order: BHA-treated adult liver>BHA-treated weanling liver>control adult liver>control weanling liver>BHA-adult kidney>control adult kidney>BHA weanling kidney>control weanling kidney. In contrast to findings obtained from in vivo experiments, the rate of GST-dependent APAP conjugate formation with GSH in vitro is not induced in the presence of exogenous drug.
Collapse
Affiliation(s)
- A Allameh
- Department of Biochemistry, Faculty of Medical Sciences, Tarbiat Moddares University, PO Box 14115-111, Tehran, I.R., Iran.
| | | |
Collapse
|
14
|
Gonzalez FJ, Kimura S. Understanding the role of xenobiotic-metabolism in chemical carcinogenesis using gene knockout mice. Mutat Res 2001; 477:79-87. [PMID: 11376689 DOI: 10.1016/s0027-5107(01)00109-9] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Most chemical carcinogens require metabolic activation to electrophilic metabolites that are capable of binding to DNA and causing gene mutations. Carcinogen metabolism is carried out by large groups of xenobiotic-metabolizing enzymes that include the phase I cytochromes P450 (P450) and microsomal epoxide hydrolase, and various phase II transferase enzymes. It is extremely important to determine the role P450s play in the carcinogenesis and to establish if they are the rate limiting and critical interface between the chemical and its biological activities. The latter is essential in order to validate the use of rodent models to test safety of chemicals in humans. Since there are marked species differences in expressions and catalytic activities of the multiple P450 forms that activate carcinogens, this validation process becomes especially difficult. To address the role of P450s in whole animal carcinogenesis, mice were produced that lack the P450s known to catalyze carcinogen activation. Mouse lines having disrupted genes encoding the P450s CYP1A2, CYP2E1, and CYP1B1 were developed. Mice lacking expression of microsomal epoxide hydrolase (mEH) and NADPH-quinone oxidoreductase (NQO1) were also made. All of these mice exhibit no gross abnormal phenotypes, suggesting that the xenobiotic-metabolizing enzymes have no critical roles in mammalian development and physiological homeostasis. This explains the occurrence of polymorphisms in xenobiotic-metabolizing enzymes among humans and other mammalian species. However, these null mice do show differences in sensitivities to acute chemical toxicities, thus establishing the importance of xenobiotic metabolism in activation pathways that lead to cell death. Rodent bioassays using null mice and known genotoxic carcinogens should establish whether these enzymes are required for carcinogenesis in an intact animal model. These studies will also provide a framework for the production of transgenic mice and carcinogen bioassay protocols that may be more predictive for identifying the human carcinogens and validate the molecular epidemiological studies ongoing in humans that seek to establish a role for polymorphisms in cancer risk.
Collapse
Affiliation(s)
- F J Gonzalez
- National Institutes of Health, National Cancer Institute, Building 37 Room 3E-24, Bethesda, MD 20892, USA.
| | | |
Collapse
|
15
|
Bessems JG, Vermeulen NP. Paracetamol (acetaminophen)-induced toxicity: molecular and biochemical mechanisms, analogues and protective approaches. Crit Rev Toxicol 2001; 31:55-138. [PMID: 11215692 DOI: 10.1080/20014091111677] [Citation(s) in RCA: 455] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
An overview is presented on the molecular aspects of toxicity due to paracetamol (acetaminophen) and structural analogues. The emphasis is on four main topics, that is, bioactivation, detoxication, chemoprevention, and chemoprotection. In addition, some pharmacological and clinical aspects are discussed briefly. A general introduction is presented on the biokinetics, biotransformation, and structural modification of paracetamol. Phase II biotransformation in relation to marked species differences and interorgan transport of metabolites are described in detail, as are bioactivation by cytochrome P450 and peroxidases, two important phase I enzyme families. Hepatotoxicity is described in depth, as it is the most frequent clinical observation after paracetamol-intoxication. In this context, covalent protein binding and oxidative stress are two important initial (Stage I) events highlighted. In addition, the more recently reported nuclear effects are discussed as well as secondary events (Stage II) that spread over the whole liver and may be relevant targets for clinical treatment. The second most frequent clinical observation, renal toxicity, is described with respect to the involvement of prostaglandin synthase, N-deacetylase, cytochrome P450 and glutathione S-transferase. Lastly, mechanism-based developments of chemoprotective agents and progress in the development of structural analogues with an improved therapeutic index are outlined.
Collapse
Affiliation(s)
- J G Bessems
- Leiden/Amsterdam Center for Drug Research, Department of Pharmacochemistry, Vrije Universiteit, Amsterdam, The Netherlands
| | | |
Collapse
|
16
|
Qian W, Shichi H. Cataract formation by a semiquinone metabolite of acetaminophen in mice: possible involvement of Ca(2+)and calpain activation. Exp Eye Res 2000; 71:567-74. [PMID: 11095908 DOI: 10.1006/exer.2000.0914] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Acetaminophen, an analgesic/antipyretic, is metabolized by hepatic cytochrome P450 to N -acetyl- p -benzoquinone imine (NAPQI), which is transported by blood circulation to the eye and induces anterior cortical cataract in mice. In this study we injected NAPQI into the anterior chamber of mouse eye and investigated time-dependent cellular responses in the lens. After a lag period of about 2 hr following NAPQI injection, lens opacification as determined by measurement of light scattering by the lens became evident and progressively increased thereafter. There was no difference in the profile of opacity development between a P450-inducer responsive mouse strain and a non-responsive strain. During the lag period, a marked increase in free intracellular Ca(2+)in the lens epithelium was observed at 1 hr by confocal fluorescence microscopy with a Ca(2+)probe. Concurrent with the free Ca(2+)increase, there was a 300% rise in the activity of the non-lysosomal neutral protease calpain in the lens at 1 hr after NAPQI injection. Evidence indicated degradation of vimentin in the lens in which calpain activity was enhanced. Co-injection of calpain inhibitors (N-Ac-Leu-Leu-norleucinol and N-Ac-Leu-Leu-methioninal) with NAPQI protected animals completely from cataract development, although a rise in free intracellular Ca(2+)in the lens epithelium was still observed. Lenses from the protected mice did not exhibit enhanced calpain activity. These results suggest the following sequence of events as a possible mechanism of NAPQI-induced cataract. NAPQI introduced in the anterior chamber of the eye enters the lens epithelial cells and disturbs Ca(2+)homeostasis with a resultant rise in free intracellular Ca(2+)which in turn activates calpain in the epithelium. The neutral protease then degrades cellular proteins (e.g. cytoskeletal proteins) and initiates anterior cortical cataract formation.
Collapse
Affiliation(s)
- W Qian
- Kresge Eye Institute, Department of Ophthalmology, Wayne State University School of Medicine, Detroit, Michigan 48201, USA
| | | |
Collapse
|
17
|
Qian W, Shichi H. Acetaminophen produces cataract in DBA2 mice by Ah receptor-independent induction of CYP1A2. J Ocul Pharmacol Ther 2000; 16:337-44. [PMID: 10977129 DOI: 10.1089/jop.2000.16.337] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The metabolic transformation of acetaminophen to N-acetyl-p-benzoquinone imine by cytochrome P450 enzymes (e.g., cytochrome P450 1A2) is a prerequisite for acetaminophen-induced cataract formation in mice. Aromatic hydrocarbons, such as beta-naphthoflavone, induce cytochrome P450 1A2 in C57BL6 mice via the mediation of the aromatic hydrocarbon receptor and render the animals susceptible to cataract formation by acetaminophen administration but not in DBA2 mice which do not respond to cytochrome P450 1A2 induction by these compounds. Polycyclic hydrocarbons, such as acenaphthylene, were recently found to induce cytochrome P450 1A2 gene expression in young DBA2 mice by aromatic hydrocarbon receptor-independent pathways. In this work, we investigated whether enhanced metabolism of acetaminophen to N-acetyl-p-benzoquinone by cytochrome P450 1A2 induction by acenaphthylene could produce cataract in young DBA2 mice. Fifteen-day-old DBA2 mice were pretreated with two intraperitoneal injections of acenaphthylene and, 24 hr later, with one injection of acetaminophen. In most mice, cataract developed 18-24 hr after acenaphthylene injection. Acenaphthylene treatment of young DBA2 mice resulted in a 2-fold increase in cytochrome P450 1A2-dependent methoxyresorufin O-demethylase activity in the liver. These results support the hypothesis that the aromatic hydrocarbon receptor-independent induction of cytochrome P450 1A2 enzyme leads to accumulation of sufficient N-acetyl-p-benzoquinone in the liver and cataract development in the eye.
Collapse
Affiliation(s)
- W Qian
- Department of Ophthalmology, Wayne State University School of Medicine, Detroit, Michigan 48201, USA
| | | |
Collapse
|
18
|
Qian W, Amin RH, Shichi H. Cytotoxic metabolite of acetaminophen, N-acetyl-p-benzoquinone imine, produces cataract in DBA2 mice. J Ocul Pharmacol Ther 1999; 15:537-45. [PMID: 10609776 DOI: 10.1089/jop.1999.15.537] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Acetaminophen, or N-acetyl-p-aminophenol (APAP), is metabolized to N-acetyl-p-benzoquinone imine (NAPQI) by cytochrome P450 enzymes in the liver. The biotransformation of APAP is enhanced in P450-inducible C57BL6 (B6) mice but not in non-inducible DBA2 (D2) mice. Our previous studies showed that high doses of APAP administered to B6 mice pretreated with beta-naphthoflavone (BNF), a P450 inducer, produced ocular tissue damage but not in D2 mice similarly treated. We then proposed that the ocular toxicity of APAP is due to accumulation of its metabolite, NAPQI. In the present work, we tested this hypothesis by injecting NAPQI (50 microg in 2 microl propyleneglycol/eye) intracamerally into B6 and D2 mice. NAPQI produced cataract within a few hours (mean = 4 hr) both in B6 and D2 mice. Lower concentrations of NAPQI did not produce lens opacification. Injection of the solvent propyleneglycol only did not cause cataract. Thus, when NAPQI was injected, P450 inducibility was not essential for cataract formation. In addition to vacuole formation in the lens epithelial cells, alterations were observed in the corneal endothelium and ciliary epithelium. The retinal cell layers remained intact. Extensive mitochondrial damage and changes in chromatin structure in the nucleus were evident in the affected lens epithelial cells. The present result dissociates APAP ocular toxicity from its metabolic potentiation by P450 enzymes and will allow us to investigate the mechanism of cataractogenesis in in vitro lens culture systems.
Collapse
Affiliation(s)
- W Qian
- Department of Ophthalmology, Wayne State University School of Medicine, Detroit, Michigan 48201, USA
| | | | | |
Collapse
|
19
|
Bonierbale E, Valadon P, Pons C, Desfosses B, Dansette PM, Mansuy D. Opposite behaviors of reactive metabolites of tienilic acid and its isomer toward liver proteins: use of specific anti-tienilic acid-protein adduct antibodies and the possible relationship with different hepatotoxic effects of the two compounds. Chem Res Toxicol 1999; 12:286-96. [PMID: 10077492 DOI: 10.1021/tx980136z] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Tienilic acid (TA) is responsible for an immune-mediated drug-induced hepatitis in humans, while its isomer (TAI) triggers a direct hepatitis in rats. In this study, we describe an immunological approach developed for studying the specificity of the covalent binding of these two compounds. For this purpose, two different coupling strategies were used to obtain TA-carrier protein conjugates. In the first strategy, the drug was linked through its carboxylic acid function to amine residues of carrier proteins (BSA-N-TA and casein-N-TA), while in the second strategy, the thiophene ring of TA was attached to proteins through a short 3-thiopropanoyl linker, the corresponding conjugates (BSA-S-5-TA and betaLG-S-5-TA) thus preferentially presenting the 2, 3-dichlorophenoxyacetic moiety of the drug for antibody recognition. The BSA-S-5-TA conjugate proved to be 30 times more immunogenic than BSA-N-TA. Anti-TA-protein adduct antibodies were obtained after immunization of rabbits with BSA-S-5-TA (1/35000 titer against betaLG-S-5-TA in ELISA). These antibodies strongly recognized the 2, 3-dichlorophenoxyacetic moiety of TA but poorly the part of the drug engaged in the covalent binding with the proteins. This powerful tool was used in immunoblots to compare TA or TAI adduct formation in human liver microsomes as well as on microsomes from yeast expressing human liver cytochrome P450 2C9. TA displayed a highly specific covalent binding focused on P450 2C9 which is the main cytochrome P450 responsible for its hepatic activation in humans. On the contrary, TAI showed a nonspecific alkylation pattern, targeting many proteins upon metabolic activation. Nevertheless, this nonspecific covalent binding could be completely shifted to a thiol trapping agent like GSH. The difference in alkylation patterns for these two compounds is discussed with regard to their distinct toxicities. A relationship between the specific covalent binding of P450 2C9 by TA and the appearance of the highly specific anti-LKM2 autoantibodies (known to specifically recognize P450 2C9) in patients affected with TA-induced hepatitis is strongly suggested.
Collapse
Affiliation(s)
- E Bonierbale
- Laboratoire de Chimie et Biochimie Pharmacologiques et Toxicologiques, URA 400 CNRS, Université Paris V, 45 rue des Saints-Pères, 75270 Paris Cedex 06, France
| | | | | | | | | | | |
Collapse
|
20
|
Qiu Y, Benet LZ, Burlingame AL. Identification of the hepatic protein targets of reactive metabolites of acetaminophen in vivo in mice using two-dimensional gel electrophoresis and mass spectrometry. J Biol Chem 1998; 273:17940-53. [PMID: 9651401 DOI: 10.1074/jbc.273.28.17940] [Citation(s) in RCA: 224] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Liver toxicity following an overdose of acetaminophen is frequently considered a model for drug-induced hepatotoxicity. Extensive studies over many years have established that such toxicity is well correlated with liver protein arylation by acetaminophen metabolites. Identification of protein targets for covalent modifications is a challenging but necessary step in understanding how covalent binding could lead to liver toxicity. Previous approaches suffered from technical limitations, and thus over the last 10 years heroic efforts were required to determine the identity of only a few target proteins. We present a new mass spectrometry-based strategy for identification of all target proteins that now provides a comprehensive survey of the suite of liver proteins modified. After administration of radiolabeled acetaminophen to mice, the proteins in the liver tissue lysate were separated by two-dimensional polyacrylamide gel electrophoresis. In-gel digestion of the radiolabeled gel spots gave a set of tryptic peptides, which were analyzed by matrix-assisted laser desorption ionization mass spectrometry. Interrogation of data bases based on experimentally determined molecular weights of peptides and product ion tags from postsource decay mass spectra was employed for the determination of the identities of modified liver proteins. Using this method, more than 20 new drug-labeled proteins have been identified.
Collapse
Affiliation(s)
- Y Qiu
- Department of Pharmaceutical Chemistry, University of California, San Francisco, California 94143-0446, USA
| | | | | |
Collapse
|
21
|
Ribeiro JM, Agudo A, Costas MJ, Cameselle JC. Rat liver ADP-ribose pyrophosphatase-I as an in vitro target of the acetaminophen metabolite N-acetyl-p-benzoquinoneimine. BIOCHIMICA ET BIOPHYSICA ACTA 1997; 1336:403-8. [PMID: 9367167 DOI: 10.1016/s0304-4165(97)00051-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
N-acetyl-p-benzoquinoneimine (NAPQI) is the metabolite responsible for acetaminophen hepatotoxicity. ADP-ribose pyrophosphatase-I (ADPRibase-I; EC 3.6.1.13) hydrolyzes protein-glycating ADP-ribose. The results show NAPQI-dependent alterations of ADPRibase-I leading to strong inhibition: a fast Km increase produced by low concentrations, and a time-dependent Vmax decrease by higher NAPQI concentrations. Both effects were prevented by thiols, but not reverted by them, nor by gel filtration of NAPQI-treated enzyme. Liver ADPRibase-I can be a target of NAPQI-dependent arylation. The inhibition or inactivation of the enzyme would contribute to increasing the free ADP-ribose concentration and nonenzymatic ADP-ribosylation, which is coherent with results linking free ADP-ribose-producing pathways to acetaminophen toxicity.
Collapse
Affiliation(s)
- J M Ribeiro
- Unidad de Bioquímica y Biología Molecular, Facultad de Medicina, Universidad de Extremadura, Badajoz, Spain
| | | | | | | |
Collapse
|
22
|
Zhao C, Xiong Y, Shichi H. Acetaminophen cytotoxicity in mouse eye: mitochondria in anterior tissues are the primary target. J Ocul Pharmacol Ther 1997; 13:269-76. [PMID: 9185043 DOI: 10.1089/jop.1997.13.269] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Acetaminophen (APAP) injected into C57BL/6 mice (cytochrome P450 inducer-responsive strain) that had been pretreated with b-naphthoflavone (BNF) produced ocular tissue damage, including cataract. Our previous histocytochemical studies showed that tissue damage spread in association with the flow of the aqueous humor and appeared first in the ciliary epithelium, followed by the iris and corneal endothelium and, finally, the lens. The neural retina, retinal pigmented epithelium and choroid remained unaffected. A close examination of the affected tissues indicated that mitochondria are the primary target of APAP cytotoxicity. In order to investigate whether the respiratory capacity of mitochondria is more sensitive to APAP cytotoxicity than mitochondrial morphology, we determined in this work the oxygen uptake by eye tissues dissected from BNF-pretreated and APAP-injected C57BL/6 mice. Oxygen uptake by the ciliary body/iris decreased about 60% at 90 min and 85% at 120 min after APAP administration. The oxygen uptake was inhibited about 50% by 10 microM rotenone. Since the earliest sign of mitochondrial damage was noted at 120 min, the result indicates that mitochondrial energy dysfunction precedes morphological alterations. It was also observed that oxygen uptake by the retina remained unaffected at least for 120 min after APAP administration; therefore, it is evident that the retina and, possibly, other posterior tissues as well are resistant to APAP cytotoxicity, not only in their morphology but, also, in their capacity of mitochondrial energy metabolism.
Collapse
Affiliation(s)
- C Zhao
- Department of Ophthalmology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | | | | |
Collapse
|
23
|
Bessems J, Van Stee L, Commandeur J, Groot E, Vermeulen N. Cytotoxicity of paracetamol and 3,5-dihalogenated analogues: Role of cytochrome P-450 and formation of GSH conjugates and protein adducts. Toxicol In Vitro 1997; 11:9-19. [DOI: 10.1016/s0887-2333(96)00066-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/30/1996] [Indexed: 10/16/2022]
|
24
|
Castell JV, Gómez-Lechón MJ, Ponsoda X, Bort R. In vitro investigation of the molecular mechanisms of hepatotoxicity. ARCHIVES OF TOXICOLOGY. SUPPLEMENT. = ARCHIV FUR TOXIKOLOGIE. SUPPLEMENT 1997; 19:313-21. [PMID: 9079218 DOI: 10.1007/978-3-642-60682-3_29] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- J V Castell
- Unidad de Hepatología Experimental, Hospital Universitario La Fe, Valencia, Spain
| | | | | | | |
Collapse
|
25
|
Zhou LX, Pihlstrom B, Hardwick JP, Park SS, Wrighton SA, Holtzman JL. Metabolism of phenytoin by the gingiva of normal humans: the possible role of reactive metabolites of phenytoin in the initiation of gingival hyperplasia. Clin Pharmacol Ther 1996; 60:191-8. [PMID: 8823237 DOI: 10.1016/s0009-9236(96)90135-6] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Gingival hyperplasia is a well-known complication of therapy with cyclosporine, calcium channel blockers, and phenytoin. It is characterized by the presence of inflammation and a marked fibrotic response. The mechanism of this adverse reaction is unknown. We propose that it may be initiated by the metabolic activation of these drugs to form reactive metabolites. These then cause cellular injury and lead to the gingival hyperplasia. To evaluate this hypothesis we examined phenytoin metabolism and the cytochrome P450 contents of gingival tissues from 10 patients undergoing surgery for various periodontal conditions. We found that microsomes obtained from the gingiva show significant phenytoin hydroxylase activity as determined by the production of 5-(4'-hydroxyphenyl)-5-phenylhydantoin (HPPH) (range, 12.8 pmol HPPH/min.mg microsomal protein to 276.9 pmol HPPH/min.mg microsomal protein; rat control, 133.7 +/- 11.5 pmol HPPH/min.mg microsomal protein). We also found that CYP1A1, CYP1A2, CYP2C9, CYP2E1, and CYP3A4 were present in these microsomes. We detected no CYP2B6 or CYP2D6. We believe that these data support our hypothesis that the proliferative inflammation observed with drugs such as phenytoin, nifedipine, and cyclosporine may be initiated by the formation of reactive metabolites and that the formation of these metabolites may be catalyzed by one or more CYPs found in the gingiva. These metabolites may then cause cellular injury and induce a reactive inflammatory response, followed by fibroblastic proliferation. This proliferation leads to the excess collagen deposition observed with gingival hyperplasia.
Collapse
Affiliation(s)
- L X Zhou
- Department of Medicine, School of Medicine, University of Minnesota, Minneapolis, USA
| | | | | | | | | | | |
Collapse
|